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Motivated by the itinerant band structure of high-Tc iron pnictides, which exhibit four Dirac cones in the bulk,
we demonstrate the prospect of pnictides with transition elements to be topological insulators in two dimensions.
In this report, we explore interaction-induced topological phases, in contrast to the spin-orbit-coupling interac-
tion, as the crucial mechanism for tuning Dirac metals into Z2-topological insulators protected by time reversal
and mirror symmetries. We find spontaneous orbital currents generated through nearest-neighbor inter-orbital
Coulomb interaction in the t2g manifold of the d orbitals. When spin degrees of freedom are incorporated,
spontaneous orbital currents lead to two stable topological phases of the ground state. The first topological insu-
lator is an anomalous orbital Hall phase, characterized by an even Chern number, while the second topological
insulator is realized by protected mirror symmetries with a Z2 index.

PACS numbers: 71.10.Fd,71.10.Pm,73.20.-r

Introduction.− Topological insulators (TIs) are typically characterized by the band topology of their electronic wave func-
tion in the bulk, which is connected to protected edge or surface states. In fact, the integer quantum Hall insulator is the first
known TI, which Thouless and collaborators [1] characterized by the topological Chern number under the condition of broken
time-reversal (TR) symmetry due to an external magnetic field. In the absence of an external magnetic field, the analogs of the
quantum Hall effect and topological Chern number were discussed by Haldane [2] for the honey-comb lattice with spontaneous
internal magnetic fields between two different sub-lattices, and by Volovik [3] for charged and neutral superfluids with 3He-like
order parameters. By promoting Haldane’s model to a spinful version that respects the TR symmetry in the presence of strong
spin-orbit coupling (SOC), the concept of the quantum-spin Hall insulator was proposed [4], which is characterized by a non-
trivial Z2 topological invariance. The manifestation of TIs with Z2 symmetry is accompanied by the opening of a gap in Dirac
semi-metals due to the SOC interaction, and the emergence of gapless, symmetry-protected edge (or surface) states in two (or
three) dimensions.

Ever since the discovery of TIs, new types and realizations have been extended to new materials [5–16, 18, 19]. In this letter,
we show a very different realization of the topological mirror insulator (TMI) [20, 21] in the t2g bands of two-dimensional (2D)
insulators with pnictide-like band structure. In contrast to the insulating gap generated by the SOC models for graphene or
bismuth, [16, 17] or interaction-driven topological insulators in the presence of strong SOC, we propose a new route to realizing
non-trivial, emergent topological phases within the t2g low-energy manifold in transition element materials [22] with the insu-
lating gap opened by purely correlated electron interactions [23], see also Refs. [18, 19] and references therein. Our discussion
is based on a realistic, minimal quasi-2D model [24–26], which proved successful in reproducing the electronic structure and
phase diagram of the 122 iron pnictides. In this two orbital model, we consider onsite intra-orbital and nearest-neighbor (NN)
inter-orbital Coulomb interaction treated within mean-field theory. With reasonable hopping and Coulomb parameters, we find
spontaneous orbital currents in the ground state. These orbital currents generate non-trivial topological phases with two pairs of
Dirac cones appearing as edge states. We further show that a non-trivial mirror-Z2 phase can be identified for the spinful Hamil-
tonian. This novel phase involves mirror reflection symmetries in 2D and is robust against weak TR breaking perturbations. To
be more specific, this phase can only be destroyed by perturbations that break the mirror symmetry in the Brillouin zone (BZ).
Hence the presented scenario is markedly different from previous TIs, which are protected by TR symmetry and exhibit an odd
number of Dirac cones.

The spinless t2g orbital model.− We start with a simplified t2g orbital model Hamiltonian, H = H0 +HV + h0 + h1, for
spinless fermions to facilitate our symmetry analysis and discussion. Here H0 is the hopping term, HV is the interaction term,
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FIG. 1: (color online) Inter-orbital currents, electronic structure and phase diagram. (a) The schematics of the orbital current order with inter-
orbital Coulomb coupling λAOH . The coordinates x and y are defined along the nearest bond directions. (b-c) The band structure and Fermi
surfaces in the 2D BZ at half filling. The red-arrow(in b) and red-dot(in c) indicate the location of Dirac cone which underneath the Fermi
surface. (d) The calculated phase diagram is based on the Chern number Cnε with λAOH = 1. (e, f, g), The corresponding band structure
evolves from the Chern insulator to metal to trivial band insulator as function of λ0 with λAOH = 1 and λ1 = 0 along the orange line in the
phase diagram of panel (d).

