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The mixed-chalcogenide compound TlBiSSe realizes a three-dimensional (3D) Dirac semimetal
state. In clean, low-carrier-density single crystals of this material, we found Shubnikov-de Haas
oscillations to signify its 3D Dirac nature. Moreover, we observed very large linear magnetoresistance
(MR) approaching 10,000% in 14 T at 1.8 K, which diminishes rapidly above 30 K. Our analysis of
the magnetotransport data points to the possibility that the linear MR is fundamentally governed
by the Hall field; although such a situation has been predicted for highly-inhomogeneous systems,
inhomogeneity does not seem to play an important role in TlBiSSe. Hence, the mechanism of large
linear MR is an intriguing open question in a clean 3D Dirac system.

PACS numbers: 72.20.My, 75.47.De, 71.20.Nr, 72.80.Jc

The discoveries of graphene [1] and three-dimensional
(3D) topological insulators [2–4] greatly advanced the re-
search on two-dimensional (2D) massless Dirac fermions.
In comparison, 3D massless Dirac fermions, whose Hamil-
tonian involves all three Pauli matrices, have attracted
much less attention. This is due partly to the short-
age of concrete materials to give access to the massless
Dirac physics in 3D, although massive 3D Dirac fermions
in Bi are long known to present interesting physics [5–
7]. However, this situation has changed recently, and
materials to realize 3D massless Dirac fermions are cur-
rently attracting significant attention because of the in-
terest in a new type of topological materials called Weyl
semimetals [8, 9]. In recent literature, materials realiz-
ing spin-degenerate 3D massless Dirac cones are called
“3D Dirac semimetals”, while those realizing a pair of
spin-nondegenerate 3D massless Dirac cones are called
“Weyl semimetals”; the latter is derived from the former
by breaking time-reversal symmetry or space-inversion
symmetry (or both) to split the spin-degenerate Dirac
cone into two spin-nondegenerate ones [9].

Recently, the 3D Dirac semimetal phase has been
shown to exist in Na3Bi [10–12] and Cd3As2 [13–15],
where the Dirac nodes are protected by crystal symme-
try [16, 17]. Also, such a phase is known to exist at the
topological phase transition point of TlBi(S1−xSex)2 [18–
21], Pb1−xSnxSe [22], Bi1−xSbx [23] etc., where the bulk
band gap necessarily closes. In those materials, the Weyl
semimetal phase would be realized by magnetic doping,
breaking the crystal inversion symmetry, or applying ex-
ternal magnetic field [20, 21, 24, 25]. Besides being po-
tential parent materials of Weyl semimetals, the Dirac
semimetals offer a new playground to explore the physics
of massless Dirac fermions in larger spatial degrees of
freedom than the 2D case, which may change the char-
acteristic transport properties in a nontrivial way.

In this Rapid Communication, we report our mag-
netotransport studies of TlBiSSe, where the 3D Dirac
semimetal phase is realized as a result of the topological
phase transition between the topological insulator (TI)

TlBiSe2 and an ordinary insulator TlBiS2 [18, 19]. In
TlBiSSe, as the Fermi level is tuned close to the Dirac
point, the magnetoresistance (MR) grows very rapidly,
and its magnetic-field dependence is found to become
linear in high magnetic fields. Surprisingly, in samples
with the Fermi energy EF of about 20 meV, we observed
very large linear MR approaching 10,000% at 14 T. Our
analysis of the magnetotransport data strongly suggests
that the linear MR is somehow governed by the Hall field,
but its origin is not explicable with existing theories for
linear MR, pointing to new physics in 3D Dirac fermions.

