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We construct generalized Hofstadter models that possess “color-entangled” flat bands and study
interacting many-body states in such bands. For a system with periodic boundary conditions and
appropriate interactions, there exist gapped states at certain filling factors for which the ground
state degeneracy depends on the number of unit cells along one particular direction. This puzzling
observation can be understood intuitively by mapping our model to a single-layer or a multi-layer
system for a given lattice configuration. We discuss the relation between these results and the previ-
ously proposed “topological nematic states”, in which lattice dislocations have non-Abelian braiding
statistics. Our study also provides a systematic way of stabilizing various fractional topological states
in C > 1 flat bands and provides some hints on how to realize such states in experiments.

Introduction — The topological structure of two-
dimensional space plays an fundamental role in under-
standing the quantum Hall effect [1, 2]. It was proved by
Thouless et. al. [3] that, for a system of non-interacting
electrons, the Hall conductance is proportional to the
Chern number C defined as the integral of Berry cur-
vature over the Brillouin zone (BZ) [4]. This clarifies
the topological origin of the integer quantum Hall effect
because the Landau levels generated in an uniform mag-
netic field all have C = 1. Haldane demonstrated sub-
sequently that an uniform external magnetic field is not
necessary by showing that a two-band model on honey-
comb lattice with suitable parameters can have C = ±1
bands [5]; such systems are now termed “Chern insu-
lators” [6–8]. When interactions between particles in a
partially filled Landau level are taken into account, frac-
tional quantum Hall (FQH) states can appear at certain
filling factors. For a sufficiently flat band with a nonzero
Chern number, fractional topological states may also be
realized for suitable interactions [9–29]. Many states in
C = 1 flat bands are shown to be adiabatically connected
to those in Landau levels [24–26], which provides a simple
way of characterizing their properties.

In constrast to a Landau level which has C = 1, a
topological flat band can have an arbitrary Chern num-
ber. This motivates one to ask what is the nature of the
fractional topological phases in C > 1 flat bands [30–34]
and whether it is possible to realize some states that may
not have analogs in conventional Landau levels. Ref. [35]
demonstrates that the incompressible ground states in
a C > 1 flat band at filling factor ν = 1/(C + 1)
[ν = 1/(2C + 1)] for bosons (fermions) can be inter-
preted as Halperin states [36] with special flux insertions
(i.e. boundary conditions) in some cases, but the nature
of other states remains unclear. Ref. [37] proposed that
some bilayer FQH states would have special properties if
they are realized in C = 2 systems and dubbed them as
“topological nematic states”, but numerical evidence for
such states has not been found. In this Letter, we con-

struct generalized Hofstadter models and demonstrate
that there are interacting systems whose ground state
degeneracy (GSD) depends on the number of unit cells
along one direction. It is found that our models can be
mapped either to a single-layer or to a multi-layer quan-
tum Hall system depending on the lattice configuration,
which provides a simple physical picture that helps us to
understand the puzzling properties of C > 1 flat bands.
The change of GSD is one signature of the topological
nematic states [37], but there are other subtle issues, e.g.
qualitative differences between bosons and fermions and
the nature of the symmetry reduction, which we explain
using our models.

Color-Entangled Hofstadter Models — We construct
flat bands with arbitrary Chern numbers by general-
izing the Hofstadter model [38–42] using the generic
scheme of Ref. [32]. As shown in Fig 1 (a), the Hofs-
tadter model describes particles in both a uniform mag-
netic field and a periodic potential. The tight-binding
Hamiltonian for the model on a square lattice is H =∑
ij tije

iθij â†i âj + H.c., where θij is the phase associated

with the hopping from site j to i [38], â†i is the creation
operator on site i and H.c. means Hermitian conjugate. If
the magnetic flux per plaquette is 2π/nφ with nφ being an
integer, translational symmetry is preserved on the scale
of magnetic unit cell which contains nφ plaquettes. The
momentum space Hamiltonian is H(k) = Ψ†(k)HΨ(k),