and h0,1 are perturbation terms:

H0 =
∑
IJ,αβ

(tαβIJ − µ δIJδαβ) c†Iα cJβ ,

HV =i ε λAOH
∑
IJ,α

ναᾱIJ c†IαcJᾱ,

h0 =λ0

∑
I,α

(−1)αc†IαcIα,

h1 =i ε λ1

∑
I,α

(−1)α c†IαcIᾱ,

(1)

where I, J are lattice site indices, and α, β ∈ [1, 2] are indices for the dxz and dyz orbitals in the t2g manifold. We choose
the nonvanishing hopping elements as tαα±x̂ = tαα±ŷ = t1, t11

±(x̂+ŷ) = t22
±(x̂−ŷ) = t2, t11

±(x̂−ŷ) = t22
±(x̂+ŷ) = t3, tαᾱ±(x̂±ŷ) = t4,

tαᾱ±x̂ = tαᾱ±ŷ = t5, tαα±2x̂ = tαα±2ŷ = t6 with t1−6 = (0.09, 0.08, 1.35,−0.12,−1, 0.25). The tensor elements ναᾱIJ ∈ [0,±1]

describe the direction of the NN inter-orbital currents as shown in Fig. 1(a) with ν12
±x̂ = ν21

±ŷ = −1, and ν21
±x̂ = ν12

±ŷ = 1.
The scalar ε = ±1 describes the direction of the orbital current loop or the direction of the arrows in Fig. 1(a). The hopping
parameters between different lattice sites and orbitals are given by tαβIJ , and µ is the chemical potential which includes the mean-
field energy shift from the onsite Coulomb interaction. The anomalous orbital Hall (AOH) effect is the multiorbital analog of the
anomalous Hall effect and is described by the complex hopping term between different orbitals and different sites I and J with
the spinless coupling constant λAOH = V1 Im|〈c†IαcJᾱ〉| determined by the current order 〈c†IαcJᾱ〉 through the NN inter-orbital
Coulomb interaction V1. The real part of the current order, δt = −V1 Re|〈c†IαcJᾱ〉|, can be absorbed into the hopping terms tαβIJ
and does not affect our conclusions. In this paper all the parameters are in units of |t5| which can be adjusted to fit the band
structure from the ARPES experiment or the DFT calcuations.

The onsite orbital energy difference λ0 in the term h0 is responsible for the orbital charge polarization, which can be induced
by an external electric field perpendicular to the lattice or anisotropic strain from the substrate. On the other side, the coupling
constant λ1 in h1 is responsible for inter-orbital coherence. Although λ0 and λ1 may be negligible in real systems, they allow
us to perform a stability analysis of the topological phases toward TR symmetry violation.

Due to the translational invariance of the periodic lattice structure, the Hamiltonian H can be diagonalized in the momentum
space k, that is, H(k) = 1

N

∑
k ψ
†
kĤ(k)ψk, with basis functions ψk = (ck,1, ck,2)T (where T is the transpose operation). We

derive the expression Ĥ(k) = E0(k)̂I + ~B(k) · ~τ , where Î is the 2-by-2 unit matrix, ~B = (X,Y, Z) and ~τ = (τx, τy, τz) are the
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Pauli matrices. The ancillary functions E0, X , Y and Z are given by

E0 =2t1[cos(kx) + cos(ky)] + 2t6[cos(2kx) + cos(2ky)],

+ 2(t2 + t3)[cos(kx) cos(ky)]− µ,
X =4t4[cos(kx) cos(ky)] + 2(t5 + δt)[cos(kx) + cos(ky)],

Y =ε ( 2λAOH [cos(kx)− cos(ky)] + λ1),

Z =2(t2 − t3)[sin(kx) sin(ky)] + λ0.

(2)

The diagonalization of Ĥ(k) attains the eigenvalues E±(k) = E0(k)±B(k), where B = | ~B|. The corresponding eigenvectors
are

|+,k〉 = (Z +B,X + i Y )T /
√

2B2 + 2ZB,

|−,k〉 = (−X + i Y, Z +B)T /
√

2B2 + 2ZB.
(3)

We find an even number of (four) Dirac cones in the dispersion of the noninteracting bulk material, i.e., λAOH = λ0 = λ1 = 0.
Their positions are located at the kx and ky axes as determined by B(k) = 0, see Fig. 1(b) [27]. For any finite orbital current
order (λAOH > 0) a nonzero Y will be generated, inducing the anomalous orbital Hall effect. Consequently, the Dirac cones
in the bulk, which are responsible for nontrivial band topology, become gapped. If we manually turn off Z in the presence
of Y 6= 0, the four Dirac cones are pushed toward the center of each quadrant of the BZ. When spin degrees of freedom are
considered, the term Y is also responsible for band topology protected by reflection symmetry, σv , which is the main focus of
this work.

