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By means of electronic transport, we study the transverse magnetic anisotropy of an individual Fe4
single-molecule magnet (SMM) embedded in a three-terminal junction. In particular, we determine
in situ the transverse anisotropy of the molecule from the pronounced intensity modulations of
the linear conductance, which are observed as a function of applied magnetic field. The proposed
technique works at temperatures exceeding the energy scale of the tunnel splittings of the SMM. We
deduce that the transverse anisotropy for a single Fe4 molecule captured in a junction is substantially
larger than the bulk value.

I. INTRODUCTION

Single-molecule magnets (SMMs)1 have been proposed
as candidates for applications in molecular spintronics.2–7

Especially enticing is the prospect of using an individual
SMM as a base component of a spintronic circuit which
would be capable of storing8 or processing7,9–11 classi-
cal and quantum information. In general, the essential
prerequisite for this is a magnetic bistability which in
SMMs stems from a large molecular spin and a strong
easy-axis magnetic anisotropy, given by a parameter D.
This tends to fix the spin along an axis determined by
the molecular structure, without favoring any specific di-
rection along this axis. In consequence, an energy bar-
rier ∼ DS2 protects the spin of the molecule against
reversal between the two opposite, energetically degen-
erate orientations. From this point of view, detection
of the additional transverse magnetic anisotropy, char-
acterized by the parameter E > 0 in the Hamiltonian
Ĥ = −DŜ2

z + E(Ŝ2
x − Ŝ2

y), is crucially important. Such
transverse anisotropy can impair the bistability by open-
ing under-barrier quantum tunneling channels for spin re-
versal.1,12,13 These quantum tunneling processes are also
of fundamental interest since the spin-dynamics displays
pronounced geometric or Berry-phase effects.14–19

Hitherto, most techniques aiming to extract the trans-
verse anisotropy parameter E are based on the detection
of the tunnel splittings it induces, which display a char-
acteristic magnetic field dependence.1,12 The major chal-
lenge for all such approaches is that these splittings are
complicated functions of E, and even more, the splitting
for high-spin states and low magnetic fields are smaller
than the parameter E itself by several orders of magni-
tude. Using Landau-Zener spectroscopy the tunnel split-

tings have been accurately determined in bulk Fe8 by
measuring their pronounced Berry-phase oscillations.14

Also in bulk crystals and solutions of SMMs the parame-
ter E has been established by different methods, such as
high-frequency electron paramagnetic resonance20,21 and
inelastic neutron scattering.22 These methods, however,
probe large assemblies of molecules, and thus are not
designed for investigating the magnetic properties of an
individual SMM. As a result, little is known about the
transverse anisotropy of individual SMMs in spintronic
devices.

In this paper we propose an approach for extracting the
parameter E of a single molecule by employing electronic
transport measurements. We study a Fe4 SMM captured
in a gateable junction (for details see App. A) —a ge-
ometry close to envisaged device structures— which is
a unique tool for addressing the spin in different redox
states of a molecule.5 We show that, as a consequence of
the mixing of the spin eigenstates of the SMM, the trans-
verse anisotropy significantly manifests itself in trans-
port. In particular, we predict and experimentally ob-
serve characteristic variations of the Coulomb peak am-

plitude with the magnetic field from which the parameter
E can be estimated. Importantly, the method proposed
here works at temperatures and electron tunnel broaden-
ings Γ exceeding E by many orders of magnitude, while
E in its turn much exceeds the tunnel splittings.

II. THREE-TERMINAL SMM JUNCTIONS

A scheme of a three-terminal SMM junction is shown
in Fig. 1(a). An SMM bridges the source and drain gold
electrodes. An underlying aluminium electrode separated
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FIG. 1. (color online) (a) Schematic depiction of a molec-
ular three-terminal transistor with a single Fe4 SMM bridg-
ing the junction. (b) Spatial orientation of an external mag-
netic field with respect to the principal axes set by the
magnetic anisotropy of an SMM. (c) Differential-conductance
map, dI/dVb, measured as a function of gate Vg and bias Vb

voltages showing two charge states N (neutral) and N + 1
(charged) for Sample A. (d) Representative Coulomb peaks
[corresponding to linear conductance G ≡ dI/dVb|Vb=0 – e.g.,
marked by dashed line in (c)] measured at different values
of the external magnetic field B. The bold arrowed lines
and color dots serve as a guide for eyes to indicate the non-
monotonic change in the Coulomb peak height.

by a few nanometers of aluminium oxide allows for elec-
trical gating of the molecule and, thus, accessing differ-
ent redox states, see also App. A 2. The chip containing
the junctions is mounted on a piezo-driven rotator that
enables to change in situ the orientation between the
external magnetic field B and the magnetic anisotropy
axes of the molecule, which is characterized by angles θ
and φ as illustrated in Fig. 1(b). All the measurements
are performed at T = 1.8 K.

The differential conductance plotted in Fig. 1(c) shows
the standard signatures of sequential electron tunnel-
ing (SET) through a molecule with two competing
charge states tuned by a gate voltage.23 Strong high-
conductance resonance lines separate adjacent charge-
stable Coulomb blockade regions, labeled N and N + 1,
from the SET regions where transport is possible. Im-
portantly, several fingerprint features of the stable Fe4
SMM can be identified: (i) high charging energies ex-
pected for an individual molecule; (ii) a strong SET ex-
citation at approximately 4.8 meV,5 specific to Fe4 as it
corresponds to the predicted transition energy between
the ground (SN = 5) and the first-excited (SN = 4) spin
multiplets for the neutral molecule;20 (iii) a non-linear
shift of the degeneracy peak in the presence of magnetic
field as described by gate-voltage spectroscopy (for de-
tails see Ref. [24] and App. A 3). Moreover, depending
on the strength of tunnel coupling Γ, split Kondo zero-

bias anomalies in Coulomb blockade regimes of subse-

quent charge states can be observed, which show the zero-
field splitting (ZFS) at the values expected for the Fe4
SMM.5,25 These features also indicate that the molecule
is in an intermediate coupling regime with the electrodes,
with its upper-limit estimated to be Γ=1.6 meV – ob-
tained from the full width at half maximum of the cross-
ing (degeneracy) point of the Coulomb edges at zero bias,
the Coulomb peak, for further discussion see App. A 3.

