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We develop a theoretical description of radiative thermal conductivity in hyperbolic metama-
terials. We demonstrate a dramatic enhancement of the radiative thermal transport due to the
super-singularity of the photonic density of states in hyperbolic media, leading to the radiative heat
conductivity which can be comparable to the non-radiative contribution.
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Heat conduction in bulk media is generally treated as
a diffusion process in which thermal energy is carried
primarily by phonons and electrons [1]. In these condi-
tions, the electromagnetic thermal flux is relatively small
and mostly ignored [1]. Even for nanoscale system where
thermal conductivity is suppressed due to interface scat-
tering, the contribution of radiative heat transport is still
generally neglected [2, 3]. In this Letter, we demonstrate
that thermal conductivity of hyperbolic metamaterials
(HMMs) shows a quantitatively different behavior and
leads to a giant increase in radiative thermal conduc-
tance, which can be comparable with the non-radiative
contribution.

The unique properties of HMMs originate from ex-
treme dielectric tensor anisotropy in these media. When
the dielectric permittivity components in two orthogo-
nal directions have opposite signs, the corresponding iso-
frequency surface opens into a hyperboloid. For TM
waves travelling in these anisotropic media, the phase
space volume enclosed by the iso-frequency surface is in-
finite, leading to a broadband singularity of the corre-
sponding photonic density of states [4, 5].

HMMs have recently been used to manipulate the near-
field thermal radiation [6–12]. It has been further noted
that the density of states singularity in HMMs could sig-
nificantly enhance the thermal transport in the ballis-
tic regime [13]. However, the “conventional” diffusive
regime, when the HMM system size exceeds the electro-
magnetic absorption length, has not yet been studied.
Due to the occurrence of the broadband singularity in
the density of states [4], the effective number of photons
carrying the radiative energy flux will dramatically in-
crease, and thus strongly enhance the radiative thermal
conductivity.

Furthermore, as metal-dielectric multilayered struc-
tures can show hyperbolic response [14–17], the descrip-
tion of the radiative thermal conductivity is also rele-
vant for practical applications. Recently, there’s been
a significant interest of exploring thermal transport for
nanoscale multilayered devices due to promising applica-
tions in thermal barriers [18], thermoelectrics [19] and ex-
treme ultraviolet and soft X-ray optics [20, 21]. Layered
materials including W/Al2O3 [18] and Ta/TaOx lami-
nates [22], Mo/Si [20, 21] and Au/Si multilayers [23],
were found to have ultra-low thermal conductivities in

the range of 0.33-1.5 Wm−1K−1. The thermal manage-
ment of III-V semiconductor superlattices has also been
studied [24, 25], as they are widely used as quantum well
gain media and Bragg reflectors in quantum cascade laser
devices. Interestingly, many of these systems are com-
posed of alternative layers of metal and dielectric, and
may display hyperbolic dispersion of the high-k modes,
with resulting broadband singularity in the bulk pho-
tonic density of states [4]. As a result, the anomously
large photonic density of states will enhance the radia-
tive thermal transport, and it must be taken into account
in the overall thermal conductivity.

In this Letter, we consider the radiative thermal trans-
port in a uniaxial HMM along the optical axis in the z
direction as shown in Fig.1(a). As the radiative ther-
mal transport through the whole structure is diffusive,
we employ the Boltzman transport equation to solve for
the thermal conductivity of the radiative channel [2].

Within the framework of Boltzman transport theory
which is valid for the radiative heat conduction in diffu-
sive regime, the thermal conductivity is given by [2]

G =
∑
m

∫
d3k

(2π)3
~ωm(k)v2gm(k)τm(k)

dnB
dT

(1)

where vg(k) is the photon group velocity, τ(k) is the
thermal photon lifetime, nB is the corresponding pho-
ton occupation function, and the HMM is described by
a photonic band structure ω(k) with polarization index
m = [s, p]. As the hyperbolic mode structure and the re-
sulting broadband density of states singularity in HMMs
are only observed for the p-polarization, it is the con-
tribution of the p-polarization that dominates the radia-
tive transport in hyperbolic media, while that of the s-
polarization can be neglected [4]. Eqn. (1) can therefore
be reduced to

G =
kB

(2π)2

∫
dω I(ω) F (ω, T ) (2)

where

I(ω) =

∫
dkτ kτ τ(kτ ) vg(kτ ), (3)

and

F (ω, T ) = (
~ω
kBT

)2e
~ω

kBT /(e
~ω

kBT − 1)2. (4)
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FIG. 1. Panel (a) : The schematic of heat transport across
a planar hyperbolic metamaterials (HMM). The ends of the
structure are in direct contact with thermal reservoirs with
constant temperature T1 and T2. The heat flows along the
optical axis in z direction. Panels (b) and (c): the real
parts of permittivities of the InGaAs : AlInAs HMM (b) and
the doped Si/SiO2 HMM (c) calculated using the effective
medium theory. In both cases, the dielectric filling ratio is
1/2.

