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Low-energy states of quantum spin liquids are thought to involve partons living in a gauge-
field background. We study the spectrum of Majorana fermions of Kitaev’s honeycomb model on
spherical clusters. The gauge field endows the partons with half-integer orbital angular momenta.
As a consequence, the multiplicities reflect not the point-group symmetries of the cluster, but rather
its projective symmetries, operations combining physical and gauge transformations. The projective
symmetry group of the ground state is the double cover of the point group.

Quantum spin liquids are conjectured states of matter
that have no long-range magnetic order and thus can-
not be distinguished by their physical symmetries. The
low-energy physics of spin liquids are often described in
terms of partons—matter particles with fractional quan-
tum numbers—interacting with emergent gauge fields1–3.
Wen4 proposed to classify spin liquids on the basis of pro-
jective symmetry, a combination of physical and gauge
symmetries. Unfortunately, solvable models of spin liq-
uids in more than one spatial dimension are hard to find.
For this reason, partons and gauge fields in spin models
have been typically introduced by fiat: spin variables are
expressed in terms of Abrikosov fermions or Schwinger
bosons and the resulting Hamiltonian, quartic in parton
fields, is treated at the mean-field level. Although this
approach can be justified in some limits, e.g., by taking
the number of parton flavors N →∞1–3, its applicability
to physical spin models is debatable.

The association of projective symmetry with ad hoc
fractionalization schemes4–8 is unfortunate. It is there-
fore desirable to find clean applications of projective sym-
metry to exactly solvable models of spin liquids. To that
end we show that the properties of partons in Kitaev’s
honeycomb spin model9 are best characterized in the lan-
guage of projective symmetry.

Summary of main results. We study Kitaev’s honey-
comb spin model in a spherical lattice geometry realized
by Archimedean solids , Fig. 1. The model is solvable
by a fermionization procedure yielding a Hamiltonian
quadratic in Majorana fermions cn. Naturally, the spec-
trum of a highly symmetric cluster is degenerate. How-
ever, the multiplicities do not match the dimensions of
the point-group irreps. For example, the group of tetra-
hedron T has irreps 1, 1′, 1′′, and 3, labeled by their di-
mensions (we follow the notation of Grimus and Ludl 10).
Unexpectedly, Majorana modes on a truncated tetrahe-
dron form doublets (Table I), which the point-group sym-
metries fail to explain.

The resolution of this paradox is tied to the presence
of a gauge field felt by Majorana fermions. The net out-
ward magnetic flux through plaquettes of the cluster is
Φ = 4πg, where g can be interpreted as the charge of
a magnetic monopole at the cluster’s center. The or-
bital angular momentum of a parton with unit electric

FIG. 1. Truncated tetrahedron, octahedron, cube, and icosa-
hedron. Red, green, and blue edges have spin flavors x, y,
and z, respectively. Shaded faces contain nonzero magnetic
flux in the ground state.

charge is incremented by the angular momentum of the
electromagnetic field g11. Because g is half-integer in
the ground states of our clusters, the net angular mo-
mentum is converted from integer to half-integer. To
accommodate states with half-integer angular momenta,
we must enlarge the point group T ⊂ SO(3) to its double

cover T̃ ⊂ SU(2) and use the irreps for which a rotation
through 2π yields a factor of −112. The double group
T̃ has three such irreps: 2, 2′, and 2′′. Hence the par-
ton doublets. Similar scenarios apply to other spherical
clusters: the projective symmetry group G of the ground
state turns out to be the double cover G̃ ⊂ SU(2) of the
corresponding point symmetry group G ⊂ SO(3).

