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All-electron path integral Monte Carlo (PIMC) and density functional theory molecular dynam-
ics (DFT-MD) simulations provide a consistent, first-principles investigation of warm dense neon
plasmas in the density-temperature range of 1–15 g cm−3 and 104–108 K. At high temperatures,
DFT-MD becomes intractable because of too many partially occupied bands, while at lower tem-
peratures, PIMC is intractable because of the free-particle approximation of fermion nodes. In
combination, PIMC and DFT-MD pressures and internal energies provide a coherent equation of
state with a region of overlap in which the two methods cross-validate each other. Pair-correlation
functions at various temperatures and densities provide details of the plasma structure and the
temperature-driven ionization process. The electronic density of states of neon shows that a gap
persists for the highest density-temperature conditions studied here with DFT-MD. Finally, the
computed shock Hugoniot curves show an increase in compression as the first and second shells are
ionized.

PACS numbers:

I. INTRODUCTION

Theoretical prediction of thermodynamic properties of
warm dense matter1 (WDM) plays an important role in
furthering our understanding of a large variety of high en-
ergy density physics applications, including inertial con-
fined plasmas2,3, shock4, astrophysical processes5,6, stel-
lar and planetary interiors7,8, and supernovae9. In or-
der to understand the thermodynamic properties of these
physical processes, one must develop accurate methods
to predict the equation of state (EOS) of plasmas. The
development of a comprehensive first-principles method-
ology for this purpose remains a great challenge.

The difficulty in treating the physics of the WDM
regime is that plasmas are partially ionized such that the
electron-ion Coulomb interaction is comparable in mag-
nitude to the kinetic energy. Effects of bonding, ioniza-
tion, exchange-correlation, and quantum degeneracy all
contribute significantly to the total energy1. A number
of analytic and numerical methods, employing various
levels of classical and quantum physics, have been devel-
oped to study plasmas in various regimes10,11, but it is
difficult to link them together in a thermodynamically
consistent way.

In an effort to develop a comprehensive first-principles
treatment of WDM, we have been working on the devel-
opment of a combined approach using density functional
theory molecular dynamics (DFT-MD) at low temper-
atures and path integral Monte Carlo (PIMC) at high
temperatures12,13. Prior to our work, PIMC had been
applied only to the lightest two elements, hydrogen14–16

and helium12. We showed that all-electron PIMC with
free-particle nodes is a feasible route to study even heav-
ier elements, computing EOSs for both water and carbon
plasmas13,17. In the work presented here, we aim to press
the limits of our technique and show that it is capable of
producing an EOS for elements as heavy as neon.

Neon is itself an interesting an important material in
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FIG. 1: (color online) Temperature-pressure conditions for
the PIMC and DFT-MD calculations along four isochores
corresponding to the densities of 0.8949, 3.7283, 7.8959, and
15.0255 g cm−3. The dash-dotted line shows the Hugoniot
curve for an initial density of ρ0 = 1.5070 g cm−3.

the universe, as it is the fifth most abundant element
after H, He, O, and C. During nucleosynthesis, neon is
created during the carbon-burning process. As an inert,
noble gas, neon is highly volatile, and, therefore, easily
depleted from atmospheres of even giant gas planets such
as Jupiter18. Due to stellar and planetary interest in
neon, a number of studies have been done for various
warm and dense conditions19–21.

In this paper, we aim to produce a comprehensive,
first-principles EOS for neon that covers a large range of
temperature-density space (0.8949–15.0255 g cm−3 and
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104–108 K). In Section II, we discuss the details of
the PIMC and DFT-MD methods used for our calcula-
tions. In Section III, we provide the EOS over a wide
temperature-density range and show that both PIMC
and DFT-MD agree near 1×106 K, where both methods
are feasible. In section IV, we characterize the structure
of the plasma by looking at various pair-correlation func-
tions of electrons and nuclei as a function of temperature
and density. In section V, we discuss the electronic den-
sity of states at the most extreme conditions computed
here with DFT-MD. We find a gap persists at 1×106 K
and 15.0255g cm−3. Finally, in section VI, we discuss
predictions for the shock Hugoniot curves.