Here kB and ~ are respectively Boltzman and Planck con-
stants, and kτ is the wavevector parallel to the sample
surface. Note that the original Boltzman transport the-
ory leading to Eqn. (1) represents essentially the leading
order expression in the small parameter 1/ωτ � 1, so the
higher order terms in this parameter, arising from the in-
tegration in Eqn. (2) must be neglected. Eqns. (2)-(4)
provide a closed-form analytical solution to the radiative
thermal conductivity in a hyperbolic medium.

As the first example of hyperbolic metamaterial, we
choose the superlattice of highly doped semiconductor
InGaAs and intrinsic AlInAs, with doped InGaAs as the
medium with negative permittivity due to the electro-
magnetic response of free charge carriers, and insulating
AlInAs as the dielectric. As such doped semiconductor-
insulator superlattices are becoming important compo-
nents of modern microelectronics, used e.g. to reduce the
leakage currents in transistor barriers, the understanding
of the different mechanisms of thermal conductivity in
such materials is also important from the practical point
of view.

For the n+-doped InGaAs : AlInAs HMM, the hy-
perbolic band covers the thermal photon energy range
for the room temperature [14], leading to efficient ther-
mal excitation of high-k modes. We choose the thick-
ness of each layer of the superlattice to be 50 nm which
is far below the operating wavelength so that the effec-
tive medium theory (EMT) is applicable, but also large

enough so that the electronic energy quantizion can be
ignored [14]. Under the assumption of EMT [26], the
effective permittivity tensor is uniaxial and can be ex-
pressed as

ετ =
1

2
(εInGaAs + εAlInAs) , (5)

εn = 2

(
1

εInGaAs
+

1

εAlInAs

)−1
, (6)

where ετ and εn are the effective permittivities in the
directions parallel and perpendicular to plane of the lay-
ers respectively. εInGaAs and εAlInAs are the permittiv-
ities of the InGaAs and AlInAs layers respectively. It
should be noted that the effective medium approach used
in Eqn. (5),(6) does not describe the effects of the spatial
dispersion in the metamaterial [27, 28], however in pla-
nar hyperbolic metamaterials studied in this work the
resulting corrections can be neglected [29]. The per-
mittivity of AlInAs in mid-IR is approximately constant
(εAlInAs ≈ 10.23), and the permittivity of n+-doped In-
GaAs can be expressed as [14]

εInGaAs = ε∞(1−
ω2
p

ω2 + iωγ
), (7)

where ε∞ = 12.15, ωp = 1.865 × 1014 s−1, and γ =
1013 s−1. In Fig. 1(b) we show the wavelength depen-
dence of the resulting dielectric tensor of the InGaAs :
AlInAs metamaterial.

For our second example of HMM, we take heavily n+-
doped silicon (∼ 1020 cm−3) as “metallic” component
and SiO2 as the dielectric component, with the thickness
of each layer chosen to be 10 nm. As SiO2 is a popu-
lar insulating material in silicon technology, the demand
for understanding the precise thermal properties of these
thin films is increasing.

We will model the permittivity of doped silicon by
the Drude oscillator with parameters taken from Ref.
[30], where ε∞ = 11.7, ωp = 3.157 × 1014 s−1, and
γ = 1.292 × 1014 s−1. The permittivity of SiO2 will be
taken as a constant (εSiO2

= 1.4), neglecting the effect of
phonon polariton resonance. Fig. 1(c) shows the effective
permittivity tensor of this hyperbolic metamaterial.

The required parameters of the propagating modes in
planar HMMs, such as our chosen examples, can be ob-
tained from the standard transfer-matrix approach [31],
leading to

cos(knd) = cos(k1zd/2) cos(k2zd/2)

−1

2
(
tk1z
k2z

+
k2z
tk1z

) sin(k1zd/2) sin(k2zd/2) (8)

where the subscripts “1” and “2” denote the parameters
of the metal and the dielectric layers respectively, d is the
period of the superlattice, t ≡ ε2/ε1, and

k(1,2)z =

√
ε(1,2)

(ω
c

)2
− k2τ ≈ ikτ . (9)
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The group velocity

vg =

[
dkn
dω

]−1
(10)

can be calculated using the frequency dependence of the
Bloch wavenumber kn, and the photon lifetime is approx-
imated by τ ≈ 2/γ . I(ω) in the Eqn. (3) is then reduced
to

I(ω) =
4τ

d

1

| dεrdω |
F̂ (εr) (11)

where

F̂ (εr) =
ε2r

| ε2r − 1 |

∫ qmax

0

dq
q

| 1− cosh(q) |

×

√√√√1−

[
2− εr − 1

εr

4
+

2 + εr + 1
εr

4
cosh(q)