III. GATE-VOLTAGE ‘POSITION’

SPECTROSCOPY

In a magnetic field the position of the Coulomb peak
(CP) depends both on the magnitude and the orienta-

tion of an external magnetic field B.24 In short, the CP
marks the transition between the ground states of two
spin multiplets, with spin values SN and SN+1, for the
two neighboring charge states. The energy difference be-
tween these states is then a function of B, and in par-
ticular, it translates into a shift of the linear response
degeneracy point in Vg, as shown in Fig. 1(d). From such
a shift one can infer that the ground spin-multiplets of
the two charge states evolve differently in the applied
field; therefore, the shift provides information about the
magnetic properties of the system. For example, in sim-
ple quantum dots the shift corresponds just to the linear

Zeeman effect which is isotropic.26 On the other hand,
for magnetically anisotropic molecules, like the SMMs
discussed here, not only does the CP shift depend on the
relative sample-field orientation, allowing us to extract
the value of the angle θ, but it also provides informa-
tion about the uniaxial magnetic anisotropy (D).24 How-
ever, the gate-voltage position of the peak, determined by
the low-energy spectrum, is insensitive to the small tun-
nel splitting corrections induced by the transverse mag-
netic anisotropy. Below we show that information about
the transverse magnetic anisotropy (E) can instead be
inferred from a nonmonotonic dependence of the peak
amplitude Gmax, such as in Fig. 1(d), which relies on
transition probabilities between different spin states. We
have measured around 200 junctions of which 17 showed
clear molecular signatures. From those, 9 samples dis-
played a clear Coulomb peak suitable to perform gate
spectroscopy and a magnetic field modulation of Gmax.
Further discussion of statistics together with differential-
conductance maps for several devices are presented in
App. A 4.

In Fig. 2(a) the amplitude Gmax of the Coulomb peak,
normalized to its value at B = 0, is plotted as function
of B for two different samples. For both samples, the
gate-voltage analysis of the peak position allows us to
conclude that the magnetic field lies in the hard plane
(θ ≈ 90◦), see App. A 3. Interestingly, Gmax(B) for the
two samples exhibits a significantly different behavior. If
only uniaxial magnetic anisotropy was present (E = 0),
the transport properties of the molecule would be left
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FIG. 2. (color online) Signatures of transverse magnetic
anisotropy in electronic transport at T = 1.8 K: (a) Depen-
dence of the Coulomb peak (CP) height Gmax [i.e., the max-
imal value of G, cf. Fig. 1(d)] on magnetic field B shown
for two different samples where the orientation of the mag-
netic field lies in the hard plane (θ = 90◦). (b) Analogous to
(a) for a single sample, except that now θ is varied and φ is
unknown. Note that the evolution of the CP position in mag-
netic field, and not Gmax, was previously analyzed in Ref. [24]
for samples A and C. Bottom panels: Theoretical predictions
for evolution of the CP height with magnetic field B kept in
the hard plane: (c) for indicated values of E/D and φ = 0◦,
whereas in (d) for several angles φ and the fixed value of E/D
estimated from (a). Bold dashed lines represent the case of
E/D = 0 for φ = 0◦ (c) and φ = 90◦ (d). Notice that the
shape of Gmax for E/D = 0 is independent of φ due to the
rotational symmetry around the molecule’s easy axis.

unaffected upon rotation of the field in the hard plane.
On the contrary, for E 6= 0 this rotational symmetry is
broken. The dissimilar behavior of the amplitude Gmax

as observed in Fig. 2(a) is therefore attributed to differ-
ent values of the angle φ in the presence of a non-zero
E. Similar curve shapes have been observed in addi-
tional samples, as shown in Fig. 9. Although the values
of E for bulk samples/monolayers of SMMs are typically
small (for Fe4 E/D . 0.07)21,27, the linear conductance
through a molecule appears to be measurably influenced
by it. A similar change in the field-evolution of Gmax is
also observed in a single sample C, shown in Fig.2(b), by
rotating the sample holder relative to the magnetic field.

IV. THEORY AND DISCUSSION

In order to understand how the transverse magnetic
anisotropy could qualitatively affect the linear conduc-
tance through an SMM (i.e., the CP amplitude), while
hardly influencing its gate-voltage position, we use a min-
imal molecular quantum-dot model based on two giant-

spin Hamiltonians,1

ĤSMM =
∑

n=N,N+1

[

Ĥn + ĤZ
n

]

, (1)

one for each charge state. Here, Ĥn accounts for the
magnetic anisotropy of the SMM in the nth charge state,

Ĥn = −Dn

(

Ŝz
n

)2
+ En

[

(

Ŝx
n

)2
−
(

Ŝy
n

)2
]

, (2)

with the first/second term representing the uniax-

ial/transverse magnetic anisotropy, and ĤZ
n = gµBB · Ŝn

is the Zeeman term (g ≈ 2). We combine this with
a master equation description of the SET transport to
nonmagnetic electrodes with tunnel coupling Γ.16,28,29

The essential steps of this approach are provided in
App. B 3. The appearance of a clear CP in the ex-
periment restricts SN+1 = SN ± 1/2 (otherwise spin-
blockade would be seen)5. For the Fe4 SMM we can es-
timate SN = 5 and DN ≡ D ≈ 56 µeV for the neutral
state, whereas from the CP position dependence we ob-
tain SN+1 = 9/2, and fix DN+1 ≈ 1.2D = 68 µeV with
approximately collinear easy axes for both charge states,
all in agreement with previous measurements,24 see also
App. A 3. We assume that upon charging only the over-
all energy scale of the magnetic anisotropy changes, i.e.,
EN/DN ≈ EN+1/DN+1, leaving just a single parame-
ter EN = E for the transverse anisotropy.