It is worth to note that similar ideas about the importance of the NN-inter-orbital Coulomb interaction and resulting current
flux phases have been discussed in the context of bilayer graphene [28–30] and the cuprates [31–34]. Although the origin of our
proposed inter-orbital currents is similar to the loop or circulating current flux phase in the pseudo-gap phase of the cuprates [31–
34], our model does not rely on strong onsite Coulomb interaction and has different orbital degrees of freedom, crystal symmetry,
and conduction band topology. Specifically, the single-orbital models of the cuprates with d-density-wave order [32, 33] break
the 1-atom per unit cell translational invariance and the TR symmetry. The current loop model [34] violates the TR symmetry.

Anomalous Orbital Hall Phases.− The ground state of the spinless Hamiltonian H is illustrated in Fig. 1(a) based on
standard self-consistent mean-field calculations. In Fig. 1(b) and 1(c) we show the dispersion of the electronic band structure of
the noninteracting bulk material at half filling when λAOH = λ0 = λ1 = 0. For insulators, the nonlocal topology of band n can
be captured by the Chern number Cnε directly through the Berry curvature Ωn(k) of the Hamiltonian Ĥ(k), which is defined as
Cnε (ε;λAOH ;λ0;λ1) = 1

2π

∫
k∈BZ dkxdky Ωn(k), where the expression of Ωn(k) is defined in the Supplemental Material (SM)

[35]. The first observation is that Cnε (λAOH ; 0; 0) = ±2 for any real but nonzero λAOH . The second observation is that the sign
of Cnε depends on the direction of the orbital current loop through ε and the band index n ∈ [1, 2], which determine the class of
the Chern insulator, sign( Cnε ) = ε × (−1)n. Since the topological phase with Cnε = ±2 is robust against weak perturbations
by TR symmetry violation, we show its stability region in the λ0-λ1 phase diagram in Fig. 1(d), where for illustration purposes
we chose the strong coupling limit λAOH = 1. Note that the TI phase is induced by interaction and therefore vanishes for
λAOH → 0. Following the orange line in the phase diagram, we monitor the evolution of the bulk band gap as it closes and
reopens with increasing λ0, see Figs. 1(e) to 1(g). This leads to a sequence of phase transitions from topological Chern insulator
to metal (around λ0 ≈ 2.5) and on to trivial band insulator with Cnε = 0.

The spinfull t2g orbital model.− In materials with magnetic interactions we need to consider electrons as fermions with spin
degrees of freedom. Therefore, we promote the spinless two-band orbital model to the spinful model Hs = H↑[ε↑] + H↓[ε↓].
Here the sign of the spinful orbital current direction is denoted as εσ = ±1 for each spin index σ ∈ [↑, ↓]. A detailed analysis of
the Hamiltonian Ĥs (see the SM) reveals the following invariants of the stable topological phases:
• Phase I: ε↑ = ε↓ with Chern number C = ±4 (Cn↑ = Cn↓ ),
• Phase II: ε↑ = −ε↓ with Chern number C = 0 (Cn↑ = −Cn↓ ).
For phase I, we find that the Chern number C = ±4 of the occupied bands is twice that of the spinless case due to the twofold
degeneracy of spins, because degenerate spins share the same orbital current direction. For phase II, we find that the Chern
number classification scheme is insufficient to capture the topological nontrivial insulator phase, because of C = 0.

It is interesting to note that the form of the interaction term in phase II is formally equivalent to an inter-orbital SOC, HV
s =

iλAOH
∑
IJαβ c

†
Iα (ναβIJ ẑ · ~σ) cJβ with cIα = (cIα↑, cIα↓)

