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We study the emergence of quasiparticles in Hund’s metals with an SU(M)× SU(N)-symmetric
Kondo impurity model carrying both spin and orbital degrees of freedom. We show that the cou-
pling of the impurity spin to the conduction electrons can be ferromagnetic, notably for hole-doped
iron pnictides. We derive the weak-coupling renormalization group (RG) equations for arbitrary
representations of SU(M) × SU(N). A ferromagnetic spin coupling results in a protracted RG
flow, accounting for the surprising particle-hole asymmetry which is observed in the iron-pnictide
systems. We establish the low coherence scale TK which depends on the filling through the impurity
representation. We also discuss the temperature dependence of the spin and orbital susceptibilities.
Finally, we argue that this mechanism explains the strong valence dependence of the coherence scale
observed in dilute transition-metal magnetic alloys.

There is renewed interest in a class of materials
where strong electronic correlations, manifest in large
mass renormalizations, arise from Hund’s coupling rather
than from the Hubbard U term. Noticeable examples
are the recently discovered iron-pnictides and chalco-
genides high-temperature superconductors [1, 2], ruthen-
ates [3, 4], or other 4d transition-metal oxides [5].

A local approach seems a promising route for the un-
derstanding of Hund’s metals. GW calculations support
the idea that the self-energy at low energies has a purely
local character [6]. LDA+DMFT studies, mapping the
many-body problem to an impurity problem in a self-
consistent determined environment, has provided a suc-
cessful description of several materials in this class [5].
Hund’s metals form a Fermi liquid below a coherence
temperature which is remarkably low [1]. The physical
degrees of freedom at higher energies are fluctuating mo-
ments [7] which are observed in XES measurements [8]
and incoherent electronic excitations which are observed
in their optical properties [9–11].

Since the DMFT bath of the Hund’s metals is relatively
structureless at low energies, it is natural to investigate
this problem with a representative impurity model, an
SU(M)×SU(N) generalization of the model introduced
in Ref. [12] by means of an analytical renormalization
group analysis. The goal is to get analytical insights into
why is the coherence scale of Hund’s metals so low, and
what are the physical parameters that control its value.
This mystery dates back to the fifties when early investi-
gations of the Kondo temperature TK of dilute transition-
metal magnetic alloys revealed that TK decreases dramat-
ically as the d-shell filling approaches half-filling [18, 19].
The renormalization group flows describe an interesting
interplay of spin and orbital degrees of freedom, give new
insights into why the spin and orbital susceptibility are
so different and account for the surprising particle-hole
asymmetry observed in the iron-pnictide systems.

Model. We study the impurity model described by
the Hamiltonian HK = Hbath + Hint where Hbath =
∑

k,m,σ ǫk ψ
†
kmσψkmσ describes the non-interacting con-

duction electrons ψkσa with momentum k. σ = 1 . . .N
labels the spin of the electron and m = 1 . . .M labels its
orbital. M is the number of active orbitals in the shell
(i.e. M = 3 for t2g or M = 5 for a full shell of d elec-
trons). The physical case for the spin sector is N = 2
but we keep its value general. We consider a dispersion
ǫk corresponding to a flat density of states ρ (we later set
ρ = 1 to simplify expressions) with large bandwidth 2D0.
The spin and orbital degrees of freedom of the impurity,
S and T , live respectively in faithful representations of
SU(N) and SU(M) to be precised below. The coupling
to conduction electrons reads (summing over repeated
indices)

Hint = Jp ψ
†
aσψaσ + J0 S

α(ψ†
mσ

σα
σσ′

2
ψmσ′) (1)

+K0T
a(ψ†

mσ

τamm′

2
ψm′σ)+I0S

αT a(ψ†
mσ

σα
σσ′

2

τamm′

2
ψm′σ′),

with the local conduction electron ψmσ ≡∑k ψkmσ. Jp,
J0, K0, and I0 are respectively the bare potential, spin-
spin, orbital-orbital, and spin-orbital Kondo coupling
constants. σα (α = 1 . . .N2−1) and τa (a = 1 . . .M2−1)
are the generators of SU(N) and SU(M) respectively in
their fundamental representations. They obey the Lie
algebra commutation relations and are normalized such
that Tr

[

σασβ
]

= 2δαβ and Tr
[

τaτb
]