The topological phase transition in TlBi(S1−xSex)2
was discovered [18, 19] soon after TlBiSe2 was found to
be a TI [26–28]. According to the angle-resolved photoe-
mission spectroscopy (ARPES) data, the bulk band gap
in TlBi(S1−xSex)2 closes at x = 0.50 [29], across which
the band inversion and a change in the Z2 topology takes
place. This means that the zero-gap semimetallic state
is realized in TlBiSSe, in which S and Se occupy the
chalcogen site in a mixed way. In fact, a recent ARPES
study gave direct evidence that TlBiSSe is a 3D Dirac
semimetal [14]; a fluctuation of 0.005 in the composition
x would allow a small gap of ∼3 meV at the Dirac point
[29], but this is much smaller than the EF of our sample.

Single crystals of TlBi(S1−xSex)2 grown from stoichio-
metric melts are always n-type with the typical carrier
density of 1020 cm−3 [26]. Motivated by a recent re-
port [30], we have grown crystals of TlBiSSe with a Tl-
rich starting composition [31], and succeeded in reducing
the bulk carrier density down to 1017 cm−3 level. High
crystallinity of our single crystals is confirmed by x-ray
diffraction (XRD) analysis [Fig. 1(a)] and Laue analysis.
Although the crystals are grown from off-stoichiometric
melts, inductively-coupled plasma atomic-emission spec-
troscopy (ICP-AES) analysis confirmed that the compo-
sitions of the grown crystals are close to stoichiometry,
and electron-probe microanalysis (EPMA) data assured
that there is no segregation of constituent elements, as
discussed in the Supplemental Material [31]. Experimen-
tal details of our transport measurements are also de-
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FIG. 1: (a) Powder XRD pattern of a typical TlBiSSe crystal;
inset shows its crystal structure. (b) ρxx(T ) behavior of three
samples with different carrier densities. (c, d) Plots of low-
temperature mobility and the magnitude of MR vs n. The
MR values shown here are for 9 T at 1.8 K.

scribed in [31].
The temperature dependencies of the in-plane resis-

tivity, ρxx(T ), of three representative TlBiSSe samples
with significantly different carrier densities are shown in
Fig. 1(b); note that the vertical axis is in logarithmic
scale, and the residual resistivity ratio of the lowest-
carrier-density sample (S3) is as large as 73. We have
actually measured many more samples than are shown in
Fig. 1(b), and Fig. 1(c) shows that the low-temperature
transport mobility µt (assessed from ρxx at 1.8 K and
the carrier density n) increases systematically with de-
creasing n; for example, µt increases by 110 times be-
tween samples S1 (n = 8.8 × 1019 cm−3) and S3 (n =
3.8 × 1017 cm−3). This is in contrast to the case of 2D
Dirac systems like graphene [32] and 3D TIs [33], where
µt shows an enhancement only when the Fermi level is
tuned very close to the Dirac point.
Perhaps more surprising is the very rapid increase in

MR with decreasing n; for example, the MR at 9 T [Fig.
1(d)] changes by almost 2,000 times between S1 and S3.
Here, MR is defined by [ρxx(B)−ρxx(0T)]/ρxx(0T). To
gain insights into the large MR, Fig. 2(a) shows how the
MR behavior in sample S3 changes when the magnetic
field is tilted from perpendicular to parallel directions.
The angular dependence is more directly shown in Fig.
2(b), where the magnitude of the MR in 14 T is plotted as
a function of the angle θ, which is defined in the inset of
Fig. 2(a). The dipole-like pattern seen in Fig. 2(b) is well
described by the cos θ function (red solid line), meaning
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FIG. 2: MR in sample S3 at 1.8 K. (a) ρxx(B) behavior for
various magnetic-field angles form transverse (θ = 0◦, B field
in the [111] direction) to the near-longitudinal (θ = 92◦) con-
figurations; inset depicts the definition of θ. (b) Dipole-like θ
dependence of the magnitude of MR at 14 T, which follows
the cos θ dependence (red solid line). Due to the restriction
of the rotation stage, the range of θ does not span the whole
360◦. (c) Low-field MR showing ordinary B2 behavior; the
red solid lines show the fits to the B2 function.