In Fig. 2(c) we plot the calculated CP amplitude Gmax

for θ = 90◦ and φ = 0◦ as a function of the applied field
B. Surprisingly, the calculations reveal that a non-zero
value of E significantly influences the current through
the molecule. By adjusting the parameter E/D, quali-
tative agreement with the measured amplitude variation
is obtained for sample A when E/D ≈ 0.15 − 0.2. The
dissimilar behavior of Gmax between samples A and B
is then qualitatively reproduced when assuming strongly
differing values of the angle φ as shown in Fig.2(d). From
the shape of the curves we estimate the value of φ to
be φA ≈ 0◦ for sample A and φB ≈ 90◦ for sample B.
Note that the minimum of Gmax for φ = 90◦ appears in
Fig.2(d) at a somewhat larger B field value than for sam-
ple B which signifies larger E/D, cf. Figs. 13-15. There-
fore, combining the information from Figs. 2(c)-(d), the
CP amplitude could be used to estimate the values of
E and φ. The obtained rough estimate E/D ≈ 0.17
is larger than the values reported for bulk samples,27 as
also suggested by XMCD experiments on Fe4 monolayers
deposited on gold.21

To gain deeper insight into the mechanism leading
to a modulation of Gmax we analyze in Fig. 3(a) how
the calculated B-traces of the CP amplitude evolve with
temperature. The appearance of a maximum at around
B = 3.25 T (marked by the vertical dashed line) and its
enhancement with increasing temperature suggests that
this feature is build up from contributions of many ex-
cited states of the SMM. This is indeed confirmed by
inspection of the evolution of the occupation probabili-
ties shown in Fig. 3(b) for the experimental temperature
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FIG. 3. (color online) Theoretical analysis of transport for
fixed D = 56 µeV and E/D = 0.17 and B along the hard axis
(θ = 90◦ and φ = 0◦): (a) Conductance Gmax(B) traces for
various temperatures over the range 1.2−2.4 K at intervals of
0.2 K. (b) Occupation probabilities for several lowest-energy
states in the spin multiplets for N and N + 1 at T = 1.8
K. Here, k′ (k) labels the states in order of increasing en-
ergy for N (N + 1), with k′ = 0 (k = 0) denoting the

ground state. (c) Relevant transition energies εkN+1 − εk
′

N for
k, k′ 6 4 determining the SET processes at the Coulomb res-
onance (note that ε0N+1 = ε0N is restored for each B by tuning
Vg). Different colors of lines are used to distinguish groups
of transitions with respect to possible combinations of indices
k and k′ (see the main text). For the association of these
lines with specific transitions as well as the energies of in-
dividual levels see Fig. 4. (d) Evolution of the current vs.
magnetic field at T = 1.8 K calculated by including a re-
stricted number of states per spin-multiplet up to r, where
r = k′

max + 1 = kmax + 1, showing that for small r significant
deviations are found compared to the calculation involving all
the states (dashed line), used in all other plots. For a precise
definition of the current Ir see App. B 3.

T = 1.8 K. To obtain this figure we first find the eigen-
states of Ĥn, given by Eq. (2). For n = N,N + 1 we

obtain two sets of eigenspectra, {εk
′

N} and {εkN+1}. Here,
k′ and k label the states in order of increasing energy,
starting from k′ = 0 (k = 0) for the neutral (charged)
ground state. Using these energies and states, we cal-
culate the probabilities from the master equation. One
should note that the energies (not shown) and occupation
probabilities of corresponding states (k = k′) for different
charge are very similar. From Fig.3(b), however, it is not
clear which of the maxima of the probabilities is respon-
sible for the maximum of the Gmax(B) curves, indicated
by the vertical dashed line.

Instead, to understand the Gmax(B) dependence in
Fig. 3(a) one has to consider the transition energies

εkN+1− εk
′

N between levels of different charge states. This
is demonstrated in Fig.3(c), where the horizontal dashed
lines represent the available thermal energy. The tran-

(3,0)

(0,2)
(1,2)

(3
,1

)

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0 2 4 6 8

Magnetic field B (T)

T = 1.8 K
(1,1)

(2,2)

(3,3)

(4,4)

(1
,0)

(0,1)

(3,2)

(2,3)(0,3)

l

(1,3)

(4,3)

(2,4) (3,4)

(2,0)
(2,1)

(4
,2

)

(a)

-2

-1

0

1

2

3

4

0 2 4 6 8

Magnetic field B  ( T)

N

N + 1 k = 0
k = 1

k = 2

k = 3

k = 4

k = 5

k = 6

...

E
n

e
rg

ie
s
 (

m
e

V
)

(b)

T
ra

n
s
it
io

n
 e

n
e

rg
ie

s
  

  
  

  
  

  
  
  

  
(m

e
V

)
FIG. 4. (color online) Panel (a) is identical to Fig. 3(c),
but now for each transition-energy line we specify the initial

and final states, with respective energies εk
′

N and εkN+1, be-
tween which the transition occurs. Recall that k is an index
which numbers states in a given spin multiplet with respect
to energy, with k = 0 denoting the ground state. Moreover,
by labelling the lines with (k, k′) we mean that k refers to
the final state of a charged SMM (N + 1) whereas k′ repre-
sents the initial state of a neutral SMM (N). We note that
information shown in (a) cannot be readily seen from ener-
gies εkn (n = N,N + 1) of the individual levels, which for the
completeness of the present discussion are plotted in (b). Ob-
serve that since energies in (b) are calculated at the Coulomb
resonance, the curves for k = 0 overlap.

sition energies fall into three generic groups: (i) low-
energy transitions (k = k′ – green lines); (ii) transi-
tions of low energy for small B but high energy for
large B (k, k′ = 0, 1 or k, k′ = 2, 3 – orange lines); (iii)
high-energy transitions (remaining k and k′ pairs – blue
lines). Importantly, the temperatures used in Fig. 3(a)
lie just below the group of transition-energy curves ex-
hibiting a minimum at finite magnetic fields roughly be-
tween 2-4 T (blue curves in Fig. 3(c)). As the mag-
netic field is augmented from zero, these curves thus ini-
tially approach the thermal energy (horizontal dashed
lines) before moving away at higher fields towards their
high-field asymptotes. This leads to an enhancement of
Gmax for B . 3.25 T, followed by a steady decrease,
i.e., the characteristic non-monotonic behavior experi-
mentally observed in Fig. 2(a). We emphasize that the
above mechanism does not constitute a purely spectro-
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scopic method: the current and probabilities depend on
both the energies and quantum states, which determine
the tunnel rates. The importance of including many ex-
cited states in the calculation is quantified in Fig. 3(d),
where we show how the non-monotonic behavior can be
strongly overestimated when including too few excited
states, see also Figs. 13-16. We note that some additional
remarks regarding signatures of the transverse anisotropy
parameter E in the peak amplitude of Gmax are discussed
in App. B 4.