II. METHODS

A rigorous discussion of PIMC22 and DFT-MD23

methods and the details of our specific PIMC implemen-
tation12 have been reported previously. In this section,
we focus only on details that are important for our neon
simulations.
PIMC is a first-principles method for studying mate-

rials at high temperature where properties of materials
are dominated by excited states. The thermal density
matrix, which is efficiently computed within Feynman’s
path integral formalism, is the natural operator to use
for computing high-temperature observables. The PIMC
method stochastically solves the full, finite-temperature
quantum many-body problem by treating electrons and
nuclei on an equal footing. In contrast to DFT-MD,
PIMC efficiency increases with temperature as particles
become more classical and fewer time slices are needed
to describe quantum mechanical many-body correlations,
scaling inversely with temperature.
PIMC uses a fixed nodal surface to avoid the fermion

sign problem. Thus far, all PIMC implementations have
employed a free-particle nodal structure, which is ex-
pected to be a sensible approximation for systems that
are close to a fully ionized state. However, reliable re-
sults at surprising low temperatures have been obtained
for hydrogen14, as well as carbon and water13. These
results showed that free particle nodes are sufficient for
systems with a filled 1s state and 2s states that are par-
tially ionized.
For our PIMC simulations, the Coulomb interaction is

incorporated via pair density matrices derived from the
eigenstates of the two-body Coulomb problem. A suffi-
ciently small time step is determined by converging total
energy as a function of time step until the energy changes
less than 0.8% (See Supplementary Material). We use a
time step of 1/256 Ha−1 for temperatures below 4×106

K and, for higher temperatures, the time step decreases
as 1/T while keeping at least five time slices in the path
integral. In order to minimize finite size errors, the total
energy is converged to better than 0.4% when comparing
8- and 24-atom simple cubic simulation cells (See Sup-
plementary Material).

The framework of DFT provides an exact mapping of
the many body problem onto a single particle problem,
assuming an approximate exchange-correlation (XC)
functional is known. For all but the simplest model sys-
tems, the most commonly used XC functionals have been
constructed from data based on zero temperature quan-
tum Monte Carlo calculations of the electron gas24. In
the WDM regime, where temperatures are at or above
the Fermi temperature, there is no expectation for an
XC functional to provide an accurate description of the
electronic physics25. However, in previous PIMC and
DFT-MD work on helium12 carbon13, and water13, it was
shown that DFT functionals are surprisingly accurate at
high temperatures.
Finite-temperature DFT uses a Fermi-Dirac function

to allow for thermal occupation of single-particle elec-
tronic states26, but requires an increasing number of
bands with temperature, crippling its efficiency at ex-
treme temperatures. In addition, typically pseudopoten-
tials replace the core electrons in each atom. It is possible
the pseudopotential approximation may break down and
should be compared with all-electron calculations, partic-
ularly as electrons are thermally excited out of the core.
Orbital-free density functional methods aim to overcome
such thermal band limitations, but several challenges re-
main to be solved27.
The DFT-MD simulations were performed with the Vi-

enna Ab initio Simulation Package (VASP)28 using the
projector augmented-wave (PAW) method29. MD uses
a NVT ensemble regulated with a Nosé-Hoover thermo-
stat. Exchange-correlation effects are described using the
Perdew-Burke-Ernzerhof30 generalized gradient approx-
imation. Electronic wave functions are expanded in a
plane-wave basis with a energy cutoff of at least 1000 eV
in order to converge total energy to chemical accuracy.
Size convergence tests up to a 24-atom simulation cell at
temperatures of 10,000 K and above indicate that total
energies are converged to better than 0.1% in a 24-atom
simple cubic cell (See Supplementary Material). We find,
at temperatures above 250,000 K, 8-atom cell results are
sufficient since the kinetic energy far out weighs the in-
teraction energy at such high temperatures. The number
of bands in each calculation is selected such that ther-
mal occupation is converged to better than 10−4, which
requires up to 9,000 bands in the highest temperature
cases corresponding with the lowest density. All simula-
tions are performed at the gamma-point of the Brillouin
zone, which is sufficient for high temperature fluids, con-
verging total energy to better than 0.01% relative to a
comparison with a grid of k-points.

