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Coupling of the spin and orbital degrees of freedom on the surface of a strong three-dimensional
insulator, on the one hand, and textured magnetic configuration in an adjacent ferromagnetic film,
on the other, is studied using a combination of transport and thermodynamic considerations. Ex-
pressing exchange coupling between the localized magnetic moments and Dirac electrons in terms
of the electrons’ out-of-plane orbital and spin magnetizations, we relate the thermodynamic prop-
erties of a general ferromagnetic spin texture to the physics in the zeroth Landau level. Persistent
currents carried by Dirac electrons endow the magnetic texture with a Dzyaloshinski-Moriya in-
teraction, which exhibits a universal scaling form as a function of electron temperature, chemical
potential, and the time-reversal symmetry breaking gap. In addition, the orbital motion of elec-
trons establishes a direct magnetoelectric coupling between the unscreened electric field and local
magnetic order, which furnishes complex long-ranged interactions within the magnetic film.

PACS numbers: 73.20.-r,75.70.Tj,73.43.-f,75.30.Kz

Introduction.—The magnetoelectric coupling associ-
ated with surface states of strong three-dimensional topo-
logical insulators (TI’s) [1] is at the heart of their phe-
nomenological manifestations. In particular, under ap-
propriate conditions, the electromagnetic response can
acquire the form of axion electrodynamics, as embodied
by the addition of ∆L = θE · B, where |θ| = e2/4π~,
to the ordinary Maxwell Lagrangian [2]. θ is physically
manifested by the half-quantized Hall conductance on the
TI surface. Finite temperature, bulk conductance, and
doping of surface states, however, can easily mask this
topological magnetoelectric effect in real systems [3].

A closely related issue is the magnetoelectric coupling
of the TI surface to a proximal ferromagnetic layer [4, 5],
a system that has recently attracted a burst of exper-
imental interest [6]. Strong spin-orbit interaction asso-
ciated with electron motion on the TI surface couples
magnetic order and its spatial texture to the persistent
electric currents that are established self-consistently.
As a result, the ferromagnetic configuration acquires a
Dzyaloshinski-Moriya [5, 7] interaction mediated by the
TI electrons, in addition to an out-of-plane anisotropy,
which depend on temperature and electrical doping. In
this Rapid Communication, we build upon Refs. [3, 5]
to formulate an effective theory for the quasiequilibrium
spin and orbital response of electrons to the static elec-
tromagnetic and spin-exchange fields, in the presence of
adjacent ferromagnetic insulator, along with the spin-
exchange feedback on the ferromagnetic order. The re-
sulting ground state of the combined ferromagnetic/TI
system, in particular, can exhibit a skyrmionic lattice
that is tunable by electrical gating or doping.

Effective theory.—A minimal effective theory for long-
wavelength and low-frequency electromagnetic response
of electrons on the (xy) surface of a strong three-

dimensional TI is provided by the Dirac Hamiltonian [1]:

H0 = v (p + eA/c) · z× σ̂ − eϕ+ mB · σ̂ . (1)

Here, (ϕ,A) is the electromagnetic four-vector potential
(electric and magnetic fields being given by E = −∇ϕ−
∂tA/c and B = ∇×A); σ̂ is a vector of Pauli matrices,
v material-dependent electron velocity, m = (g/2)µB , g
effective g-factor, µB ≡ e~/2mc Bohr magneton, m free-
electron mass, and −e < 0 electron charge.

A local axially-symmetric single-particle coupling to an
adjacent ferromagnetic film is given by

H ′ = J(nxσ̂x + nyσ̂y) + J⊥nzσ̂z , (2)

where n is the directional magnetic order parameter (nor-
malized to |n| = 1). Local spin density per unit area in
the magnetic film is given by s = sn, where s is the
locally-saturated spin density (assuming that T � Tc,
the Curie temperature). We will suppose the film is in-
sulating, such that its dynamics are fully captured by the
precessional motion of n(r, t) [where r = (x, y) is the po-
sition within the TI surface of interest]. The total Hamil-
tonian H = H0 + H ′ describes electronic response to a
general electromagnetic field and proximal ferromagnetic
layer, as well as encapsulates the reciprocal feedback of
the electron spin and charge dynamics.