Finally, worth of note is the larger-than-predicted
modulation of the CP amplitude observed in the exper-
iments. We briefly comment on the verifications to rule
out some other contributions that could lead to such
an amplification. First, the master equation analysis
was constrained to a weak tunnel-coupling Γ as com-
pared to temperature. We verified that higher-order
tunnel processes that lead to broadening and inelastic
tunneling do not increase the scale of the modulation
of the CP height. For this we employed a perturba-
tive approach including next-to-leading tunneling pro-
cesses30 and non-perturbative numerical renormalization
group (NRG) method.31–33 Second, we assumed symmet-
ric tunnel-coupling of the SMM to both electrodes with
the same energy Γ. One can show that a junction asym-
metry gives rise to an overall constant factor suppress-
ing the conductance Gmax. Thus, this cannot change
its field dependence. Third, the addition of higher-order
magnetic anisotropy terms to the SMM model, Eq. (2),
is also not likely to affect the magnitude of the modula-
tion. We checked, for instance, the effect of the 4th order

transverse anisotropy of the form Cn

[(

Ŝx
n

)4
−
(

Ŝy
n

)4]
, for

a range of values of the parameter CN/N+1 for which
this term competes with the 2nd order transverse term.
We thus conclude that the intensity of the modulation
may rely on some intrinsic amplification mechanism not
captured by our model, i.e., going beyond the giant-spin
model,19,34 when considering a single electron interacting
with the molecule.

V. FITTING PROCEDURE: HOW TO FIND

ANISOTROPY PARAMETERS OF A SINGLE

MOLECULE FROM ITS TRANSPORT SPECTRA

We summarize here in a few steps how to determine
magnetic anisotropy of an individual SMM (see Eqs. (1)-
(2) and App. B 1) by exploiting the information con-
tained both in the Coulomb peak position as well as in
the magnetic field evolution of its amplitude. In particu-
lar, the method under discussion allows for finding both
the magnetic anisotropy constants Dn and En in two
charge states (i.e. for n = N,N +1) of an SMM, and the
orientation of an external magnetic field relative to the
molecule’s principle axes, given by the angles θ and φ.

(i) Let us first consider only the Coulomb peak po-

sition, shown in the left panel of Fig. 5. As ex-
plained in Ref. [24], by analyzing the position of

the Coulomb peak one can immediately conclude
whether a molecule captured in the junction ex-
hibits magnetic anisotropy at all. If the molecule is
spin-isotropic, one observes a linear dependence on
the magnetic field [see dashed line in Figs. 5(a)-(b)]
that reflects the linear Zeeman effect. On the other
hand, if the molecule is spin-anisotropic, this depen-
dence becomes nonlinear, and the uniaxial magnetic
anisotropy parameter Dn together with the angle θ
can be estimated from it. This, in turn, permits
for systematic adjustment of the magnetic field’s
orientation so that the field is kept perpendicular
to the molecule’s easy axis z, which corresponds to
θ = 90◦.

(ii) The transverse magnetic anisotropy breaks the
molecule’s rotational symmetry around the easy
axis z (see also App. B 2). In consequence, one ex-
pects that such a symmetry breaking should man-
ifest itself in different transport characteristics of
the system occurring for various orientations of the
magnetic field in the hard plane (i.e., the plane per-
pendicular to the easy axis). From Figs. 5(a)-(b) it
is clear that the sole position dependence in prac-
tice does not allow one to derive reliably either the
transverse magnetic anisotropy constant En or the
angle φ. For this purpose, also the amplitude of the
Coulomb peak has to be taken into consideration.

(iii) The presence of transverse magnetic anisotropy can
be confirmed by observation of how the field depen-
dence of the Coulomb peak amplitude changes when
rotating the field orderly in the hard plane, or in
other words by varying the angle φ. Specifically, one
should notice then two significantly different shapes
of the amplitude showing up every 90◦, cf. red
lines with others in the right panel of Fig. 5. These
two limiting cases represent the situation when the
magnetic field lies either along the molecule’s hard
axis x (φ = 0◦ or φ = 180◦), Fig. 5(c,e), or along
the molecule’s intermediate axis y (φ = 90◦ or
φ = 270◦), Fig. 5(d,f). Consequently, this enables
one to determine the approximate value of the an-
gle φ.

(iv) The effect of transverse magnetic anisotropy on
the Coulomb peak amplitude should be most pro-
nounced for the magnetic field aligned along the
molecule’s hard axis x, see App. B 2 and Figs. 2(c)-
(d) of the main article. For a sufficiently high tem-
perature T [see Fig. 5(f)-(g) and Fig. 16] one ob-
serves then formation of local maxima, marked by
red arrows in Figs. 5(c,e), from whose position the
value of the transverse magnetic anisotropy con-
stant En can be numerically estimated.

Importantly, the method under discussion relies on a
simultaneous fitting of position (sensitive to Dn) and the
amplitude (sensitive both to Dn and En) of the Coulomb
peak. This strictly limits the freedom of the parameters’
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FIG. 5. (color online) How to determine the transverse magnetic anisotropy constant E of an individual SMM from its
transport characteristics: The position (a)-(b) and amplitude (c)-(f) of the Coulomb peak are shown for different values of the
parameters D and E of the SMM model with SN = 5 and SN+1 = 9/2 for T = 1.8 K. Note that we employ the assumption
for the Fe4 molecule from the main text, that is D = DN = DN+1/1.2 and E = EN with EN/EN+1 = DN/DN+1, and a
relatively large value of E/D (red lines) is used for clear illustration of the effects under discussion. In panels (a,c,e) the external
magnetic field B is oriented along the SMM’s hard axis x [see inset in (c)], whereas in panels (b,d,f) the field is parallel to
the medium axis y [see inset in (d)]. In panel (g) we present how temperature affects the occurrence of characteristic peaks
associated with the presence of transverse magnetic anisotropy for B along the hard axis x – for further details see Fig. 16.
To make the discussion complete, in panel (h) we show analogous dependencies but in the case when the field lies along the
medium axis y. Finally, the frame at the bottom contains a schematic summary of the procedure leading to estimation of E:
(i) Using the analysis of the Coulomb peak position, find Dn and adjust the magnetic field B so that it is contained in the
hard plane, i.e., the plane perpendicular to the easy axis z. (ii) Rotating systematically the magnetic field B in the hard plane,
analyze the Coulomb peak amplitude to find the direction of the molecule’s hard axis. This will be characterized by occurrence
of additional peaks in the amplitude, whose field-position allows for estimating En. (iii) If no local maxima in the amplitude
can be seen, adjust (try increasing) the temperature.