Landau levels on a sphere. Before turning our atten-
tion to Kitaev’s lattice model, we illustrate the relevant
concepts in a related continuum problem: Landau levels
of a massive particle on a sphere13. It is convenient to
treat it as a rigid rotor—a particle pivoted on a massless



2

Solid Multiplicities Φ g PSG

Truncated tetrahedron 2, 2, 2 2π 1/2 T̃

Truncated octahedron 4, 4, 4 6π 3/2 Õ

Truncated cube 4, 2, 4, 2 2π 1/2 Õ

Truncated icosahedron 6, 2, 4, 6, 2, 6, 4 6π 3/2 Ĩ

TABLE I. Multiplicities of Majorana modes (in the order of
increasing energy ε > 0), net magnetic flux Φ, monopole
charge g, and projective symmetry group for Kitaev’s spin
model on some Archimedean solids.

rod of length r—with mutually orthogonal axes ξ̂, η̂, ζ̂

affixed to it; in particular, ζ̂ = r/r points along the
rod. Note that body components of orbital angular mo-
mentum Lξ, Lη, and Lζ commute with the global com-
ponents Lx, Ly, and Lz, so we may use as basis vec-
tors simultaneous eigenstates of L2, Lz, and Lζ

12. The
Hamiltonian is H = L2

ξ/2Iξ + L2
η/2Iη + L2

ζ/2Iζ , where

Iξ = Iη = mr2 and Iζ = 0. The vanishing of Iζ re-
quires setting Lζ = 0 in order to keep the energy finite,
so H = (L2

ξ+L2
η)/2mr2 = L2/2mr2. In the presence of a

magnetic field, the Hamiltonian is modified by replacing
L = r × p with Λ = r × (p − eA) = L − er ×A, where
A is the vector potential.

Although magnetic field in this problem, B(r) = gr/r3,
is spherically symmetric, the vector potential A(r) is not.
We can undo the change induced in A(r) by a rotation
if we follow it up with a gauge transformation14. The
combined operation—a gauged rotation—leaves the vec-
tor potential, and thus the Hamiltonian, invariant. The
generator of gauged rotations,

J = L− er×A− gr/r = Λ− gζ̂, (1)

satisfies the standard algebra of angular momentum13.
Its body-axis component Jζ = Lζ − g = −g. This
constraint restricts g to integer and half-integer values
and the length of the gauged angular momentum to
j = |g|, |g| + 1, |g| + 2, . . . The Hamiltonian, expressed
in terms of J, reads

H = (Λ2
ξ + Λ2

η)/2mr2 = (J2 − g2)/2mr2. (2)

Kitaev’s lattice model. The Hamiltonian of Kitaev’s
spin model is9

H = −
∑
〈mn〉

JmnS
α(mn)
m Sα(mn)

n , (3)

where 〈mn〉 denotes a pair of nearest-neighbor sites m
and n with a coupling constant Jmn. The spin compo-
nent, or flavor, α(mn) = x, y, or z depends on the link
〈mn〉. With spins Sn represented in terms of four Majo-
rana fermions bαn, and cn, Sαn = ibαncn, the Hamiltonian
becomes quadratic in c fermions:

H = −
∑
m

∑
n

tmncmcn/4. (4)

Two b fermions sharing a link combine to form a Z2

gauge variable umn = ib
α(mn)
m b

α(mn)
n = −unm. Link vari-

ables u commute with each other and with the Hamil-
tonian (4) and can therefore be treated as numbers
umn = ±1. The hopping matrix of c Majorana fermions
tmn = −2iJmnumn is pure imaginary, antisymmetric,
and thus Hermitian.

We work with Archimedean solids obtained from Pla-
tonic solids by truncation, Fig. 1. Without loss of gen-
erality, we use ferromagnetic coupling constants, J1 > 0
on edges inherited from Platonic solids and J2 > J1 > 0
on the edges resulting from truncation.

The product of link variables around a loop gives the
Z2 magnetic flux W = (−iu12)(−iu23) . . . (−iuL1). The
allowed values of the flux depend on the perimeter L of
the loop: W = ±1 for even L and ±i for odd L9,15.
Distinct physical states of the spin model can be fully
specified by the values of Z2 fluxes on all plaquettes and
by the state of the c Majorana fermions in this static
magnetic background. Different gauge representations
{u} of the same flux pattern {W} are related by a gauge
transformation

u′mn = ΛmumnΛn, c′n = Λncn, Λn = ±1. (5)

The physics of the Z2 gauge field in Kitaev’s model has
been explored in Refs. 16–19.