T . This equivalence shows that a distinction between correlation-
and SOC-induced topological states may not be that important after all, and similar analogies for the interaction driven phase to
the SOC has already been discussed in other topological systems [36, 37]. Here, if we regard this term as an intrnsic SOC and
interplay with the NN inter-orbital Coulomb interaction (V1), this results the imaginary part of the orbital order emerges earlier
as V1 increase.
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FIG. 2: (color online) Subbands, edge states with two-fold spin degeneracies in a strip geometry and vector plots of Pfaffian in two-dimensional
BZ. (a-c) The subbands including four edge states (red lines) for a strip with 20 lattice sites in open boundary width and 100 k-points along the
periodic boundary direction. Different parameters with fixed Coulomb coupling λAOH = 1 are shown as illustrated as follows: (a) TMI with
λ0 = λ1 = λR = 0; (b) TMI with λ1 = 2, λ0 = λR = 0; (c) Band insulator with λR = 0.03, λ0 = λ1 = 0. Note that any finite Rashba
coupling λR splits the Dirac cones. (d-f) The corresponding vector plots of the complex Pfaffian function P(k) in two-dimensional periodic
boundary conditions. The bi-color code represents small (orange) to large (blue) modulus of |P(k)|. The red crosses mark the positions of the
vortex cores where P(k) = 0.

To see whether phase II is protected by band topology, we plot the edge states of the slab geometry in Fig. 2(a). The calculated
edge states along the (1,0) direction show two surface Dirac cones at kx=±π2 . Furthermore, these edge states are robust against
the TR perturbation λ1 up to a critical value of roughly 3, although the position of the surface Dirac cones evolves away from
kx = ±π2 (see also Fig. 2(b) for λ1 = 2). One may tend to claim that phase II of the TMI is a conventional Z2 quantum-spin
Hall insulator, since the TR symmetry is respected by the mean-field Hamiltonian for phase II with C = 0. However, this cannot
be reconciled with the fact that in our case the number of pairs of degenerate edge states is even instead of odd, as is the case
for the quantum spin-Hall insulator. Consequently, we claim that phase II has topology different from earlier work [4] and is a
new type of topological phase in 2D, protected by mirror reflection symmetries (spinful). This is accomplished by TR symmetry
(spinful) and reflection symmetry (spinless), as indicated by the even mirror Chern number CM [11, 14]. CM is related to the
spin Chern number of the occupied band with spin up/down, C1

↑,↓, and given by |CM | = |(C1
↑ − C1

↓)/2| = [2− (−2)]/2 = 2, as
opposed to the Z2 quantum-spin Hall insulator in the Kane-Mele lattice model with odd mirror Chern number CM = 1. In the
next section, we propose a mirror Pfaffian with a Z2 invariant to connect the nontrivial topology of the TI protected states with
their mirror symmetries in phase II.

Mirror-Z2 topological invariant.− The spinful mean-field Hamiltonian of phase II respects the TR symmetry. However, the
number of degenerate Dirac cone pairs at the edges is even instead of odd in addition to an even number of Dirac cones in the
bulk BZ. This is in sharp contrast to quantum-spin Hall insulators, which are solely protected by the TR symmetry and other
spatial symmetries such as inversion symmetry. A detailed symmetry analysis (see the SM) reveals that the topological phase II
of the TMI satisfies the mirror symmetry under the combination of space (σv) and time (spin) operations, MĤs(kx, ky)M−1 =

Ĥs(±kx,∓ky), in which the mirror operator is given by M = P⊗T = (τxK)⊗(−iσyK) = τx⊗iσy . The operator K performs
the complex conjugation identical to the TR operation for spinless fermions. The generalized parity operator P exchanges two
orbitals, while −iσy is responsible for the spin flip under the TR operation T. The overall M operation is equivalent to mirror
reflection (including spin sectors) with respect to the principle axis kx = 0 or ky = 0.

Analogous to the analysis in the Kane-Mele model for the quantum-spin Hall insulator [4], we introduce a mirror-invariant
Pfaffian for occupied states to quantify the Z2 invariant of the “even/odd parity” of the spinful Hamiltonian Ĥs(k) with the
mirror symmetry M. Specifically, we define the mirror-invariant Pfaffian to measure the band topology as

P(k) ≡ Pf
[
〈um(k)|M|un(k)〉

]
, (4)

where |um(k)〉, |un(k)〉 are two occupied orthogonal eigenstates of the Hamiltonian Ĥs(k), e.g., n = 1 andm = 2 or vice versa.
The commutation relation [M, Ĥs(k)] = 0 holds for k points belonging to the “even parity” subspace along the boundaries of
the four quadrants of the BZ. Therefore, the two occupied eigenstates M|un(k)〉 and |un(k)〉 are identical states up to a phase
factor. As a result, the absolute value of the Pfaffian P(k), with k along the kx and ky axes is unity, |P(k)| = 1. On the
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other hand, k points belonging to the “odd parity” subspace, given by the roots of the Pfaffian, satisfy the anti-commutation
relation {M, Ĥs(k)} = 0. Here the mirror operation M|un(k)〉 turns one occupied state, for example, at k = (π/2, π/2) into
an unoccupied and orthogonal eigenstate at k = (−π/2, π/2), |um(k)〉 and vice versa, with vanishing Pfaffian P(k) = 0 for
the occupied states at k = (π/2, π/2).