According to Eq. (2), electrons couple to the magnetic
film via their spin density ρ(r). The magnetic field B,
on the other hand, couples to the orbital current density
j(r) ⊥ z through the Peierls substitution and spin density
ρ(r) through the Zeeman term. For Dirac electrons, j and
ρ⊥ ≡ ρ−zρz are helically locked according to j = veρ×z
[cf. Eq. (14) below]. Since, furthermore, the persistent
current j in equilibrium can be recast in terms of the
orbital contribution to the out-of-plane magnetization,
this magnetization, along with its spin counterpart ∝ ρz,
should fully describe quasistationary magnetic response
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FIG. 1. Schematic of the low-energy description, which cap-
tures contributions to the spin, Ms, and orbital, Mo, compo-
nents of the magnetization that stem from the Dirac electrons.

of the TI electrons, both in regard to the magnetic field
B and ferromagnetic magnetization n.

Spin and orbital magnetizations.—Let us start by con-
sidering a uniform Dirac-electron gas subjected to a con-
stant out-of-plane magnetic field B = Bz and a uniform
time-independent magnetic exchange (2):

H = v (p + eA/c) · z× σ̂ + ∆σ̂z , (3)

where ∆ ≡ mB+ J⊥nz (which controls the gap) and the
J terms have been absorbed in the gauge potential A
[which is inconsequential here, but would play a role if
we restored the spatiotemporal structure of n(r, t)].

The total equilibrium out-of-plane magnetization can
be calculated thermodynamically, as follows:

M = −∂BΩ(µ, T,B) , (4)

where Ω is the (grand-canonical) thermodynamic poten-
tial of electrons at chemical potential µ and ambient
temperature T , per unit area. To this end, we recall
the Landau-level spectrum of the gapped Dirac electrons
subjected to a magnetic field [8]:

ε0 = −sgn(B)∆ , εn = sgn(n)
√

2(~v/l)2|n|+ ∆2 , (5)

where l ≡
√
~c/e|B| is the magnetic length. n ∈ Z is the

Landau-level index (n > 0 corresponding to the particle-
and n < 0 hole-like states). The degeneracy (per unit
area) of each Landau level is given by N = 1/2πl2. (See
Fig. 1 for a schematic of the relevant electronic structure.)
This gives for the thermodynamic potential:

Ω(B) = −kBTN
∑
n

fn = −kBT |B|
∑
n

fn(B)/φ , (6)

where fn ≡ ln
[
1 + eβ(µ−εn)

]
, β ≡ (kBT )−1, and φ ≡

2π~c/e is a magnetic flux quantum. When B = 0,

M = lim
B→0

Ω(−B)− Ω(B)

2B
=
kBT

2φ
ln

1 + eβ(µ+∆0)

1 + eβ(µ−∆0)

− sgn(∆0)
g

8mφ

∆2
0

v2

∫ yg

−yg

dy/ε

1 + eβ(|∆0|ε−µ)
,

(7)

where ε ≡ sgn(y)
√

1 + |y|, ∆0 ≡ J⊥nz, and yg ∼
(εg/∆0)2 is the cutoff for this low-energy theory due to
the bulk gap εg ∼ ~v/a (a being the cutoff length scale)
of the TI. M → Mo + Ms consists of two contributions:
orbital (Landau-like) magnetization Mo, which is gov-
erned by the zeroth Landau level, and spin (Pauli-like)
magnetization Ms ∝ g, which is determined by all the
other (particle- and hole-like) Landau levels. The latter
corresponds to the spin response induced by the Zeeman
term in the Hamiltonian (1), which could also be calcu-
lated directly, in the absence of Landau levels. When
εg � ε̃, where ε̃ = max(kBT, |∆0|, |µ|),

Ms ∼ ∆0
g

4mφ

εg
v2
. (8)

The orbital contribution (in the absence of B) is [8]:

Mo =
kBT

2φ
ln

1 + eβ(µ+∆0)

1 + eβ(µ−∆0)
+ (ζ − 1)