The Hamiltonian of the Majorana operators (4) can be
reduced to a diagonal form,

H =
∑
k

εk(γ†kγk − γkγ
†
k)/2, (6)

where γk = 1
2

∑
n ψ

(k)
n cn and γ†k are annihilation and

creation operators of (complex) fermion eigenmodes
and εk ≥ 0 are their excitation energies. The one-

particle wavefunctions ψ
(k)
n and the eigenvalues εk can

be found by solving the one-particle Schrödinger equation
−
∑
n tmnψn = εψm with a pure imaginary hopping am-

plitude tmn = −2iJmnumn
9. Eigenvalues of tmn come in

pairs ±ε: if wavefunction ψn has the eigenvalue +ε then
its complex conjugate ψ∗n has the eigenvalue −ε. Positive
eigenvalues are the excitation energies of the Majorana
eigenmodes in Eq. (6). The Z2 flux W = eiΦ translates
into a U(1) flux Φ experienced by these fermions. The
allowed values of Φ depend on the loop length L: 0 and
π for L even, ±π/2 for L odd.

The flux pattern in the ground state can be found
from the following heuristic rules15. A loop with an
odd perimeter L is indifferent to the value of its flux
Φ = ±π/2. For even L, there is a preferred value: Φ = 0
if L = 2 mod 4 and Φ = π if L = 0 mod 4. For example,
the ground state of the honeycomb model has zero flux
on all hexagons9.

Projective symmetry group. We next construct the pro-
jective symmetry group (PSG) for the truncated tetra-
hedron. In the ground state, its hexagons have no flux,
whereas all triangles have the same flux Φ = +π/2 or
−π/2. The net flux Φ = ±2π means a half-integer



3

FIG. 2. (a) A ground state of Kitaev’s model on a truncated
tetrahedron. Arrows show directions for which the phase of
the hopping amplitudes arg t = −π/2. (b) The same state
rotated through 2π

3
about the indicated threefold symmetry

axis. The hopping amplitudes can be restored by a Z2 gauge
transformation on vertices labeled with dots.

monopole charge g = Φ/(4π) = ±1/2. A gauge con-
figuration {u} for one of the two ground states is shown
in Fig. 2(a). The presence of a gauge field endows edges
with a sense of direction and thereby reduces the sym-
metry.

Consider rotation R( 2π
3 , n̂) about threefold axis n̂

[Fig. 2(b)] that reverses the sign for some of the gauge
variables umn and the corresponding hopping amplitudes
tmn. As in Haldane’s problem, the flux pattern remains
unchanged and we may restore the original u and t by a
gauge transformation (5). One such transformation—let
us call it Λ(2π

3 , n̂)—has Λn = −1 on sites marked with
red dots in Fig. 2(b) and +1 on the remaining sites. The
combined operation of gauged rotation,

R( 2π
3 , n̂) = Λ(2π

3 , n̂)R( 2π
3 , n̂), (7)

leaves the hopping matrix invariant14. The complemen-
tary gauge transformation, Λ′n = −Λn, also restores the
gauge configuration. This is a general result: every point-
group symmetry R generates two gauged symmetries:
ΛR and −ΛR.

The 2π
3 gauged rotation (7) has a peculiar property:

applying it three times yields not the identity but rather
multiplication by −114. If we identify this operation with
a 2π gauged rotation then we find a result reminiscent
of half-integer spin, R(2π, n̂) ≡ R3( 2π

3 , n̂) = −1. Al-
ternatively, we may define the gauged 2π rotation as
a combination of the ordinary rotation R(2π, n̂) = 1
with the global gauge transformation Λ(2π, n̂) = −1:
R(2π, n̂) ≡ Λ(2π, n̂)R(2π, n̂) = −1. Then the gauged
symmetries satisfy the composition rule for rotations,
R3( 2π