III. EQUATION OF STATE RESULTS

In this section, we report our EOS results for four den-
sities of 0.8949, 3.7283, 7.8959, and 15.0255 g cm−3 and
for a temperature range of 104-109 K. The four isochores
are shown in Fig. 1, which is discussed in more detail in
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FIG. 2: (color online) Comparison of excess pressure relative
to the ideal Fermi gas plotted as a function of temperature
for neon.

section VI.
Figure 2 compares pressures obtained for neon from

PIMC and DFT-MD simulations and from the analytical
Debye-Hückel plasma model31. Pressures, P , are plotted
relative to a fully ionized Fermi gas of electrons and ions
with pressure, P0, in order to compare only the excess
pressure contributions that result from particle interac-
tions. DFT-MD excess pressures agree with PIMC to
better than 0.05% at 106 K for the largest three den-
sities. For the lowest density, we were unable to ob-
tain converged DFT result at 106 K, and free-particle
nodes in PIMC start to break down at that temperature.
Nonetheless, the excellent agreement near 106 K at all
higher densities allows for cross-validation between DFT
and PIMC, which implies the zero temperature DFT
exchange-correlation potential remains valid at high tem-
peratures and that the free-particle nodal approximation
is valid in PIMC when atoms are partially and fully ion-
ized. For the smallest density, we find the 2s state is 15%
occupied when free particle nodes start to break down,
while for the largest density, the 2s state is 50% occupied
at the breaking point. The two methods have compara-
ble computational cost in the overlap region, but DFT
starts to become prohibitive beyond 7.5×105 K, and free
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FIG. 3: (color online) Comparison of excess internal ener-
gies relative to the ideal Fermi gas plotted as a function of
temperature for neon.

particle nodes break down below 106 K for all densities.

Figure 3 compares internal energies, E, plotted relative
to the internal energy of a fully ionized Fermi gas, E0.
PIMC and DFT-MD results for excess internal energy
agree to better than 0.04% at 106 K for the largest three
densities. The DFT-MD and PIMC methods together
form a coherent equation of state over all temperatures
ranging to the weakly interacting plasma limit. PIMC
extends the equations of state to the weakly interacting
plasma limit at high temperatures, in agreement with the
Debye-Hückel model31.

Table I provides the densities, temperatures, and the
raw pressures and energies used to construct our equa-
tions of state. The DFT-MD energies have been shifted
by 128.8661280 Ha/atom in order to shift the the PAW
pseudpotential reference energy back to the absolute
atomic energy. The shift was calculated by performing
an all electron atomic calculation in the OPIUM Code32

and a corresponding isolated-atom calculation in VASP.

The EOS table also allows one to compare the PIMC
and DFT-MD internal energies and pressures at 1×106

K, where the two methods provide overlapping EOS data
at the highest three densities. There is roughly a 2-3%
discrepancy between the DFT and PIMC raw energies
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and 1-2% in the total pressures at that temperature.
There are three potential sources of this discrepancy: (1)
the use of free particle nodes in PIMC, (2) employment
of the PBE exchange-correlation functional in DFT-MD
that was constructed for ground state calculations, and
(3) insufficiency of the VASP DFT-MD pseudopotential
to include effects of core excitations. There is currently
no straight forward method to test the size of the error
introduced by the PIMC free particle node approxima-
tion and DFT-MD exchange-correlation approximation.
However, the accuracy of the VASP pseudopotential

at 1×106 K can be tested by comparing with the results
of an all-electron calculation. We constructed a neon
pseudopotential (cutoff radius of 0.1 Bohr) that includes
all electrons in the valence using the fhi98PP code33.
This pseudopotential can be used for finite temperature
DFT calculations in the ABINIT code34. We compared
the VASP and all-election ABINIT DFT energies for a
static calculation of neon at 1×106 K and found that
the VASP pseudopotential calculation is 0.73 Ha too low
in energy. This means that the unincorporated effects
of core-excitations in the VASP pseudpotential approxi-
mation at 1×106 K accounts for nearly one third of the
discrepancy we find between the PIMC and DFT-MD in-
ternal energies. Therefore, only 1-2% of the discrepancy
between PIMC and DFT is due to the combined effects
of the free-particle node approximation in PIMC and the
exchange-correlation approximation in DFT-MD.