= 2δab. For SU(2)
and SU(3), they correspond to the Pauli and Gell-Mann
matrices respectively.
We consider the case of Hund’s metals with valences

nd less than half-shell filling. Above half-shell capacity,
one can perform a particle-hole transformation, before
generalizing from SU(2) to SU(N). We denote the dis-
tance from half-filling by d ≡M − nd ≥ 1. The effect of
strong Hund’s coupling is to maximize the impurity spin,
therefore we take S as the generators of the totally sym-
metric representation of nd fundamental SU(N) spins
and T to live in the totally antisymmetric representation
composed of nd < M fundamental SU(M) isospins. See
the Young’s tableaux in Fig. 1. Notice that at exactly
1/N -filling, i.e. nd = M , the orbital isospin is a sin-
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FIG. 1: Young’s tableaux of the representations of T and S in our
class of Hund’s metals. A single box represents a fundamental spin
of SU(M) or SU(N).

glet state (scalar representation) and the model reduces
to an M -channel Coqblin-Schrieffer model with a totally
antisymmetric spin representation [21].
The Kondo model in Eq. (1) can be derived, via a

canonical Schrieffer-Wolff transformation, from the large
interaction limit of the SU(M)×SU(N)-symmetric An-
derson impurity Hamiltonian [20], HAIM = Himp+Hhyb+
Hbath with

Himp ≡ ǫd nd +
1

2

∑

mnpq, σσ′

Umnpq d
†
mσd

†
nσ′dpσ′dqσ , (2)

Hhyb ≡ V
∑

k,m,σ

ψ†
kmσdmσ +H.c. . (3)

dmσ represents an impurity electron with spin σ in the
orbital m, ǫd is the energy level and nd ≡∑mσ d

†
mσdmσ.

The second term of Himp encodes both Coulombic re-
pulsion and Hund’s coupling with Umnpq ≡ Uδmqδnp +
JHδmpδnq. Hhyb is the hybridization with the conduction
electrons.
In the large interaction limit, U ≫ D0 ≫ JH ≫ V , the

charge degrees of freedom of the Anderson impurity are
frozen, and the nominal valence of the impurity is iden-
tified to nd. The states of the impurity carry an SU(N)
spin S and an orbital SU(M) isospin T interacting ac-
cording to Hint, with the Kondo couplings [22]
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1

∆E+

]

V 2 , (7)

in which the virtual charge excitation energies to the
nd ± 1 valence states, ∆E+ ≈ ǫd + ndU and ∆E− ≃
−ǫd− (nd−1)U , are both positive if ǫd = −(nd−1+α)U
with α ∈ ]0, 1[. The minus sign in front of the sec-
ond term of J0 above implies that, depending on the
value of ǫd, J0 can be significantly smaller than the
other couplings, and even ferromagnetic, J0 < 0. For
α > α∗ ≡ (nd +1)/(M +1) virtual transitions to valence
nd + 1 dominate and J0 is ferromagnetic. For iron pnic-
tites or ruthenates which have M = 5 or M = 3 with
valences one unit larger than half-filling, a preliminary

FIG. 2: Above: second and third-order non-parquet diagrams con-
tributing to the RG equations (8)-(10). Below: third-order renor-
malization of the wave function and a fourth order diagram.

particle-hole transformation yields nd = 4 or nd = 2, re-
spectively, and thus hole doping favors a ferromagnetic
J0.
The possibility of such a ferromagnetic spin cou-

pling, is a consequence of the large Hund’s coupling
encoded in our choice of representations. Indeed, set-
ting JH = 0 yields positive Kondo couplings with
J0 = 2/M [1/∆E+ + 1/∆E−]V 2 and ndI0 = 2MJ0 =
2NK0 [22]. In this case, the model reduces to a single-
channel Coqblin-Schrieffer model, with a single Kondo
coupling J0 between the conduction electrons and an im-
purity spin living in the totally antisymmetric represen-
tation of SU(M ×N) and composed of nd electrons.
RG equations. To study the physical properties of the