choice, basically leaving En to be determined from the
field value at which the maximum amplitude is acquired.
For instance, making the parameters Dn smaller by 25%
than the one used above (given the fixed experimental
temperature T = 1.8 K), while assuming En = 0, may

also produce a maximum, see green lines in Figs. 5(c)-(f).
However, not only does it result in peak positions at com-
pletely wrong magnetic fields [cf. position of green and
red arrows in Fig. 5(e)], but also the amplitude shape
remain unaltered upon changing the orientation of the
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field in the hard plane [cf. red and green lines between
Figs. 5(e) and (f)]. This restriction, combined with the
sensitivity of the qualitative curve shape of the conduc-
tance to the parameters is advantageous for extracting
the anisotropy parameters of SMMs in situ.

VI. CONCLUSIONS

In conclusion, we have proposed a new method of prob-
ing the transverse magnetic anisotropy of an individ-
ual SMM embedded in a three-terminal device. It ex-
ploits the information contained in the spin states of the
molecule through the analysis of the magnetic field evolu-
tion of the linear conductance amplitude Gmax. We found
that the evolution of Gmax in a magnetic field could only
be reproduced when including a sufficient number of ex-
cited states. Estimates for the transverse anisotropy of
the Fe4 SMM yield E ≈ 0.17D = 9.5 µeV, a value of
E significantly larger than the observed bulk/monolayer
values. This is expected for a molecule captured in the
low symmetry environment of a transport junction. Im-
portantly, the technique does not rely on the small in-
duced tunneling effects and hence works well at temper-
atures by far exceeding the tunnel splittings and even
E itself. Our measurements find larger modulation of
Gmax than calculated and the origin of this enhancement
requires further study. This method may facilitate the
detection of in-situ mechanical tuning3 or excitation35,36

of magnetic anisotropy of a single molecule.
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Appendix A: Materials and experimental method

1. Details of the Fe4 single-molecule magnet:

We used an Fe4 SMM with formula
[Fe4(L)2(dpm)6]·Et2O where Hdpm is 2,2,6,6-
tetramethyl-heptan-3,5-dione and H3L is the tripodal
ligand 2-hydroxymethyl-2-phenylpropane-1,3-diol, which
carries a phenyl substituent.20 In the bulk phase, the
crystallographic symmetry is C2.

20 The magnetic core
of the Fe4 SMM is made of 4 Fe3+ ions (each with
spin s = 5/2) as illustrated in Fig. 6(a). The antiferro-
magnetic exchange interaction between the central and
peripheral ions yields a large molecular spin SN = 5
in the ground state. Magnetic anisotropy due to the
interaction with the crystal field lifts the degeneracy

C2

z

Fe
O
C

(c)

z

easy

axis

(b)(a)

ZFS

C2

FIG. 6. (color online) Details of the Fe4 single-molecule
magnet: (a) Sketch of the magnetic core of the Fe4 SMM. (b)
Ground-state spin multiplet (SN = 5) of the Fe4 SMM in a
neutral charge state N – for further explanation see App. B 2.
(c) Depiction of the Fe4 SMM illustrating the orientation of
the phenyl rings [omitted in (a)] that terminate the molecule.
Note that both in (a) and (c) hydrogen atoms are disregarded
for clarity.

of the spin multiplet into five doublets and one singlet
that are distributed over an energy barrier as shown
in Fig. 6(b) – for further discussion see App. B 2. The
height of the barrier, which hinders the spin reversal, is
given by U = D(SN )2, where D is the uniaxial magnetic
anisotropy parameter. In the case of bulk Fe4 the height
is U=1.4 meV.20 The ‘zero-field splitting’ (ZFS), defined
as the energy difference between the two lowest-lying
doublets (MN = ±5 and MN = ±4) is 0.5 meV. The
low symmetry of the molecule induces a transverse
magnetic anisotropy E that, in bulk, is E = 2.85 µeV
from EPR measurements.20 Finally, we note that the
molecule contains two axial tripodal ligands L3− which
hold the core together and six peripheral dpm− ligands
that create an hydrophobic envelope, see Fig. 6(c).

2. Details on the fabrication methods of the

three-terminal junctions

The three-terminal junctions are fabricated on a silicon
substrate covered by 280 nm of SiO2. The schematics of
the fabrication process is described in Fig. 7(a). The gate
electrode is fabricated by e-beam lithography and subse-
quent e-beam deposition of Al. In the next step, the
oxidation of the gate in a controlled oxygen atmosphere
produces a dielectric coating layer of 2-3 nm of Al2O3.
The source and drain electrodes are fabricated by self-
breaking, controlled electromigration of a Au nanobridge
deposited by e-beam lithography on top of the oxidized
gate. The self-breaking technique prevents the formation
of gold nano-grains in the junction that could mimic the
behavior of a molecule. Figure 7(b) shows a scanning
electron microscope image of a device before electromi-
gration.

The molecules are deposited onto the chip by drop
casting a 10−4 M solution in toluene into a liquid cell
containing the chip with the junctions. The electromi-
gration of the bridge and subsequent self-breaking are
carried out in solution to maximize the yield of junctions
with a molecule.
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I. Si/SiO2 substrate V. Au contact pads deposition(a)

Al/Al2O3 gate

Au drain Si/SiO2

Au source

(b)

FIG. 7. (color online) Three-terminal-junction fabrication:
(a) Schematics of the three-terminal-device fabrication pro-
cess. (b) Scanning electron microscope (SEM) image of a real
three-terminal device before electromigration.

3. Details on the gate-voltage ‘position’

spectroscopy

The molecule-electrode coupling Γ is estimated from
the broadening of the Coulomb edge at low bias. In par-
ticular, the full-width at half-maximum (FWHM) of the
Coulomb peak is used for this purpose. We find 1.6 meV,
2.0 meV and 1.4 meV for samples A, B and C respec-
tively. Note, however, that these values are an upper
limit for Γ since we cannot resolve the presence of ad-
ditional components for the broadening such as thermal
energy or the contribution of other molecular levels very
close in energy.