IV. PAIR-CORRELATION FUNCTIONS

In this section, we study the structure of neon plasmas.
Pair-correlation functions35 between the various particles
are analyzed as a function of temperature and density.
The data gives insight into details of the temperature-
driven ionization process.
Figure 4 shows nuclear pair-correlation functions, g(r),

computed with PIMC. At low temperature, the atoms
are kept farthest apart as atoms are repelled by Pauli re-
pulsion amongst the bound electrons as well as by their
Coulomb interaction. As temperature increases, the nu-
clei gain kinetic energy leading to stronger collisions, and
atoms become more ionized, gradually minimizing effects
of Pauli repulsion. At the highest temperature, the sys-
tem approaches the Debye-Hückel limit, behaving like
a correlated system of screened Coulomb charges. The
g(r) functions depend only weakly on the density. Still,
at high density, the chance of finding two nuclei at close
range is slightly increased.
Figure 5 compares the nuclear pair-correlation func-

tions of PIMC and DFT at a temperature of 1×106 K.
These g(r) curves verify that PIMC and DFT predict
consistent structural properties in addition to the agree-
ment in the equation of state.
Figure 6 shows N(r), the integral of the pair correla-

tions, which represents the average number of electrons
within a sphere of radius r around a given nucleus. N(r)

TABLE I: EOS table with pressures and internal energies
at all temperature and density conditions considered in this
work. The numbers in parentheses indicate the statistical un-
certainties of the DFT-MD and PIMC simulations.

ρ (g cm−3) T (K) P (GPa) E (Ha/atom)

0.8948a 1034730000 4196329(484) 54055(6)
0.8948a 99497670 401383(260) 5170(3)
0.8948a 16167700 64842(37) 826.1(5)
0.8948a 8083850 31972(14) 400.5(3)
0.8948a 4041920 15045(7) 164.5(2)
0.8948a 2020960 6150(18) -15.7(3)
0.8948a 1497010 4305(13) -49.0(2)
0.8948a 998004 2625(25) -72.2(3)
0.8948b 750000 1666.9(1) -91.746(1)
0.8948b 500000 946.5(1) -105.992(1)
0.8948b 250000 326.1(4) -120.226(1)
0.8948b 100000 80.1(2) -126.792(1)
0.8948b 50000 33.2(8) -128.204(1)
0.8948b 10000 5.70(5) -128.816(1)
0.8948b 7500 4.48(4) -128.829(1)
0.8948b 5000 3.23(2) -128.842(1)
0.8948b 2500 1.69(2) -128.856(1)
0.8948b 1000 0.83(2) -128.864(1)

3.7283a 1034730000 17481714(2218) 54050(7)
3.7283a 99497670 1678235(1064) 5181(3)
3.7283a 16167700 268122(157) 813.3(5)
3.7283a 8083850 130114(63) 379.5(3)
3.7283a 4041920 58450(28) 123.7(1)
3.7283a 2020960 24061(78) -33.0(2)
3.7283a 998004 9895(20) -84.82(8)
3.7283b 1000000 9991(4) -86.757(6)
3.7283b 750000 6786(4) -99.176(7)
3.7283b 500000 3882(4) -111.229(5)
3.7283b 250000 1516(4) -122.180(6)
3.7283b 100000 477(2) -127.211(4)
3.7283b 50000 248(4) -128.280(5)
3.7283b 10000 90.2(2) -128.767(1)
3.7283b 7500 80.0(2) -128.786(1)
3.7283b 5000 68.6(1) -128.804(1)
3.7283b 2500 54.9(1) -128.825(1)

7.8959a 1034730000 37020409(4549) 54042(7)
7.8959a 99497670 3540121(2430) 5155(4)
7.8959a 16167700 561943(312) 798.5(5)
7.8959a 8083850 270886(130) 362.6(3)
7.8959a 4041920 118753(49) 99.5(1)
7.8959a 2020960 49057(164) -41.8(2)
7.8959a 998004 20730(46) -89.15(7)
7.8959b 1000000 21007(24) -91.25(2)
7.8959b 750000 14588(36) -102.47(2)
7.8959b 500000 8675(37) -113.23(1)
7.8959b 250000 3750(18) -122.78(1)
7.8959b 100000 1608(9) -127.125(7)
7.8959b 50000 1050(8) -128.105(6)
7.8959b 10000 650.8(5) -128.576(1)
7.8959b 7500 616.1(7) -128.576(1)

15.0255a 1034730000 70454931(8274) 54044(6)
15.0255a 99497670 6738033(4770) 5152(4)
15.0255a 16167700 1061043(1255) 785(1)
15.0255a 8083850 505320(302) 342.8(3)
15.0255a 4041920 218379(136) 79.1(1)
15.0255a 2020960 92899(342) -47.6(2)
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TABLE I. (Continued.)