that the MR is almost entirely governed by the perpen-
dicular component of the magnetic field, even though the
present system is 3D. The magnetic-field dependence of
ρxx at low field is plotted in Fig. 2(c) for θ = 0◦ and 92◦,
both of which present the ordinary B2 behavior below
∼0.1 T; this suggests that the origin of the linear MR
is different from the famous linear MR in Ag2+δSe and
Ag2+δTe [34], where the linearity is observed from as low
as 1 mT. Note that, due to the high mobility of the sam-
ple S3, the condition ωcτt = µtB = 1 (τt is the transport
scattering time and ωc = eB/mc is the cyclotron fre-
quency with mc the cyclotron mass) is achieved in only
0.2 T, and hence the standard theory for MR for a closed
Fermi surface [35] would predict a saturation at B ≫ 0.2
T; nevertheless, as one can see in Fig. 2(a), this sample
presents non-saturating linear MR above ∼6 T.

The temperature dependence of this linear MR sig-
nifies its unique nature, not reported before for other
systems showing large linear MR [34, 36–40]. Figures
3(a)-3(c) show ρxx vs B at various temperatures, where
one can see that the characteristic field above which the
linear MR is observed remains around 6 T up to 150
K, but at higher temperature the linear MR disappears.
More importantly, the size of MR changes little between
1.8 and 30 K, but at higher temperature it diminishes
rapidly. This temperature dependence is summarized in
Fig. 3(d), where the dependence of n on temperature
is plotted together; one can see that n changes only by
a small amount, and hence the rapid decline in MR has
little to do with the thermal activation of carriers. On
the other hand, as shown in Fig. 3(e), the size of MR
depends linearly on µt, implying that the reason for the
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FIG. 3: MR in sample S3 for θ = 0◦. (a, b, c) ρxx(B) behavior
at various temperatures; note the different vertical scales be-
tween panels. The inset in (a) shows the ρyx(B) behavior at
1.8 K; the arrows mark the change in slope. The straight lines
in (a) and (b) are fits to the linear part, while the solid lines in
(c) are fits of the low-field part to the classical aB2/(1+ bB2)
law. (d) Temperature dependences of the magnitude of MR
at 9 T (left axis) and the carrier density calculated from RH

at each T (right axis). (e) Plot of the magnitude of MR at 9
T vs the transport mobility µt, which changes with T .

rapid decline in MR is the phonon scattering which re-
stricts µt at high temperature.

It is prudent to mention that, even though the MR is
unusual in many respect, it obeys the Kohler’s rule [35]
(see [31] for details), meaning that ρxx depends on the
magnetic field only through the form Bτt (which is the
case in the semiclassical relaxation-time approximation).
In passing, the MR data at 200 and 300 K can be de-
scribed by the conventional form aB2/(1 + bB2) [41].

The low-carrier-density samples are clean enough to
present Shubnikov-de Haas (SdH) oscillations, which are
the source of the wiggles in the MR data at high B. Clear
observation of SdH oscillations signifies not only a high
mobility but also a high homogeneity of local carrier den-
sity, since a variation of local carrier density would result
in a spread of SdH frequencies to smear the oscillations.
In the case of TlBiSSe, a larger number of oscillation
cycles are discernible in ρyx(B) than in ρxx(B), so we
mainly used the former for the following analysis. Figure
4(a) shows SdH oscillations in ρyx for varying magnetic-
field angle θ after removing the linear background. The
Fourier transform gives only one frequency, whose depen-
dence on θ is shown in Fig. 4(b); these data reveal a very
small spherical (isotropic) Fermi surface (FS).