3 , n̂) = R(2π, n̂).
The PSG for the ground-state flux sector is obtained

as follows. We first construct two gauged rotations
R( 2π

3 , n̂1) and R( 2π
3 , n̂2) about two different threefold

axes n̂1 and n̂2 from ordinary rotations as described
above. We then use the multiplication table of SU(2)

rotations (more precisely, of its subgroup T̃ ) to gen-
erate new elements and label them accordingly, e.g.,
R( 2π

3 , n̂2)R−1( 2π
3 , n̂1) = R(π, n̂3), where n̂3 is a twofold

axis. We check that each new element R(φ,n) is indeed a
gauged rotation, i.e., a composition of the corresponding

FIG. 3. Unprimed (a) and primed (b) rotations about a three-
fold axis.

ordinary rotation R(φ,n) ∈ T and of a Z2 gauge trans-
formation Λ(φ,n) defined in Eq. (5). Lastly we check
that the multiplication tables of the newly constructed
group and of T̃ are the same. This program establishes
that the PSG of the ground-state flux sectors is indeed T̃ ,
the double cover of the point group T . Similar results are
obtained with the other Archimedean solids (Table I).
Parton multiplets. The number of vertices in a trun-

cated Platonic solid equals the order of the corresponding
point group G ⊂ SO(3). States of a fermion living on the
vertices transform under the regular representation of the
group G. These states can be uniquely labeled by group
elements as follows. Assign the identity element e to an
arbitrary vertex; the rest of the vertices are labeled by
the group element R ∈ G that takes vertex e into them.
(We now regard symmetries as active transformations.)
A symmetry R2 ∈ G acts on state |R1〉 as left multipli-
cation:

R2|R1〉 = |R2R1〉. (8)

For the truncated tetrahedron and its group G = T , the
regular representation is decomposed into irreps as fol-
lows: 12 = 1 + 1′ + 1′′ + 3× 3.

The same applies to the double cover G̃ of group G, ex-
cept that each fermion state is now represented by group
elements R ∈ G̃ twice, as ±|R〉. The one-fermion states

are decomposed into only those irreps of G̃ for which a
2π rotation equals multiplication by −1. For the double
tetrahedral group T̃ , 12 = 2×2+2×2′+2×2′′. Thus we
expect six doublets for a complex fermion on a truncated
tetrahedron. For a Majorana fermion, states obtained by
complex conjugation are identified and we obtain three
doublets, as is indeed the case (Table I). For the dou-

ble octahedral group Õ, 24 = 2 × 2̃ + 2 × 2̃′ + 4 × 4̃.
Majorana fermions on a truncated cube indeed come in
multiplets of 2, 2, 4, and 4. On a truncated octahe-
dron, the doublets are “accidentally” degenerate (Ta-
ble I). For the buckyball (the icosahedral group I),
60 = 2 × 2̃ + 2 × 2̃′ + 4 × 4̃ + 6 × 6̃; we expect Ma-
jorana multiplets with dimensions 2, 2, 4, 4, 6, 6, 6, in
agreement with direct diagonalization (Table I).

Parton spectrum. Symmetries R ∈ G (or R ∈ G̃)
used so far represent rotations about axes fixed in space.
It is convenient to introduce a second set of “primed”
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operations R′ (or their gauged versions R′) representing
rotations about axes that themselves rotate:

R′2|R1〉 = |R1R2〉 = R1R2R
−1
1 |R1〉. (9)

If R2 is a rotation about the axis nearest to vertex e
then R1R2R

−1
1 is an equivalent rotation about the axis

nearest to vertex R1, Fig. 3. The primed operations
are direct analogs of rotations about axes attached to
a rigid body, which also follow right multiplication20.
The groups of primed and unprimed rotations are iso-
morphic: the multiplication table for R′ is the same as
that of R−1. Primed and unprimed rotations commute:
R3R

′
2|R1〉 = |R3R1R2〉 = R′2R3|R1〉.