Kondo model, we use a poor man’s scaling approach at
zero temperature [23, 24]. This consists in reducing the
bandwidth by perturbatively integrating over the degrees
of freedom of those conduction electrons with an energy
in the edge δD of the band and requiring that the physics
remain invariant. The corresponding renormalization
of the couplings is given by the so-called β functions,
βi ≡ dJi/d lnD with Ji = J,K, I, together with the ini-
tial conditions set by the bare couplings, J(D0) = J0,
K(D0) = K0 and I(D0) = I0. The expansion of the β
functions to any order in the couplings can be expressed
in terms of CS

n and CT
n , the eigenvalues of n-th order

Casimir invariants of the representations of S and T re-
spectively [28]. Up to third order, we obtain (see Fig. 2)
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For the sake of generality, we gave the β functions for
S and T living in arbitrary faithful representations of
SU(N) and SU(M). These equations have a broad
range of applicability since the spin-orbital Kondo ef-
fect can be realized in different settings such as bilayer
graphene [16] or nanoscale devices [17]. We shall later re-
turn to our particular model by specifying the Casimirs
for the Hund’s metals.
We discarded the flow of potential scattering since

it does not renormalize the other couplings. We also
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discarded the flow of quadrupolar spin-orbital interac-
tions generated by the pertubative expansion but not
initially present in Hint. For example, the term in
I2 (S · σ) (Q · τ ) with Qc ≡ {T a, T b}Tr

[

τ{aτbτc}
]

was
projected on (S · σ) (T · τ ) [22] [29].
The six fixed points of the RG Eqs. (8)-(10) are easily

identified as (i) J = K = I = 0, the non-interacting fixed
point, (ii) J = J∗ ≡ 2/M,K = I = 0, the intermediate-
coupling fixed point of the N -channel SU(M) Coqblin-
Schrieffer model, (iii) K = K∗ ≡ 2/N, J = I = 0, the
one of the M -channel SU(N) Coqblin-Schrieffer model.
(i), (ii) and (iii) are unstable against J0 > 0 or K0 > 0
and, as long as I0 = 0, the RG flows to the fixed point
(iv) J = J∗,K = K∗, I = 0 which corresponds to
the fixed point of two uncoupled multi-channel Coqblin-
Schrieffer models and the low-energy physics is domi-
nated by the one with the smallest Kondo scale. As
soon as I0 6= 0, the fixed points (i)-(iv) are all unstable
and the RG eventually flows towards (v) J = J∗,K =
K∗, I = I∗− or (vi) J = J∗,K = K∗, I = I∗+ depend-

ing on the sign of I0. Here, I
∗
± ≡

(

a±
√
bc+ a2

)

/b, with
a ≡ CS

3 /NC
S
2 +CT

3 /MCT
2 , b ≡ CS

2 /N+CT
2 /M−1/2 and

c ≡ 8
(

1/N2 + 1/M2
)

. Contrary to (i)-(iv), the locations
of the fixed points (v) and (vi) and the RG flows around
them, depend on the representations of the impurity spin
S and isospin T .

The pertubative expansion of the β functions are only
reliable around the non-interacting fixed point (i) and
one must be careful before assigning a physical mean-
ing to (v) and (vi). When both sectors, S and T , are
in their fundamental representation, CS

2 = (N2 − 1)/2N
and CS

3 = (N2−1)(N2−4)/4N2 (and similar expressions
for CT

2 and CT
3 ), one recovers the β equations derived

in [26]. For SU(2)×SU(2), (v) and (vi) with I∗± = ±4 are
known to be artefacts of the third-order expansion, and
the correct fixed point is a strong-coupling fixed point
at I, J , K → ∞. For arbitrary M and N , (v) with

I∗− = −4 N2+M2

N2M2−N2−M2 is well defined at large N and M
and it was conjectured to be stable for all N and M ex-
cept for N = M = 2 [26]. On the other hand, (vi) with
I∗+ = 4 lies out of the scope of the pertubative analysis.
Kuramoto argued that, similarly to the SU(2) × SU(2)
case, it should be replaced by a strong-coupling fixed
point. This is particularly clear at the special values of
couplings 2MJ = 2NK = I for which the model reduces
to the SU(M × N) Coqblin-Schrieffer model which has
only a non-interacting and a strong-coupling fixed point.