Figure 8 shows the Coulomb peak (CP) position in gate
voltage Vg as a function of the magnetic field for the sam-
ples A, B and C described in the main text. The values of
Vg are multiplied by the gate coupling β to obtain energy
units (∆ε) and subsequently re-scaled to make ∆ε = 0
for B = 0. The non-linearity of the field dependence is
a clear signature of the magnetic anisotropy as described
in the text (see also Ref. [24]). Moreover, the low-field
‘flatness’ of ∆ε observed in Figs. 8(a)-(c) is indicative of
a high value of θ in contrast with Fig. 8(d). The solid
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FIG. 8. (color online) Coulomb peak position gate-voltage
spectroscopy: The shift of the Coulomb peak position due to
magnetic field for samples A, B and C. The solid lines are fits
to ε0N+1 − ε0N , calculated from the giant-spin Hamiltonian,
Eqs. (1)-(2). From the fit we get the following values – for
sample A in (a): DN+1 = 61 µeV , θN = 87◦ and θN+1 = 86◦;
for sample B in (b): DN+1 = 65 µeV, θN = 86◦ and θN+1 =
84◦; for sample C: in (c) θN = 87◦ and θN+1 = 85◦, whereas
in (d) θN = 63◦ and θN+1 = 62◦, with DN+1 = 68 µeV in
both cases. We note that the evolution of the Coulomb peak
position in magnetic field, and not Gmax, for samples A and
C was previously analyzed in Ref. [24]. Also note that in
the fitting for sample A we included E/D = 0.2 and φ = 0◦

obtained in Fig. 2.

lines in Fig. 8 are a fit of the data to ∆ε = ε0N+1 − ε0N as
defined by the giant-spin Hamiltonian, Eqs. (1)-(2), and
also discussed in detail in App. B 1. The CP position
is mainly insensitive to E (see also Supporting Informa-
tion of Ref. [24]), and therefore we can independently
extract the parameters D and θ related to the uniaxial
anisotropy. Note that we fix the value of DN (neutral
state) to the bulk value DN = 56 µeV and thus the free
parameters are DN+1, θN and θN+1. See the caption of
Fig. 8 for the fitting values of these parameters.

4. Statistics and effect of the magnetic field

polarity

We measured around 200 electromigrated junctions
from which 17 showed molecular signatures. A total of
9 molecular junctions displayed a clear Coulomb peak
suitable for further analysis by means of the gate-voltage
spectroscopy method, from which the junctions were
proven to exhibit magnetic anisotropy. Importantly, all
these junctions displayed a modulation of the peak ampli-
tude Gmax as a function of the magnetic field. A total of 6
of these samples could be rotated or were close to θ = 90◦.
From those, one sample was close to φ = 0◦ (hard axis),
and it is referred to as sample A. Figure 9 shows the
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FIG. 9. (color online) Statistics: differential-conductance maps, dI/dVb, shown as a function of gate Vg and bias Vb voltages
together with corresponding dependencies of the Coulomb peak amplitude Gmax on magnetic field B for six different Fe4
molecular junctions. Top panel [(a)-(c)]: Junctions for which gate-voltage spectroscopy fits of the Coulomb peak position (not
shown) indicate θ < 60◦. Bottom panel [(d)-(f)]: Junctions where θ ≈ 90◦ is found. The shape of the field modulation of
Gmax implies that for (d) and (e) the field is close to the intermediate axis (φ ≈ 90◦), whereas for (f) it is most likely in an
intermediate φ angle in the hard plane.

differential-conductance maps, dI/dVb, and correspond-
ing magnetic field evolutions of Gmax for different Fe4
molecular junctions, that is other than samples A, B and
C discussed in the main text. The top panel [(a)-(c)] of
Fig. 9 presents samples for which the gate spectroscopy
yields low values of θ. Worthy of note is that for |B| < 4
T a decrease of Gmax is observed with increasing |B|. On
the other hand, the bottom panel [(d)-(f)] of Fig. 9 shows
examples where θ ≈ 90◦ (i.e., close the the hard plane).

The shape of Gmax for (d) and (e) indicates that the
magnetic field is close to the intermediate axis (φ ≈ 90◦),
which follows from the analysis carried out in the main
text. For the last sample, Fig. 9(f), the field is most likely
at an intermediate angle φ in the hard plane.

In order to discard the influence of universal conduc-
tance fluctuations induced by the magnetic field in the
measurements, in Fig. 10 we plot Gmax as a function
of B for the samples shown in Figs. 2(a)-(b) for both
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samples discussed in the main text, cf. Fig. 2(a)-(b), show-
ing that the curves are symmetric upon reversal of the field
polarity.
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FIG. 11. (color online) Co-tunneling background: differ-
ential conductance, dI/dVb, measured as a function of mag-
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Vb = −12 mV and (b) Vg = −1.71 V and Vb = −10.5 mV,
which correspond to the co-tunneling background in the left-
hand charge state of Sample A, cf. Fig. 1(c).

positive and negative polarities of magnetic field. We
note that the main features, like the minima or maxima
around 4 T, are reproducible under inversion of the field
polarity. Universal conductance fluctuations are not ex-
pected to be symmetric by changing the B polarity. Some
additional symmetric structure appears also in the mea-
surements. The analysis of this smaller contribution is
interesting but beyond the scope of this work.

If present, conductance fluctuations would equally ap-
pear in the zero-bias and the higher bias conductance.
Therefore, in order to rule out their presence, we have
analyzed the magneto-resistance at higher biases and dif-
ferent gate voltages. Figure 11 shows differential con-
ductance, dI/dVb, as a function of B measured at two
different and fixed gate Vg and bias Vb voltages in the
Coulomb blockade in Sample A. We observe an almost
flat response of dI/dVb with peak-to-peak variation of
the order of 0.1 nS. This magnitude is not comparable to
the modulations we attribute to the presence of the trans-
verse anisotropy. Moreover, note that these two spectra
are not symmetric by reversing the magnetic field polar-
ity. Thus, we conclude that the universal conductance
fluctuations are not significant in our measurements.