ρ (g cm−3) T (K) P (GPa) E (Ha/atom)

15.0255a 998004 40246(83) -91.88(7)
15.0255b 1000000 41119(26) -94.37(1)
15.0255b 750000 29324(37) -104.66(2)
15.0255b 500000 18607(35) -114.22(1)
15.0255b 250000 9400(17) -122.70(1)
15.0255b 100000 5370(23) -126.55(1)
15.0255b 50000 4346(20) -127.44(1)

aPIMC bDFT-MD

decreases with increasing temperature as atoms become
ionized and electrons become unbound. At low density,
the 1s core state is fully occupied at 1×106 K, as it agrees
with the isolated 1s core state. Ionization of the 1s state
occurs over the temperature interval from 1 to 8×106 K.
At high density, the 1s core state is still fully occupied at
temperatures up to 2×106 K, indicating that the ioniza-
tion fraction decreases with density and is not pressure-
driven process as would be expected if neon were close to
metallization. In the next section, we will further show
that neon maintains a gap in its electronic density of
states for all densities under consideration.
Figure 7 shows nucleus-electron pair correlations as a

function of temperature and density. At low tempera-
ture and high density, we find more electrons near the
nuclei, reflecting a lower ionization fraction. At higher
temperatures, electrons are thermally excited and grad-
ually become unbound, decreasing their correlation with
the nuclei. As the density is increased, the electrons are
more likely to reside near the nuclei confirming the ab-
sence of any pressure-drive ionization as seen in Fig. 6.
Figure 8 shows electron-electron pair correlations with

their spins opposite. The function is multiplied by the
particle density ρ in units of g cm−3, so that the integral
under the curves is related to the number of electrons.
The electrons are most highly correlated for low tem-
peratures since electrons are most strongly bound to the
nuclei in those cases. As temperature increases, electrons
are thermally excited, decreasing the correlation. Higher
densities increase correlation at short distances, consis-
tent with a lower ionization fraction.
Figure 9 shows electron-electron pair correlations with

spins parallel multiplied by the particle density ρ. Dif-
ferent electrons with parallel spins are bound to a single
nucleus, which leads to a positive correlation at interme-
diate distances. For short separations, Pauli exclusion
takes over and the functions decay to zero for small r.

V. ELECTRONIC DENSITY OF STATES

In this section, we briefly examine whether the effects
of high temperature and density can introduce closure
of the electronic band gap in fluid neon. Solid neon is
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the material with the highest metallization pressure,36,37

followed by helium38,39. With DFT-MD simulations, it
has been shown that the atomic disorder present in fluid
helium reduces the metallization pressure significantly40.
We therefore analyze the electronic density of states in
our DFT-MD simulations of neon.

Figure 10 compares the total available DOSs and ther-
mally occupied DOSs at a density of 15.0255 g cm−3 and
temperatures of 5×105 and 1×106 K. Results were ob-
tained by averaging over at least 100 snapshots from
equally spaced DFT-MD trajectories. The eigenvalues
of each snapshot were aligned at their Fermi energy. To
simplify Fig. 10, an additional shift is introduced to align
the resulting gaps at zero.

The two occupied DOSs have large peaks near −30 eV
reminiscent of the atomic 2s and 2p states, followed by
a gap at the Fermi energy, which is then followed by a
continuous spectrum of conducting states. For both tem-
peratures, a large fraction of electrons are excited across
the gap, which plays a role in the increase of pressure
seen in Fig. 2 and in the increase of the compression
ratio of Hugoniot curves discussed in the next section.
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FIG. 7: (color online) The nucleus-electron pair-correlation
functions calculated with PIMC for neon.

Unlike hydrogen and helium, whose gaps close, turning
them into metals38,40–42, we do not find the gap for fluid
neon closes for the even most extreme conditions we have
studied here with DFT-MD.