As the hopping matrix t commutes with unprimed ro-
tations, we may guess that it can be expressed in terms
of primed rotations. Indeed, for the truncated tetrahe-
dron, it is a superposition of gauged rotations through
+π about the nearest twofold axis n̂1 and through + 2π

3

and − 2π
3 about the nearest threefold axis n̂2:

t = −2i[J1R′(π, n̂1)− J2R′( 2π
3 , n̂2) + J2R′(− 2π

3 , n̂2)].
(10)

Because primed rotations form group T̃ , we may use
its irreps to block-diagonalize the hopping matrix. The
block that corresponds to irrep λ is obtained by replacing
R′(φ, n̂) in Eq. (10) with the irrep matrix D(λ)(−φ, n̂).

Matrices for irrep 2 of T̃ coincide with matrices of fi-
nite rotation of the fundamental (spin- 1

2 ) irrep of SU(2):

D(2)(−φ, n̂) = ei(σ·n̂)φ/2, where σ = (σx, σy, σz) are the
Pauli matrices. Taking the axes to be n̂1 = (0, 0, 1)

and n̂2 = (1, 1, 1)/
√

3, we obtain a 2 × 2 block t(2) =
−2J1σz + 2J2(σx + σy + σz), whose positive eigenvalue

ε = 2
√
J2

1 − 2J1J2 + 3J2
2 matches the energy of one of

the Majorana doublets obtained by direct diagonaliza-
tion of the hopping matrix. Irreps 2′ and 2′′ of T̃ can-
not be expressed in terms of SU(2) rotation matrices.
However, their direct sum 2′ + 2′′ coincides with the 4-
dimensional (spin- 3

2 ) irrep of SU(2), so we may again
use SU(2) rotation matrices to obtain a 4×4 block. Par-
ton energies are roots of the characteristic polynomial
P (ε) = ε4 − (3J2

1 + 2J1J2 + 2J2
2 )ε2 + 16(J1 + J2)2J2

2 .
They reproduce the energies of the two remaining Majo-
rana doublets. This diagonalization procedure also works
correctly for the ground states of the other spherical clus-
ters listed in Table I.

We can gain an additional insight into the spectrum of
Majorana fermions by making a direct connection to Hal-
dane’s continuum model discussed above. If the hopping
matrix t on a cluster were real and positive, the state
with the lowest energy ε < 0 would be ψn = 1, a lattice
analog of the s state, followed by analogs of states with
angular momenta ` = 1, 2, . . . with multiplicities 2` + 1
until the continuum approximation breaks down21. In
the presence of a magnetic flux Φ = 4πg through the
cluster, the energy eigenstates on the sphere have an-
gular momenta j = |g|, |g| + 1, |g| + 2, . . . in the order
of increasing energy with multiplicities 2j+ 1. The same
can be expected for the eigenstates of the hopping matrix
with energies ε < 0. Because the positive eigenvalues of
the Majorana hopping matrix mirror the negative ones,
we expect that the parton multiplet with the highest en-
ergy ε > 0 will have angular momentum j = |g|, followed
by multiplets with j = |g| + 1, |g| + 2, . . . until the con-
tinuum approximation breaks down. Indeed, e.g., on the
buckyball, g = 3/2, the highest-energy partons form a
quartet (j = 3/2) and a sextet (j = 5/2), see Table I.
The octet (j = 7/2) is split into a doublet and a sextet
by deviations from spherical symmetry due to the lattice.

We have shown that parton excitations in Kitaev’s
honeycomb model on highly symmetric spherical clus-
ters have half-integer orbital angular momenta due to
a nontrivial gauge background resembling the field of a
magnetic monopole with a half-integer charge.

The structure of parton multiplets can be understood
in the framework of projective symmetries, which com-
bine physical and gauge transformations. For all spheri-
cal clusters we have examined, the projective symmetry
group for the ground state is the double cover G̃ of the
point group G. As far as we know, this is the first appli-
cation of projective symmetries in a solvable model of a
spin liquid.
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