Appendix B: Theoretical modelling

1. Charge-dependent, giant-spin-based model of an

single-molecule magnet

The central element of the theoretical description of
the gate-spectroscopy technique is a proper choice of the
model capturing essential features of an SMM. As intro-
duced in the main article, the molecule is represented
by a model based on two giant-spin Hamiltonians.1,37,38

This allows us to take into account the fact that by tun-
ing a gate voltage Vg the molecule can be switched be-
tween two different charge states,5 referred to as a neu-

tral (N) and charged (N + 1) one. In general, each of
this states can be characterized not only by different val-
ues of molecular ground-state spin (SN and SN+1), but
also uniaxial (DN and DN+1) and transverse (EN and
EN+1) magnetic anisotropy constants. Using the spin

raising/lowering operators Ŝ±
n , the Hamiltonian of an

SMM in the charge state n and subject to an arbitrarily
oriented external magnetic field B takes the form given
by Eqs. (1)-(2) and the Zeeman term explicitly given by

ĤZ
n = gµBB

[1

2
Ŝ+
n sin θ e−iφ

+
1

2
Ŝ−
n sin θ eiφ + Ŝz

n cos θ
]

, (B1)

with the angles θ and φ defined as illustrated in Fig-
ure 1b. Noteworthily, by keeping the same value of θ
and φ for both charge states, we implicitly assume that
the orientation of the molecule’s principle axes set by
magnetic anisotropy is not affected by charging. This as-
sumption not necessarily holds for real systems as shown
in Refs. [24] and [5]. However, since the tilting, if ob-
served, usually does not exceed few degrees, we do not
include such an effect into the present considerations.

2. How does magnetic anisotropy affect the energy

spectrum of a large spin?

Before we analyze how electronic transport probes the
transverse magnetic anisotropy of a molecule, it may be
instructive first to discuss the consequences of the trans-
verse magnetic anisotropy and external magnetic field for
the SMM’s energy spectrum.

To begin with, as long as the transverse magnetic
anisotropy is vanishingly small the system can be de-
scribed simply by the first term of the Hamiltonian (2).

As a result, the eigenvalues Mn of the spin operator Ŝz
n

become good quantum numbers for labelling the eigen-

states of ĤSMM,n = −Dn

(

Ŝz
n

)2
, that is ĤSMM,n|Mn〉 =

−DnM
2
n|Mn〉. For Dn > 0 the energy spectrum of

an SMM takes the form of an inverted parabola with
an energy barrier of height ∼ DnS

2
n for spin reversal,

which basically corresponds to the indirect transition
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FIG. 12. (color online) Effect of magnetic anisotropy on the energy spectrum of SMM: Top/Bottom panel [(a,c,e)/(b,d,f)]
illustrates the case of a integer/half-integer value of a molecular spin. In particular, we use the values of spin known for a Fe4
SMM, SN = 5 for a neutral molecule and SN+1 = 9/2 for a charged one.5 (a)-(b) In the presence of exclusively uniaxial magnetic
anisotropy D > 0 (and without magnetic field, B = 0) an energy barrier protecting the molecule’s spin against reversal between
two opposite, energetically degenerate, orientations arises. The excitation between the ground state doublet and the first excited
doublet is then commonly referred to as the ‘zero-field splitting’ (ZFS). (c)-(d) If additionally the transverse component of
magnetic anisotropy occurs, it allows for mixing of pure Sz-states. Each new eigenstate is then formed from Sz-states belonging
to one of two uncoupled, time-reversed sets, as schematically marked by two different colors. As follows from the Kramers
theorem, for SN = 5 the transverse magnetic anisotropy introduces tunnel-splittings ∆, whereas for SN+1 = 9/2 all states
remain doubly degenerate. (e)-(f) A characteristic feature of such anisotropic, large spins is that when an external magnetic
field B is applied along the system’s hard axis, one observes periodic changes of the tunnel-splittings.1,14 Other parameters
assumed in the calculations: DN = 56 µeV, DN+1 = 68 µeV, and EN/DN = EN+1/DN+1 = 0.3.

between the ground states | − Sn〉 and |Sn〉 by climb-
ing the barrier via the intermediate states |Mn〉 (for
Mn = −Sn + 1, . . . , Sn − 1), see Figs. 12(a)-(b). Im-
portantly, the excitation energy between the ground state
|±Sn〉 and the first excited state |±Sn∓1〉, the so-called
‘zero-field splitting’ ZFS = (2Sn − 1)Dn, sets the thresh-
old energy scale for the reversal process to take place.
Note that transition energies between neighboring ex-
cited states |Mn〉 and |M ′

n〉 with
∣

∣Mn−M ′
n

∣

∣ = 1 are char-
acterized by energies (2Mn − 1)Dn (for 0 < Mn < Sn)
that are smaller than the ZFS, and these states remain
generally unpopulated until the ground-to-first excited
state transition becomes energetically permitted. This
bottleneck behavior manifest then in electronic trans-
port through an SMM, where it can be observed as a
step-like feature in the conductance only at bias voltages
Vb = ±ZFS/|e|.5,13

The relatively simple picture presented above is not
valid, however, if the transverse magnetic anisotropy
(or an external magnetic field perpendicular to the
molecule’s easy axis) is significant. When E 6= 0, the
second term of the Hamiltonian (2) breaks the system’s
rotational symmetry around the easy axis z, so that Mn

is no longer a good quantum number. In fact, each of the

2Sn+1 eigenstates of Ĥn = −Dn

(

Ŝz
n

)2
+(En/2)

[(

Ŝ+
n

)2
+

(

Ŝ−
n

)2]
is now a linear combination of the eigenstates

|Mn〉, which, in turn, underlies the origin of the quan-
tum tunneling of magnetization.12 In particular, each of
these eigenstates is formed from states |Mn〉 belonging
to one of two uncoupled, time-reversed sets, as shown
in Figs. 12(c)-(d). For an integer spin Sn, the trans-
verse magnetic anisotropy leads to splitting of energy lev-
els, usually referred to as ‘tunnel-splittings’, Fig. 12(c),
whereas for a half-integer spin Sn (in the absence of mag-
netic field) according to the Kramers theorem each en-
ergy level is doubly degenerate, Fig. 12(d). Interestingly,
if one applies an external magnetic field in the direc-
tion perpendicular to the system’s easy axis z, periodic
changes of these tunnel-splittings can be observed if the
field is oriented along or close the hard axis x, Figs. 12(e)-
(f), and they disappear as the field gets rotated towards
the direction of the medium axis y.1,12,14

3. Transport in the SET regime

For a weak tunnel-coupling between an SMM and elec-
trodes, transport in the single electron tunneling (SET)
regime can be considered in the leading-order perturba-
tive approach (Fermi golden rule combined with a master
equation).16,28,29

We describe metallic, nonmagnetic electrodes [q =
(L)eft, (R)ight] as reservoirs of noninteracting electrons,
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whose tunneling processes to/from a molecule are mod-
elled by the following Hamiltonian

Ĥtun =
∑

qklσ

tql d̂
†
lσâ

q
kσ + H.c.