VI. SHOCK COMPRESSION

Dynamic shock compression experiments are the pre-
ferred laboratory experiments to probe the properties of
materials at high pressure and temperature. Lasers43,
magnetic fields44, and explosives45 have been used to gen-
erate shock waves that reached megabar pressures. Den-
sity functional theory has been validated by experiments
as an accurate tool for studying shock compressed No-
bel gases46. Under shock compression, the initial state
of a material is characterized by internal energy, pres-
sure, and volume, (E0, P0, V0), which changes to a final
state denoted by (E,P, V ). The conservation of mass,
momentum, and energy yields the Hugoniot condition47,

H = (E − E0) +
1

2
(P + P0)(V − V0) = 0. (1)

For one set of initial conditions, the shock Hugoniot
curve refers to the collection of final states that can be
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obtained for different shock velocities. This curve can
be predicted theoretically from an EOS table as given in
Table I. For the initial state of the principal Hugoniot
curve, we have chosen the density of solid neon at 4 K and
ambient pressure, ρ0 = 1.5070 g cm−3 (Ref. [48]). We
computed the corresponding internal energy with DFT
calculations of a face-centered cubic (fcc) solid. The re-
sulting Hugoniot curve has been plotted in T -P and P -ρ
spaces in Figs. 1 and 11, respectively.

Shock wave experiments have been performed in com-
bination with diamond anvil cells in order to pre-
compress the sample statically before a shock is launched.
This technique allows one to increase the initial density
and then reach much higher final densities. Thus density-
temperature conditions much deeper in the interiors of
planets can be reached49. We repeated our Hugoniot cal-
culations for initial densities ranging from 1/2 to a 2-fold
change of the ambient value, ρ0. P0 and E0 were again
derived from DFT calculations of an fcc solid since exper-
imental50–52 and theoretical53 work consistently predict
this crystal structure for solid neon.

Figure 11 shows the resulting family of Hugoniot
curves. While starting from the ambient density had led
to a maximal shock density of 7.202 g cm−3, a 2-fold pre-
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compression to 13.6 GPa yields a much higher maximum
shock density of 14.37 g cm−3, as expected.

The shock compression behavior can best be analyzed
by dividing the shock density by the initial density, which
has been done for three representative Hugoniot curves
in Fig. 12. In the high-temperature limit, all curves con-
verge to a compression ratio of 4, which is the value of
an ideal gas. However, compression ratios close to 4-fold
may already be obtained at lower temperature where in-

teraction effects are still important. In general, the shock
compression ratio is controlled by the excitation of inter-
nal degrees of freedom, which increase the compression,
and by interaction effects between particles that reduce
it54. Consistent with our results for hydrogen and he-
lium12, we find that an increase in the initial density
leads to a slight reduction in the shock compression ra-
tio (Fig. 12) because particles interact more strongly at
higher density.
The Hugoniot curves in Fig. 12 also exhibit two max-

ima if the shock densities are compared for different tem-
peratures. The two compression maximum can be at-
tributed to the ionization of electrons in the first and sec-
ond shell. On the principal Hugoniot curve, the first max-
imum of ρ/ρ0=4.779 occurs at temperature of 6.265×105

K (53.93 eV), which is above the first ionization en-
ergy of the neon atom, 21.56 eV. A second compression
maximum of ρ/ρ0=4.968 is found for a temperature of
4.355 × 106 K (375.3 eV). This maximum can be at-
tributed to the ionization of the 1s core states of the
neon ions. From comparison, the ionization of the last
electron requires an energy of 1360 eV. In the tempera-
ture interval near the compression maximum, 2− 8× 106

K, we find a substantial reduction of the charge density
around the nuclei, which we plotted in Fig. 6 confirming
our ionization hypothesis.
Conditions where the 1s state are partially or fully ion-

ized are very difficult to study with DFT-MD simulations
because one typically employs a pseudopotential with a
frozen 1s core to reach a level of efficiency that makes
MD simulations with many particles possible in the first
place. Thus, neon is the second material after helium54

where it has been shown that PIMC simulations are nec-
essary to determine the maximum compression along the
principle Hugoniot curve.

VII. CONCLUSIONS

In this work, we have combined PIMC with DFT-MD
to construct a coherent EOS for neon over large range
of densities and temperatures. The two methods vali-
date each other near temperatures of 1×106 K, where
both methods are capable of producing results. This
work presses the limits of our combined PIMC/DFT-
MD approach for computing EOSs for WDM from first-
principles, where we employ only free-particle nodes in
PIMC. Unlike hydrogen and helium, we do not find the
gap in the electronic density of states for neon closes for
the most extreme conditions that we studied here with
DFT-MD. Our analysis of the pair-correlation functions
describes how the structure of the plasma changes with
temperature and density as atoms are ionized and elec-
trons in the first and second shells become free. The ion-
ization imprints a corresponding signature on the shock
Hugoniot curves. We find that PIMC simulations are
necessary to determine the state of the highest shock
compression.
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