∆0

2φ

T→0→ ∆0

2φ

ζ +

 1 , µ > |∆0|
µ/|∆0| , |µ| < |∆0|
−1 , µ < −|∆0|

 ,

(9)

where we have phenomenologically added a term∝ (ζ−1)
that could stem from energy levels ε . −εg, which are
beyond our effective theory. (Since, when ε̃ � εg, this
contribution should not depend on µ and can only be
weakly dependent on ∆0, we expanded it to linear or-
der in ∆0.) The total magnetization M(B → 0) ∝ ∆0,
so that, in particular, M(−∆0) = −M(∆0), as should
be according to the time-reversal symmetry. Under an
additional assumption of the orbital particle-hole sym-
metry, Ω(µ,B) = Ω(−µ,−B), we would have Mo(µ) =
−Mo(−µ), which would imply that ζ = 0. In Fig. 2,
we plot the orbital magnetization (9), as a function of
chemical potential, at different temperatures.

At first sight, the contribution ∝ µ in Eq. (9) may ap-
pear surprising. Indeed, why would a magnetization be
modulated by the chemical potential placed inside the
gap? This is reconciled by the half-quantized quantum
Hall effect and the associated gapless chiral modes at
the sample boundary in the xy plane (which, together
with the states associated with the opposite TI surface
form fully quantized edge states), as follows. When
|µ/∆0| < 1, ∂µM0 = sgn(∆0)/2φ, which means that
∂ϕI = gQ/2, where Mo → I/c, the charge current at
the sample boundary, and gQ ≡ e2/2π~ is the quantum
of conductance. (Together with the opposite surface of
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FIG. 2. Orbital magnetization, Eq. (9), is shown by black
curves: Solid, dashed, and dotted corresponding to tempera-
tures kBT/∆0 = 0.01, 1, and 10, respectively, setting ζ = 0.
The grey curves (with the dotted one essentially overlapping
with the black curve) show derivatives χ∆, Eq. (17). The
shaded areas are the derivatives χµ, Eq. (18). Note that χµ
vanishes in the extreme limits of both T → 0 and T → ∞ for
|µ/∆0| > 1 [3].

the 3D TI in the z direction, this would engender a fully
quantized integer quantum Hall effect.)

A further insight is afforded by the use of a Maxwell
relation:

∂µM = −∂µ(∂BΩ) = ∂B(−∂µΩ) = ∂Bn . (10)

Focusing exclusively on the orbital contribution to the
magnetization, Mo [and thus the magnetic field entering
through the kinetic contribution ∝ v in the Hamiltonian
(3)], and invoking

∂Bn|B=0 = lim
B→0

[n(B)− n(−B)] /2B

T→0→ sgn(∆0)N/2|B| = sgn(∆0)/2φ ,
(11)

when |µ/∆0| < 1 (and zero otherwise), according to the
energy flip in the zeroth Landau level. Integrating this
over µ, we reproduce Eq. (9), where ζ corresponds to the
indeterminate constant of integration.

When the chemical potential is in the gap (i.e., |µ| <
|∆0|), furthermore, we can invoke the Středa formula [9]:

gH = ec∂Bn
B→0→ sgn(∆0)gQ/2 (12)

for the Hall conductance gH (defined through j = gHz×
E, for the surface current density j) at T = 0. This brings
us full circle regarding the relation between the orbital
magnetization and the half-quantized Hall response. The
pertinent information is thus fully contained in the zeroth
Landau level.

Magnetic-film/TI exchange coupling.—Equipped with
the understanding of how orbital and spin magnetizations
form on the TI surface subjected to a proximal magnetic

exchange, we return to the general problem of the cou-
pling between Dirac electrons moving along the TI sur-
face, on the one hand, and magnetic moments in the
adjacent insulating film, on the other. Integrating over
all electrons, the coupling Hamiltonian (2) becomes:

H′ =

∫
d2r [J(nxρx + nyρy) + J⊥nzρz] , (13)

where ρ(r) is the electronic spin density (in units of ~/2).
According to the Dirac Hamiltonian (1),

ρ× z = − c

ve
δAH =

j

ve
, (14)

where j is the local (orbital) electric current density. This
gives us an operator identity between the planar spin den-
sity and electric current. In the following, we will use ρ
and j to denote the expectation values of the correspond-
ing quantities.