where Ψ†(k) = [â†0(k), â†1(k), · · · , â†nφ−1(k)] and the sub-

script of â† marks different sites within a magnetic unit
cell. H(k) is a nφ×nφ matrix whose non-zero matrix ele-
ments are Hmm(k) = 2 cos(ky+2mπ/nφ) and Hmn(k) =
H∗nm(k) = exp(ikx/nφ) for n = (m + 1) mod nφ. The
nφ →∞ limit recovers the continuous limit in which Lan-
dau levels arise. One important advantage of starting
from the Hofstadter model is that the Berry curvature
of the lowest band can be made uniform over the en-
tire BZ. This is desirable because a nonuniformity in the
Berry curvature usually tends to weaken or even destroy
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FIG. 1. (color online) In panel (a), we give an example of
Hofstadter lattice with nφ = 4 that are used in panels (b)
and (c). The indices of orbitals in a magnetic unit cell are
shown in parentheses and the numbers on the bonds indicate
the phases of the complex hopping amplitudes along the y
direction in units of π. In panel (b), a bilayer Hofstadter
model is obtained by stacking the two layers together. In
panel (c), the two Hofstadter layers are shifted relative to
each other and then stacked together. The method used in
panel (c) gives a color-entangled Hofstadter model in which
the size of the magnetic unit cell is reduced by a factor of two
and the lowest band has C = 2. There are two orbitals on
each lattice site (colored in red and blue) for both models and
their indices are given in parentheses.

incompressible states [24].

We next stack two identical Hofstadter lattices to-
gether in two different ways. In Fig. 1 (b), the same
orbitals in different layers are aligned together, which re-
sults in a conventional bilayer quantum Hall system. In
Fig. 1 (c), the m-th orbital in one layer is aligned with the
(m+nφ/2)-th orbital in the other layer. The latter stack-
ing pattern reduces the size of the magnetic unit cell by
half [32], so the model shown in Fig 1 (c) possess a single
lowest band with C = 2 instead of having two degener-
ate C = 1 bands. It should be emphasized that these
two systems are equivalent insofar as the behavior of the
bulk is concerned, since they correspond to two different
gauge choices. However, as shown below, they behave dif-
ferently when periodic boundary conditions (PBCs) are
imposed because PBCs are not invariant under a change
of gauge. In general, one can get a band with an ar-
bitrary Chern number C by stacking C layers of Hof-
stadter lattices and aligning the orbitals labeled by m,
m+ nφ/C, · · · , and m+ (C − 1)nφ/C in different layers
(where m ∈ [0, 1, · · · , nφ/C − 1]). The momentum space

Hamiltonian is very similar to the single-layer Hofstadter
model, except that the off-diagonal term Hmn(k) is re-
placed by exp(ikxC/nφ). A detailed comparison reveals
the similarity of the “color-entangled Bloch basis” [35]
and our models [43], which suggests that our models, as
well as those constructed in Ref. [32], can be referred to
as “color-entangled” topological flat band models.

Interacting Many Body Systems — The differences be-
tween a bilayer Hofstadter model and a C = 2 color-
entangled Hofstadter model become transparent when
one studies interacting many body systems. We consider
N particles on a periodic lattice with Nx and Ny mag-
netic unit cells along the x and y directions. The total
number of plaquettes (to be distinguished with the num-
bers of magnetic unit cells) along the x and y directions
are denoted as Lx and Ly, respectively. The magnetic
unit cell is always chosen to contain only one plaquette
in the y direction so we have Ly = Ny. It was proposed
in Ref. [37] that the following bilayer quantum Hall wave
functions

ΨB({z1}, {z2}) = Φ p
p+1

({z1})Φ p
p+1

({z2}) (1)

ΨF ({z1}, {z2}) =
∏
i<j

(z1i − z1j )3
∏
i<j

(z2i − z2j )3

×
∏
i,j

(z1i − z2j ) (2)

are topological nematic states in C = 2 bands, where
z = x+ iy is the complex coordinate and its superscript
indicates the layer it resides in. Eq. (1) describes bosonic
systems with two decoupled layers and Eq. (2) is the
Halperin 331 state [36] for fermions. The value of p is
chosen to be 1 or 2 and the associated wave functions are
the Laughlin 1/2 state Φ1/2({zα}) and the Jain 2/3 state
Φ2/3({zα}) (they are the bosonic analogs of the Laughlin
1/3 state [44] and the Jain 2/5 state [45] for fermions).
When the states represented by Eq. (1) and Eq. (2) are
realized on a torus with PBCs, the GSDs are (p+1)2 and
8 respectively [46, 47].