RG flow of Hund’s metals. We now return to Hund’s
metals by working with the totally symmetric and anti-
symmetric representations introduced before (see Fig. 1).
The Casimirs read CS

2 = (N − 1)nd(N + nd)/2N , CS
3 =

(N − 2)(N − 1)nd(N + nd)(N + 2nd)/4N
2, CT

2 = (M +
1)nd(M − nd)/2M , and CT

3 = (M + 2)(M + 1)nd(M −
nd)(M − 2nd)/4M

2 [27]. Henceforth, we work in the
large-N large-M limit while keeping both the ratio q ≡

M/N and the distance to 1/N -filling, d ≡ M − nd ≥ 1,
finite. In this limit, the fixed points (v) and (vi) are
located at

I∗− ≃ − 4

NM
, and I∗+ ≃ 4

M
. (11)

both lying out the convergence domain of the perturba-
tive expansion [30]. Based on numerical renormalization
group results [25] and numerical findings [12], we conjec-
ture that the flow towards (vi) at (J∗,K∗, I∗+) should be
understood as a flow to strong coupling and we use (vi)
only to estimate the energy scale at which the Fermi-
liquid coherence is restored.
The RG Eqs. (8)-(10) can be solved numerically with

arbitrary bare couplings J0, K0 and I0 as initial condi-
tions. Below, we illustrate how the RG trajectories de-
pend on J0 by solving them analytically in three regimes:
weakly ferromagnetic |J0| <∼ K0, strongly ferromagnetic
|J0| ≫ K0 and strongly antiferromagnetic J0 ≫ K0. Not
all these regimes of couplings can be reached from the
strong-coupling limit of the multi-band Anderson model,
see Eqs. (5)-(7), so that the Kondo model is a more gen-
eral low-energy model. This is justified because in actual
materials there are additional ligand bands contributing
to the Kondo couplings.
In the large-M large-N limit and to quadratic order,

the RG equations read

βJ = −N/2
[

J2 + d/4 I2
]

+ . . . , (12)

βK = −M/2
[

K2 +Nq(1 + q)/4 I2
]

+ . . . , (13)

βI = −NI[J + qK + q2N/4 I] + . . . . (14)

To discuss different types of RG flow, we introduce
TK
K ≈ exp(−2/MK0)D0, T

I
K ≈ exp(−4/M2I0)D0 and

T J
K ≈ exp(−2/NJ0)D0 if J0 > 0 which are the intrin-

sic Kondo scales in absence of cross-terms in Eqs. (12)-
(14). Below, we consider the spin-orbital coupling as the
smallest coupling by assuming the hierarchy T I

K < TK
K .

Let us first examine the case of a weakly ferromagnetic
spin coupling, J0 < 0, with |J0| <∼ K0. See Fig. 3(a). At
high energies, the terms involving I in the RG Eqs. (12)
and (13) can be neglected, thus spin and orbital degrees
of freedom are decoupled. The antiferromagnetic cou-
pling K of the totally antisymmetric SU(M) pseudo-
spin approaches the non-Fermi-liquid fixed point (ii) con-
trolled by the Kondo scale TK

K and the scaling exponent
∆K ≡ dβK/dK ≈ q [21] while the ferromagnetic coupling
J of the totally symmetric SU(N) spin slowly flows to
weak coupling with an exponent ∆J ≡ dβJ/dJ ≈ 0. At
energy scales of the order of TK

K , J is still ferromagnetic
while K reaches its fixed point, K(TK

K ) ≈ K∗. Below
TK
K , K∗ controls βI ≈ −MK∗I < 0 and the spin-orbital

coupling renormalizes to strong coupling, I(TK
K ) ≈ I∗+.

Then, the I2 term in Eq. (12) drives the growth of J
which crosses over from a ferromagnetic to an antiferro-
magnetic value. The integration of Eq. (12) provides an
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FIG. 3: Numerical RG flow starting from (a) weakly ferromagnetic
|J0| = 10−3 <

∼ K0, (b) strongly ferromagnetic |J0| = 10−1 ≫ K0,

and (c) strongly antiferromagnetic J0 = 10−2 ≫ K0. (q = 3/2,
d = 1, K0 = 10−3, I0 = 10−5, N = 20).

estimate of the typical energy scale TK at which J → J∗,
i.e. at which the strong-coupling regime establishes,

TK(d) ≈ exp (−q/d)TK
K . (15)

Note that Eq. (15) is still valid for a relatively small anti-
ferromagnetic coupling, as long as T J

K < TK
K or T J

K < T I
K.