In equilibrium (for a static, but now inhomogeneous
magnetic film; and at fixed µ and T ), we have a one-
to-one correspondence between this current and orbital
magnetization:

j = c∇× (Moz) = −cz×∇Mo . (15)

In the long-wavelength limit, Mo can be evaluated ac-
cording to the local ∆0 and µ → µ + eϕ [which should
replace the chemical potential µ in Eq. (9), in the pres-
ence of an external scalar potential ϕ], which gives:

∇Mo = ∂∆0
Mo∇∆0 + e∂µMo∇ϕ , (16)

where (cf. Fig. 2)

2φ∂∆0
Mo = ζ +

sinh(βµ)

cosh(β∆0) + cosh(βµ)
≡ ζ + χ∆

T→0→ ζ + sgn(µ)Θ(|µ/∆0| − 1)

(17)

[here, Θ(x) is the Heaviside step function, equaling 1 for
x > 0 and zero otherwise], and

2φ∂µMo =
sinh(β∆0)

cosh(β∆0) + cosh(βµ)
≡ χµ

T→0→ sgn(∆0)Θ(1− |µ/∆0|) .
(18)

Note that µ entering Eqs. (17) and (18) is the electro-
chemical potential relative to the local neutrality point.
Combining Eqs. (14)-(18), we finally have for the equi-
librium planar spin density in the TI:

ρ‖ ≡ ρxx + ρyy = z× ρ× z =
c

ve
∇Mo

=
J⊥(ζ + χ∆)∇nz − eχµE

4π~v
.

(19)

where E = −∇ϕ is the self-consistent electrostatic field
and we assumed that J⊥ is position independent along
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the interface. We see that at T → 0 and ζ = 0, the
magnetic-texture contribution ∝∇nz to the planar spin
density ρ‖ vanishes for the electrochemical potential ly-
ing inside the gap, while, on the other hand, the electro-
static contribution ∝ E vanishes when the electrochemi-
cal potential lies in the continuum of surface states (either
particle-like, µ > |∆0|, or hole-like, µ < −|∆0|).

We recall that the contribution to the equilibrium
magnetization (and the corresponding current) that is
parametrized by ζ in Eq. (9) is associated with the
deeply-lying states that are beyond our low-energy Dirac
theory. This means, in particular, that we should not
expect the associated states to exchange couple to the
magnetic order parameter n in the same fashion as the
Dirac electrons of the effective low-energy description. ζ’s
entering in Eqs. (9) and (19) should thus be viewed as
material-dependent phenomenological constants, which
may in general be different. ζ in Eq. (9) is physically
relevant for the coupling of the TI surface states to the
electromagnetic field, while ζ in Eq. (19) governs the ex-
change coupling of the TI electrons to the adjacent mag-
netic film, resulting in the Dzyaloshinski-Moriya energy
density ∝ ζn ·∇nz (which is dictated by symmetry) [5].

The out-of-plane equilibrium spin density ρz can be
found according to Eq. (8):

ρz = −Ms

m
= − ξJ⊥

2π~va
nz −

χJ

4π~v
∇ · n , (20)

where ξ ∼ 1 is a material-dependent parameter and
χ = ζ + χ∆, which will be shown below Eq. (22). This
last term, which is dictated by structural symmetries, is
necessitated by the fact that Eq. (8) was derived for a
homogeneous magnetization.

Magnetic-film dynamics.—Once the quasistatic spin
response of the TI electrons is established, according to
Eqs. (19) and (20), we can write down the equation of
motion for the magnetic dynamics, within the Landau-
Lifshitz phenomenology [10]:

s(1 + αn×)∂tn = n×
(
Heff − Jρ‖ − J⊥ρzz

)
, (21)

where Heff ≡ −δnΩm[n] is the effective field of the iso-
lated magnetic film, due to its intrinsic free-energy func-
tional Ωm[n], s is the film’s local spin density, and α is
its Gilbert damping constant. If the magnetic dynam-
ics are sufficiently slow, we can use the equilibrium ex-
pressions, Eqs. (19) and (20), for the components of ρ:
Jρ‖+J⊥ρzz = δnΩ[n], with Ω[n] = Ω0 + Ω′[n] being the
electronic contribution to the free energy. The right-hand
side of the equation of motion (21) can thus be written
as n×H∗, where H∗ ≡ −δn(Ωm + Ω′).