In Fig. 2(d) we show four vortices appearing in the Pfaffian for phase II with opposite vorticity in adjacent quadrants of the
BZ. All four vortices are well separated by the “even parity” subspace along the kx and ky axes or the boundaries of the BZ
quadrants. Note that for the TMI the even parity subspaces are connected lines which is different from the case of the TI with
inversion symmetry [38], where the even parity subspaces are separted points in the BZ.

It is an important question to confirm whether the proposed topological phase is protected by mirror symmetry. For that
purpose, we examine the effects of a mirror-symmetry breaking perturbation on P(k). To perform a stability analysis, we
introduce an onsite SOC interaction, which might be called an onsite Rashba term, hR = iλR

∑
Iασ(−1)α(−1)σc†IασcIασ̄ ,

but is different in nature from the usual off-site Rashba term: The corresponding matrix elements, written in matrix notation in
momentum space as ĥR(k) = λR τz ⊗ σy , break both the TR and space-time mirror symmetry. In other words, together with
Ĥs(k), hR does not commute with M anywhere in the BZ, [M, Ĥs(k)+ ĥR(k)] 6= 0. This symmetry breaking field will destroy
the mirror topological phase even though the interaction ĥR(k) is infinitesimal. As we expect, the four vortices (Dirac cones)
disappear for any nonzero onsite Rashba-like SOC interaction as shown in Fig. 2(f). Consequently, an infinitesimal λR destroys
the degeneracy of edge states and the previously gapless (crossing) edge states become gapped, see Fig. 2(c).

A completely different scenario occurs when the local inter-orbital coupling λ1τy is turned on adiabatically. For this case,
the Pfaffian is plotted in Fig. 2(e). As the strength of λ1 increases the positions of the pair of vortices in the upper half-plane
of the BZ are modified and move toward the pair in the lower half-plane compared to the onsite SOC case in Fig. 2(d). As we
already mentioned before, this trend continues until the vortices disappear at a critical strength λ1 ≈ 3 before entering the even
parity subspace protected by the mirror symmetry. Indeed this corresponds to the stability boundary discussed previouly in the
phase diagram in Fig. 1(d) of spinless fermions. Furthermore this observation is consistent with the corresponding degeneracies
of edge states as displayed in Fig. 2(b). Therefore, according to the mirror symmetry, which maps the entire k space of the BZ
onto one quadrant, a new mirror-Z2 index can be defined to count the number of vorticies of the Pfaffian in one quadrant of the
BZ (see the SM).

Conclusion.− Our work shows that unconventional topological insulators can emerge from Coulomb correlations in real
materials with non-local crystal symmetry in the absence of spin-orbit coupling. A remarkable result of our quasi-2D model
Hamiltonian is the finding of an even number of pairs of Dirac cones at the edges. In the spinless case, the four edge states are
described by the topological Chern number Cnε = ±2. On the other hand, in the spinful case of phase I the Chern number is
C = ±4, while in phase II the Chern number C = 0 is insufficient to classify the topology. In that case, the Pfaffian enumerates
the four edge states and is connected to aZ2 invariant. Similar to the previous Z2 invariant in TIs with inversion symmetry [4, 38],
the mirror-Z2 invariant in TMI is robust against TR breaking perturbations, because the topological state is protected by a mirror
reflection symmetry.

Similar ideas of the mirror-Chern number [11, 14] and the mirror reflection symmetry of the Cnv group [39] have been
discussed before. The novalty here is that we have extended these cases to a spinfull Hamiltonian in the absence of spin-orbit
coupling and found a new mirror-Z2 index in phase II.

Finally, our studies provide a new direction toward the realization of correlation-induced topological phases in d-orbital
material. We suggest to search for TMIs in the paramagnetic iron-pnictide compounds with crystallographic 11, 111, 122 and
1111 structures near half-filling [40], where the t2g model is expected to be valid. In view of recent interest in superconducting
topological phase [41], the interplay of our orbital order proposed here and superconductivity will be of a very interesting topic
for future study.
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