In agreement with the experimental and numerical evi-
dence, TK is found to decrease as one approaches 1/N -
filling (i.e. as d gets smaller). At a more formal level,
TK depends explicitly on the representations of the spin
and the orbital isospin. This is unlike the typical Kondo
scales emerging in Kondo models without spin-orbital
coupling.
Let us now discuss the scenario with large ferromag-

netic coupling |J0| ≫ K0. See Fig. 3(b). As seen in
Eq. (14), J controls the renormalization of I as long as
K ≪ |J | and βI ≈ −NJI > 0. Thus, I first slowly
renormalizes to weak coupling and reaches values on the
order of I ′0 ≡ q2I0K

2
0/|J0|2 ≪ I0 at T

K
K (when K → K∗).

The subsequent growth of I to I∗+ is therefore delayed by
such a small initial value and I escapes weak coupling at

a scale I
′−1/∆I

0 TK
K < TK

K with ∆I ≡ dβI/dI ≈ −2q. In
turn, this also delays the subsequent renormalization of
J to J∗. The relevance of multi-channel Kondo physics
for the intermediate asymptotics was conjectured and the
operator responsible for the crossover to the Fermi liquid
at low energies was identified in [13].
It is useful to contrast the scenarios above with the

case of large antiferromagnetic coupling J0 ≫ K0. See
Fig. 3(c). There, the RG flow is radically different as all
three couplings reach strong coupling concomitantly at
the scale set by T J

K > TK
K .

Finally, our results can also be compared to the case
of the absence of Hund’s coupling, JH = 0, for which
the model reduces to the antiferromagnetic SU(M ×N)
Coqblin-Schrieffer model described before. There, all an-
tiferromagnetic Kondo couplings are locked together by
symmetry considerations and strong coupling is reached
at energies on the order of exp [−2/(MNJ0)]D0.
Susceptibilities. The RG flow can be used to study

physical observables such as the impurity spin and or-
bital static susceptibilities, χS and χT respectively. The
temperature scaling equations derived in [22] have solu-

tions

χS/T (T ) ∼
1

T
exp

(

−
∫ D0

T

dD

D
γS/T (Ji(D))

)

, (16)

with the functions γS =MN(J2 +CT
2 I

2/2)/2 and γT =
MN(K2 + CS

2 I
2/2)/2. Let us focus on the ferromag-

netic case, J0 < 0. At high temperatures T ∼ D0, the
exponent above can be neglected and both susceptibili-
ties follow a Curie law, i.e. 1/T . At temperatures down
to TK

K , Eq. (16) and the RG flow discussed above imply
that the magnitude of χT is significantly smaller than the
one of χS . At T

K
K , the orbital susceptibility crosses over

to a strong-coupling regime and χT → 0 when T → 0. In
the weakly ferromagnetic scenario |J0| <∼ K0, γS(T

K
K ) is

controlled by I∗+ thus the spin susceptibility crosses over
to strong coupling concomitantly with χT . However, in
the strongly ferromagnetic case |J0| ≫ K0, the retarda-
tion of I → I∗+ over K → K∗ leads to a crossover of
χS at even lower temperatures. These findings are con-
sistent with the numerical results of [12] and provide a
simple picture of the incoherent regime of Hund’s metals
at intermediate energy scales: composite quasiparticles
incorporate orbital degrees of freedom but not spin de-
grees of freedom, screening T but not S.

Discussion. We studied impurities in the presence of
strong Hund’s coupling in terms of a Kondo problem with
spin and orbital degrees of freedom. The spin coupling
can be ferromagnetic or antiferromagnetic depending on
the filling of the underlying Anderson impurity model.
In the Hund’s metal region, very close to half-filling the
coupling is ferromagnetic and this is the regime that cor-
responds to hole-doped iron pnictides, while the anti-
ferromagnetic case is realized in the strongly electron-
doped regime. In the ferromagnetic case, there is a sub-
tle interplay of spin and orbital degrees of freedom which
leads to protracted flows until the Fermi liquid. This
explains the strong doping dependence of the coherence
scale that has been observed, the electron-doped iron
pnictides such as Fe1−xCoxBa2As2 [14] having a much
larger coherence temperature than hole-doped materials
such as KFe2As2 [15].

Finally, our Kondo impurity model describes true mag-
netic impurities with large Hund’s coupling and embed-
ded in metallic hosts. Thus the above mechanism also
applies to dilute transition-metal magnetic alloys and
successfully reproduces the overall trend of the experi-
mentally measured coherence temperature as a function
of filling [18].
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