The averaged frequency F = 12 T gives the FS ra-
dius k3DF = 1.9 × 106 cm−1 and the carrier density
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FIG. 4: SdH oscillations in sample S3. (a) SdH oscillations in
ρyx vs 1/B at 1.8 K for various magnetic-field directions. The
equidistant maxima are indicated by vertical lines, with the
exception of the 1st Landau level which shows spin splitting,
giving the g-factor of 6 [31]. (b) θ dependence of the oscil-
lation frequency; inset shows the temperature dependence of
the oscillation amplitude for θ = 0◦ together with the fitting
to the Lifshitz-Kosevich theory which gives mc/me = 0.14.
(c) θ dependence of the Dingle temperature. (d) Landau-
level index plot for oscillations in σxy measured at 1.8 K and
θ = 0◦; inset shows the oscillations in ∆σxy which is obtained
by subtracting a smooth background from σxy. Following the
principle in Refs. [4, 47] and assuming electron carriers, we
assign the index N+ 1

4
and N+ 3

4
to the maxima and minima

in ∆σxy, respectively. Solid line is a linear fitting to the data,
giving the intercept on the N axis of 0.34.

nSdH = 2.4 × 1017 cm−3 [42]. From the temperature
dependence of the oscillation amplitude at θ = 0◦ [Fig.
4(b) inset], we obtain mc = 0.14me (me is the free elec-
tron mass) by using the Lifshitz-Kosevich (LK) theory
[43]. This allows us to determine the Dingle tempera-
ture TD, which is plotted in Fig. 4(c) as a function of
θ. Its average value, TD = 4.1 K, gives the quantum
scattering time τq = ~/(2πkBTD) = 3 × 10−13 s. This
is to be compared with the transport scattering time
τt = 3.7× 10−12 s assessed from µt; the difference, which
in this case is about 10 times, is usually associated with
the difference in the rates between forward and back-
ward scatterings [44]; apparently, small-angle (forward)
scatterings are predominant in TlBiSSe, which happens
when scattering is mainly due to weak disorder. Other
parameters of interest are obtained as follows: the quan-
tum mobility µq ≡ eτq/mc ≈ 3500 cm2/Vs, Fermi veloc-
ity vF = ~kF /mc = 1.6× 105 m/s, and the Fermi energy
(measured from the Dirac point) EF = ~vF kF = 20 meV.

An important information derived from SdH oscilla-
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tions is the Berry phase [4, 45, 46]. We made the Landau-
level (LL) index plot based on the positions of minima
and maxima in σxy [47] as a function of 1/B [Fig. 4(d)
inset]. In a system with 3D FS, the intercept of the in-
dex plot on the N axis is expected to be 0 ± 1/8 for
Schrödinger fermions, while it should be 1/2 ± 1/8 for
Dirac fermions (the sign before 1/8 should be + for holes
and − for electrons) [45, 46]. In our case, the intercept is
0.34 [Fig. 4(d)], which is close to 1/2− 1/8 = 0.375 and
hence is consistent with 3D Dirac electrons.

We now discuss the possible mechanism of the observed
large linear MR. There are several theoretical models
which predict linear MR for low-carrier-density systems.
Abrikosov [48, 49] proposed a quantum interpretation of
the phenomena by assuming the system to be in the ultra-
quantum limit. In our sample S3, the linear MR in the
transverse orientation (θ = 0◦) sets in at ∼6 T, which
corresponds to the situation when the Fermi level is in
the 2nd LL; such a situation was previously argued to
be sufficiently close to the ultra-quantum limit to ob-
serve the quantum linear MR [36–38], and hence at first
sight the Abrikosov’s model seems applicable. However,
an important prediction of the model is that the linear
MR should be stable against temperature as long as the
thermal broadening of the LLs is smaller than their sepa-
ration, which is given by the cyclotron energy ~ωc; in the
present case, ~ωc in 14 T is 133 K, whereas a strong de-
crease of the MR occurs above ∼30 K [Fig. 3(d)], which
speaks against the validity of the Abrikosov’s model.