The wave functions Eq. (1) and Eq. (2) can be re-
alized in a bilayer Landau level system in continuum
when intra-layer interaction is stronger than inter-layer
interaction. This motivates us to study the Hamiltoni-
ans HB =

∑
i

∑
σ U

B
σσ : n̂i(σ)n̂i(σ) : +

∑
i

∑
σ 6=τ V

B
στ :

n̂i(σ)n̂i(τ) : and HF =
∑
〈ij〉

∑
σ U

F
σσ : n̂i(σ)n̂j(σ) :

+
∑
i

∑
σ 6=τ V

F
στ : n̂i(σ)n̂i(τ) :, where : · · · : enforces nor-

mal ordering, n̂i(σ) is the number operator for particle of
color σ on site i, and 〈ij〉 denotes nearest neighbors. The
parameters are chosen as UBσσ = 1, V Bστ = 0.03, UFσσ = 1
and V Fστ = 0.5. In other words, we use intra-color onsite
interactions for bosonic systems (with a small perturba-
tion given by the V Bστ terms [48]) and both intra-color
NN and inter-color onsite interactions for fermionic sys-
tems. The eigenstates of these Hamiltonians are labeled
by their momenta Kx and Ky along the two directions.
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FIG. 2. Energy spectra of bosons on the C = 2 model at filling
factors 1/2 [(a) and (b)] and 2/3 [(c) and (d)]. The system
parameters are given in square brackets as [N,Nx, Ny, Lx].
The numbers above some energy levels indicate degeneracies
that may not be resolved by inspection.
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FIG. 3. Energy spectra of fermions on the C = 2 model at
filling factor 1/4. The system parameters are given in square
brackets as [N,Nx, Ny, Lx]. The numbers above some energy
levels indicate degeneracies that may not be resolved by in-
spection.

The many-body Hamiltonians are projected into the par-
tially occupied lowest band(s) [10] and the filling factor
is defined as ν = N/(MNxNy), where M is the number
of bands that are kept in the projection (i.e., M = 2
for the bilayer Hofstadter model and M = 1 for the
C = 2 color-entangled Hofstadter model). This means
that Eq. (1) and Eq. (2) have filling factors p/(p+1) and
1/4 respectively.

The number of plaquettes in the x direction for given
Nx and Ny values is chosen to ensure that this system
is close to isotropic (i.e. has aspect ratio close to 1).
As the size of the unit cell increases, the wave function
of a particle spreads over a larger area and the interac-
tion between two particles becomes weaker. To compare
systems with different nφ, we normalize the energy scale
using the total energy of two particles in a system with
Nx = 1 and Ny = 1 (Nx = 1 and Ny = 2) for bosons
(fermions).

The GSDs of Eq. (1) and Eq. (2) given above were de-
rived using the continuum wave functions, but we have
found that they are still valid for bosonic systems with

Hamiltonian HB and fermionic systems with Hamilton-
ain HF in the bilayer Hofstadter model. The results in
the C = 2 color-entangled Hofstadter model are very
different as presented in Fig. 2 and Fig. 3. The special
feature of the C = 2 systems is that the GSD depends on
Nx and it only agrees with the result in the bilayer Hofs-
tadter model when Nx is even. For bosonic systems, the
GSD at 1/2 is 2 if Nx is odd and 4 if Nx is even; the GSD
at 2/3 is 3 if Nx is odd and 9 if Nx is even. The gaps of
the bosonic states survive in the presence of small inter-
color onsite interaction V Bστ but disappear if V Bστ becomes
comparable to UBστ . The phase boundary can not be de-
termined precisely because a reliable finite-size scaling is
difficult here. For fermionic systems, the GSD is 4 for
Nx = 1 and 8 for Nx = 2. The quasi-degenerate ground
states have a more prounced splitting than the bosonic
cases. The gaps become less clear for larger Nx and there
is no well-defined set of quasi-degenerate ground states
when N = 8, Nx = 4, Ny = 8, and Lx = 16.

Boundary Conditions, Topology, and Symmetry — The
key to understanding the physics of a C = 2 band is that
it may have two fundamentally distinct topologies deter-
mined by the parity of Nx. As illustrated in Fig. 4, this
originates from the twisted hoppings along the x direc-
tion at the boundary between two magnetic unit cells
(i.e. the color index of a particle is flipped). For odd
Nx [Fig. 4 (a)], it can be unfolded to produce a single
Hofstadter layer with C = 1 by tracking the black lines
which represent hopping terms along the x direction. For
even Nx [Fig. 4 (b)], it contains two decoupled Hofstadter
layers each having C = 1. This mapping is sufficient to
explain why the GSD change in the bosonic systems: a
single-layer p/(p+ 1) state with GSD p+ 1 is realized for
odd Nx, while two decoupled p/(p+ 1) states with GSD
(p + 1)2 appear when Nx is even. The fermionic case is
more complicated, but it was argued that the GSD of the
Halperin 331 state in a C = 2 band is 8 when Nx is even
and 4 if Nx is odd [37].