]2
, (12)

where the dimensionless wavenumber q ≡ kτd, the rela-
tive permittivity εr ≡ εm/εd, and qmax is defined by the
cut-off of kn at π/d:

qmax = arccosh

[
εr + 1/εr − 6

εr + 1/εr + 2

]
. (13)

Substituting Eqn. (4) and (11) into Eqn. (2) , we obtain

G =
kBτ

π2d

∫
dω

F̂ (εr)

| dεrdω |
( ~ω
kBT

)2e
~ω

kBT

(e
~ω

kBT − 1)2
(14)

Furthermore, F̂ (εr) could be approximated as

F̂ (εr) = π2

4 ·
{
ε2r, −1 ≤ εr ≤ 0
1, εr ≤ −1

(15)

The approximation of Eqn. (15) is compared with the
exact expression in Fig. 2.
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FIG. 2. The comparison of the exact expression of F̂ (εr)
(black line) with the approximation of Eqn.(15)(dashed red
line).

The thermal conductivity G can then be represented
as

G =
kBωp

4d

ωp
γ

ε∞
εd

(
kBT

~ωp

)4

I5

(
~ωp
kBT

)
[1 + δg] , (16)

where

δg =

( ~ωp
kBT

)4
 ~ω1

kBT

e
~ω1
kBT − 1

−
~ωp

kBT

e
~ωp
kBT − 1

+ log
1− e

~ωp
kBT

1− e
~ω1
kBT


− 2

(
~ωp
kBT

)2 [
I3

(
~ωp
kBT

)
− I3

(
~ω1

kBT

)]
+

(
εd
ε∞

)2

I5

(
~ω1

kBT

)
− I5

(
~ω1

kBT

)]
1

I5

(
~ωp

kBT

) , (17)

the integral

In(x) ≡
∫ x

0

tnet

(et − 1)2
dt, (18)

and the frequency

ω1 ≡
ωp√

1 + εd
ε∞

. (19)
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FIG. 3. The analytically (black line) and numerically (red
dashed line) calculated thermal conductivity of the InGaAs
: AlInAs HMM. G is normalized by kBωp/4d. The purple
dashed lines indicate asymptotic behavior at low and high
temperatures.

In Fig. 3 we compare the analytical result of Eqn. (16)
with the numerical calculation based on Eqn. (2). While
the deviations from the exact numerical calculations are
clearly visible, our result clearly reproduces the qualita-
tive behavior of the thermal conductivity. The normal-

ized themal conductivity (plotted in units of
kBωp

4d ) is
increasing as kBT/~ωp � 1, and gradually saturates as
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indicated by the purple dashed line when kBT/~ωp ≥ 1.
For kBT � ~ωp, a limited number of high-k modes are
excited. When temperature increases, the number of “ac-
cessible” high-k modes increases dramatically, leading to
the significant enhancement of thermal conductivity. As
kBT approaches ~ωp, the photon energy distribution fully
overlap with the super-singularity of the photonic den-
sity of states, so that nearly all the high-k modes are
now thermally excited, and the thermal conductivity sat-
urates.
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FIG. 4. The thermal conductivities of the InGaAs : AlInAs
HMM (a) and doped Si/SiO2 HMM (b) vs. temperature.

Fig.4 shows the numerically calculated thermal con-
ductivity of our two example systems. For InGaAs :
AlInAs superlattice, the onset of the saturation behavior
is clearly observed, since the plasma frequency of InGaAs
is significantly smaller than that of the heavily n+-doped
Si. In addition, due to the longer photon lifetime in the

InGaAs : AlInAs metamaterial the corresponding ther-
mal conductivity is proportionally higher than that of
the silicon-based system.

To compare our results with the experimentally ob-
served thermal conductivity of doped Si/SiO2 HMM,
we note that many research groups observed that non-
radiative thermal conductivity of SiO2 layer deposited on
Si substrates is substantially lower than that of the bulk
SiO2 [32–35]. In particular, the non-radiative thermal
conductivity of 100 nm thick SiO2 layer on Si substrate
was measured to be 0.05 Wm−1K−1 at 323 K [32, 36]. For
the thickness of SiO2 layer down to 10 nm, the thermal
conductivity will be even lower due to the pronounced
effect of thermal resistance at the interface between Si
and SiO2. For a multilayer system based on such unit
cell, the thermal conductivity of the composite would be
of the same order ∼ 0.01 Wm−1K−1 [23]. From Fig. 4,
we can estimate that the corresponding radiative thermal
conductivity of doped Si/SiO2 HMM is 0.004 Wm−1K−1

at 323 K, which is of the same order as its non-radiative
counterpart.

To summarize, we have presented a theoretical descrip-
tion of the radiative energy transport in hyperbolic meta-
materials, and demonstrate that the radiative thermal
conductance can be comparable with the non-radiative
contribution.
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