Thus we turn to other models which can predict linear
non-saturating MR in a system with small 3D FS. A clas-
sical one is by Herring [50], who developed a perturbation
theory for a system with weak inhomogeneity in the car-
rier density and showed that the fluctuations in the Hall
field will lead to linear MR. Parish and Littlewood (PL)
[51, 52] proposed a model which is valid also in the strong
inhomogeneity limit and showed that the inhomogeneity
will cause distortions in the current paths, which in turn
causes the Hall field to contribute to the MR. In this
regard, the θ dependence of the MR [Fig. 2(b)], which
suggests that only the perpendicular component of the
magnetic field is responsible for the MR, seems to sup-
port the scenario that the linear MR originates from the
Hall field. Moreover, the data for in-plane magnetic field
rotation (described in the Supplemental Material [31])
are also consistent with this scenario. In addition, it is
suggestive that a change in slope of ρxx(B) that occurs at
around 5 T seems to be correlated with a similar change
in slope of ρyx(B) at the same field [Fig. 3(a)].

An important clue comes from the Hall angle θH.
According to the semiclassical theory for a single-band
metal, the relation tan θH = ρyx/ρxx = σxy/σxx = ωcτt
should hold. However, if we calculate these values for
the sample S3 in 14 T, tan θH = ρyx/ρxx = 0.5, whereas
ωcτt = µtB = 65. Therefore, there is a two-orders-of-
magnitude difference between what is purported to be

the same parameter. This is significant, and it strongly
supports the scenario that MR is actually governed by
the Hall field rather than the scattering.
In the PL and Herring’s model, the existence of inho-

mogeneity is essential. However, in our samples, good
crystallinity and absence of compositional segregations
were confirmed by X-ray and EPMA analyses, respec-

tively [31]. Also, the average donor distance limp ≃ n
−1/3
SdH

= 15 nm and the Debye screening length lDebye = 3 nm
[53] are both short; thus, the low temperature mean free
path ℓ = vF τt = 600 nm does not support the impurities
to be the source of strong inhomogeneity. Whilst the lin-
ear relation between MR and µt [Fig. 3(e)] is along the
lines with the prediction of PL model, the decline of the
mobility in this case is due to phonon scattering and is
not related to inhomogeneity. Therefore, while the Hall
field appears to be the fundamental source of the linear
MR, the actual mechanism to bring about such a sit-
uation is an open question. It is fair to note that the
magnetoresistance behavior in narrow- or zero-gap semi-
conductors are generally not well understood, but the
phenomenology in the present case is a unique one.
Finally, we mention that in a recent wok on another 3D

Dirac system Cd3As2, gigantic MR was found in high-
mobility samples (with µt > 107 cm2/Vs) [54]. This
effect stems from mysterious protection from backscat-
tering [55] that is strong only along kx, as reflected in
the large resistivity anisotropy ρyy/ρxx ≃ 30. In multi-
domain samples with µt ≃ 104 cm2/Vs, large linear MR
was observed, but it starts from very low field and it
persists to 300 K, both of which suggest that it is in
line with the PL model. Importantly, even in the high-
mobility Cd3As2 samples, τq (which reflects lattice dis-
order) is 10 times shorter than in TlBiSSe, suggesting
that Cd3As2 is inherently dirtier due to lattice disorder
[54]. Hence, the transport in Cd3As2 is apparently com-
plicated by material-specific issues. In contrast, TlBiSSe
does not present mysterious protection from backscatter-
ing, its lattice is much cleaner, and it has only one Dirac
node, all of which suggest that TlBiSSe is a simpler sys-
tem to study generic properties of 3D Dirac fermions.
In summary, we found that in the 3D Dirac semimetal

TlBiSSe, a reduction in carrier density n leads to a rapid
increase in the transport mobility µt and transverse mag-
netoresistance (MR). In samples with n ≃ 1017 cm−3, µt

becomes 5 × 104 cm2/Vs and linear MR whose magni-
tude reaches almost 10,000% in 14 T was observed at
1.8 K. This linear MR is governed by the perpendicular
component of the magnetic field, and the large discrep-
ancy between tan θH and ωcτt points to the scenario that
the Hall field is the fundamental source of the linear MR.
Nevertheless, inhomogeneity does not seem to play an im-
portant role here, and the exact mechanism to produce
the large liner MR is yet to be elucidated.
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