The fact that the unfolding of the model depends only
on the parity of Nx but not of Ny signifies a reduction
of rotational symmetry. However, in our systems the
C4 symmetry is not broken spontaneously, as in previ-
ously studied nematic states [49, 50], but results from
the model Hamiltonian itself through boundary condi-
tions. To gain insight into this issue, we note that the
simple square lattice Hofstadter model has four-fold rota-
tional symmetry C4 (up to gauge transformations) even
though a magnetic unit cell usually has only two-fold
rotational symmetry C2. This conclusion is valid when
the system contains an integral number of magnetic unit
cells, which is also satisfied automatically for a Hofstadter
mutli-layer. In contrast, since the unit cell of the color-
entangled C = 2 Hofstadter model is half as large as the
original magnetic unit cell, the C4 symmetry of the par-
ent Hofstadter model is inherited only when Nx is even,
but is reduced to C2 symmetry for odd Nx.
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FIG. 4. (color online) This figure shows a slice of the C = 2
model constructed in Fig. 1 but the two orbitals are plotted
separately for clarity. In panels (a) and (b), the unit cells
are labeled by Roman numbers and the black lines represent
the hopping terms along the x direction. When Nx is odd
in (a) [even in (b)], this model maps into a single-layer (bi-
layer) system. The hopping terms along the y direction do
not change this mapping. Panel (c) shows certain interaction
terms: 1. intra-color onsite term; 2. inter-color onsite term;
3. intra-color NN term within one unit cell; 4. intra-color
NN term across the boundary of a unit cell; 5. inter-color NN
term within one unit cell; 6. inter-color NN term across the
boundary of a unit cell.

Although the GSDs of bosonic systems confirm the the-
oretical predictions, the fermionic 331 state seems less
stable. This puzzle is resolved when we analyze the 2-
body interaction terms shown in Fig. 4 (c), which also
have different effects depending on the parity of Nx. For
both even and odd Nx, the term (1) in Fig. 4 (c) is still
an onsite term and both (3) and (6) turn out to be intra-
layer nearest neighbor (NN) terms. If Nx is even, (2), (4)
and (5) become, respectively, an inter-layer onsite term,
an inter-layer NN term, and an inter-layer NN term. On
the other hand, when Nx is odd, (2), (4) and (5) all
result in interactions, in the single unfolded layer, that
extend over a range comparable to the system size. In a
fermionic system with even Nx, the intra-color NN terms
across boundaries between unit cells turn into inter-layer
NN terms when the model is mapped to a bilayer system,
which is expected to weaken or destroy the 331 state. If
one carefully design the Hamiltonian to make sure that
it contains no inter-layer NN terms after mapping into
a bilayer system, then one can get a 331 state with a
clear gap [51]. The nature of the gapped ground states
observed in previous works [31–34] can be better under-
stood in light of these observations [43]. After resolving
a subtle issue in the square lattice C = 2 model [32], we
demonstrate that change of GSD can also be seen in this
model [43].

How relevant is the above analysis using PBCs for real
physical systems with open boundaries? The topology of
a lattice is determined by Nx because the hoppings along
the x direction at each boundary between two magnetic
unit cells flip the color indices of particles. It was pro-
posed that edge dislocations have a similar effect [37] and
they have projective non-Abelian braiding statistics [52]:

there are multiple degenerate states given a fixed config-
uration of dislocations; an exchange of two dislocations
results in a unitary evolution in this degenerate space;
two such exchanges may not commute with each other;
the overall phases of the braiding operations are unde-
termined. These exotic properties may be demonstrated
in tunneling and interferometric measurements [53]. The
physics of defects in various topological phases have also
been studied [54–57].

We finally briefly mention possible experimental re-
alizations of the fractional topological phases studied
above. A variety of proposals for creating synthetic gauge
fields for cold atoms have been studied [58, 59] and the
complex hoppings in the standard Hofstadter model have
been successfully implemented [60, 61]. The feasibility of
simulating topological phases using photons has also been
investigated [62–69]. The standard Hofstadter model and
its time-reversal symmetric variant have been demon-
strated for non-interacting photons [70–73]. In view of
these achievements and following similar lines of thought,
we discuss how color-entangled Hofstadter models with
C > 1 bands may be realized [43].

In conclusion, we have constructed color-entangled
Hofstadter models with arbitrary Chern numbers and
demonstrated the existence of fractional topological
phases in such systems by extensive exact diagonaliza-
tion studies. The models we use help to clarify many
aspects of topological flat bands with C > 1 in a physi-
cally intuitive manner.
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