The electronic free energy associated with the ex-
change coupling (13) can be found (at fixed µ and T )
by first integrating 〈∂J⊥H′〉 =

∫
d2rnzρz over J⊥ from

zero up to its physical value, having set J = 0, and then

〈∂JH′〉 =
∫
d2r n · ρ‖ over J . This gives:

Ω′[n] =
1

4π~v

∫
d2r
{
− (ξJ2

⊥/a)n2
z

+ Jn · [J⊥(ζ + χ∆)∇nz − eχµE]
}
.

(22)

Noting that ∂J⊥Ω′ =
∫
d2rnzρz, we conclude (after inte-

grating by parts
∫
d2r n ·∇nz → −

∫
d2rnz∇ ·n) that χ

in Eq. (20) must indeed be given by ζ + χ∆. Eq. (22) is
one of the main results of this paper.

Having effectively integrated electrons out, the TI con-
tribution to the magnetic free-energy density can thus be
written as

F ′[n] = −Kn
2
z

2
− ΓDM

2
(nz∇ · n− n ·∇nz)− ΓMEE · n ,

(23)
where K = ξJ2

⊥/2π~va is the out-of-plane anisotropy,
ΓDM = JJ⊥(ζ + χ∆)/4π~v is the Dzyaloshinski-Moriya
interaction constant, and ΓME = eχµJ/4π~v is a mag-
netoelectric parameter. ζ and ξ are nonuniversal di-
mensionless constants that reflect valence-band physics
far away from the Dirac point. (A similar nonuniver-
sal offset to ΓME may also be expected based on general
grounds.) χ∆ and χµ, on the other hand, are universal
scaling functions (cf. Fig. 2), which describe how the
coupling coefficients entering Eq. (23) are modulated by
the temperature, gap, and electron doping near the Dirac
point. Depending on details of the electronic screening,
the self-consistent treatment of the term ∝ E · n may
endow the magnetic film with complex long-ranged in-
teractions (that are unrelated to the dipolar coupling).

When the electron-electron interactions are well
screened so that E → 0 in Eq. (23), the remaining
free-energy density [when complimented with exchange,
A(∂in)2/2, and dipolar interactions] has the standard
form for a magnetic film with the broken reflection sym-
metry normal to the film plane [11]. The competition
between the Dzyaloshinski-Moriya and exchange inter-
actions, in particular, leads to a spiral ground state
with the pitch ΓDM/A. Subjecting this state to a nor-
mal magnetic field B foments two first-order phase tran-
sitions, first into a hexagonal crystal of skyrmions, at
Bc1, and then into a ferromagnetic state at Bc2, where
Bc1 . Bc2 ∼ Γ2

DM/AM (M being the saturation magne-
tization of the film), at low temperatures [11, 12]. The
intermediate-field skyrmionic phase is particularly inter-
esting from the point of view of anomalous magnon trans-
port [13] and thermally-driven collective magnetic dy-
namics [14].

One of the intriguing conclusions of this work is that
these phase transitions can be controlled electrically
through the contribution ∝ χ∆ to ΓDM. In particular,
at T → 0, χ∆ → sgn(µ)Θ(|µ/∆0| − 1) [cf. Eq. (17)],
which becomes ±1 at sufficiently large (low) electrochem-
ical potential µ, irrespective of the magnetic texture n(r)
that controls ∆0 ≡ J⊥nz. By electrically gating the TI
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surface, we could thus modulate ΓDM, which, in turn,
governs the equilibrium magnetic structure. Since, fur-
thermore, the universal scaling function χ∆(∆, µ, T ) re-
flects the Dirac nature of electrons on the TI surface,
measuring ΓDM ∝ ζ + χ∆ as a function of the electron
density and temperature could offer direct magnetoelec-
tric signatures of the topological character of the surface.
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