=
∑

qkσ

∑

aNbN+1

T σq
aN+1bN

|aN+1〉〈bN |âqkσ + H.c. (B2)

with

T σq
aN+1bN

=
∑

l

tql 〈aN+1|d̂
†
lσ |bN〉, (B3)

where tql is the tunneling matrix element, d̂†lσ represents
creation of an electron with spin σ in the molecular or-
bital l, and âqkσ denotes the annihilation operator for
the qth electrode with k standing for an orbital quan-
tum number. Note that the molecular state has been
expanded in the basis of eigenvectors |aN+1〉 and |bN 〉

of ĤSMM =
∑

n=N,N+1 ĤSMM,n. Next, we express the

molecular eigenstates |aN 〉 and |bN+1〉 with respect to the
basis of angular momentum (spin) eigenstates. In prin-
ciple, an arbitrary molecular state can be decomposed as
|χn〉 =

∑

SnMn
χSnMn

|SnMn〉. As a result, one obtains

T σq
aN+1bN

=
∑

l

∑

SN+1MN+1

∑

SNMN

tql a
∗
SN+1MN+1

bSNMN

× 〈SN+1MN+1|d
†
lσ |SNMN〉. (B4)

The key problem one encounters when analyzing the

above equation is that the operator d̂†lσ involves two de-
grees of freedom, namely, the orbital one (l) and the spin
one (σ). Consequently, it may seem that in the next step

we need to calculate 〈SN+1MN+1|d̂
†
lσ |SNMN〉 explicitly.

This complication, however, can be avoided by making
use of the the Wigner-Eckart theorem,39 which basically
allows for finding matrix elements of an operator with
respect to angular momentum eigenstates,

〈SN+1MN+1|d̂
†
lσ|SNMN 〉 = 〈SN ,MN ; 1

2 , σ|SN+1,MN+1〉

× 〈SN+1||d̂
†
l ||SN 〉. (B5)

The first factor of the RHS is a Clebsch-Gordan coeffi-
cient for adding spins SN and 1/2 to get SN+1. This
depends only on how the system is oriented with respect
ot the z axis. On the other hand, the second factor, the
so-called reduced matrix element, remains independent of
the spatial orientation, as it does not contain the mag-
netic quantum numbers MN , MN+1 or σ. Thus, we get

T σq
aN+1bN

=
∑

SNSN+1

T σ
aN+1bNT

q
SN+1SN

, (B6)

with

T σ
aN+1bN =

∑

MNMN+1

a∗SN+1MN+1
bSNMN

× 〈SN ,MN ; 1
2 , σ|SN+1,MN+1〉, (B7)

and the term T
q
SN+1SN

=
∑

l t
q
l 〈SN+1||d̂

†
l ||SN 〉 regarded

in calculations as a single free parameter to be adjusted
for each electrode. Specifically, assuming a symmetric
coupling between the molecule and two identical elec-
trodes (tLl = tRl ), the tunnel coupling takes the from

ΓL = ΓR = Γ/2, where Γ = 2πρ
∣

∣TSN+1SN

∣

∣

2
and ρ de-

notes the constant, spin-independent density of states in
electrodes.

The stationary current I flowing through a molecule is
calculated as I = (IL − IR)/2, where Iq (for q = L,R)
stands for the current flowing from the qth electrode to
the molecule,

Iq =
eΓ

2~

∑

nn′

∑

a
n
b
n′

(n′ − n)fq(∆εb
n′,an

)

×
∑

σ∈q

∣

∣T σ
b
n′,an

∣

∣

2
Pa

n
. (B8)

where ∆εb,a = εb − εa, and fq(ω) = (1 + exp[(ω −
µq)/(kBT )])

−1 is the Fermi-Dirac function of the qth
electrode, with T and µL(R) = µ0 ± eVb/2 standing for
temperature and the relevant electrochemical potential,
respectively. The probabilities Pan

of finding an SMM
in a specific state |an〉 are then derived from a station-
ary master equation.16 Finally, since SMMs are typically
characterized by long spin coherence and spin relaxation
times as a result of a weak spin-orbit and hyperfine cou-
pling to the environment,2,40,41 we neglect relaxation of
the spin states due to processes other than due to the
electron tunneling.

In Fig. 3(d), and also in Figs. 13–16, we present the
current Ir = (IrL − IrR)/2 which includes first r lowest-in-
energy states in the spin multiplet of each charge state.
We use this to show that many excited states in both
charge state have to be taken into account in order to
describe current correctly. We define Irq in the following
way

Irq =
eΓ

2~

∑

nn′

∑

b
n′

r
∑′

a
n

(n′ − n)fq(∆εb
n′,an

)

×
∑

σ∈q

∣

∣T σ
b
n′,an

∣

∣

2
Pa

n
, (B9)

with
r

∑′

a
n

denoting summation over states |an〉 in the

charge state n that is limited only to first r states of
lowest energy.

4. Signatures of the transverse anisotropy

parameter E without the Berry phase oscillations

In Figs. 2(a) and 3 we discuss the initial increase of
the current with magnetic field followed by a decrease.
The key insight of our calculations using the method de-
scribed in the previous section (App. B 3) is that the
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mechanism for this effect is significantly enhanced and
modified for E 6= 0 giving rise to the characteristic Gmax

curves shown in Fig. 2. Since this is at the basis of our
scheme of detection, it deserves a further comment. In
particular, the relation to the Berry phase oscillations
which underlay most of the previously used techniques
for determining the parameter E.

(i) Upon increase of E the minima of the transition-
energy curves are shifted to higher field values and
the value achieved at the minimum is lowered, cf.
Fig. 3(c) with Fig. 13(e)-(h). For a fixed temper-
ature, this leads to a more pronounced maximum
conductance attained at a higher field value.

(ii) Generally, the transition energies in Fig. 3(c) show
sharp features (i.e., oscillations below B = 2 T)
due to Berry-phase interference on which several
techniques for extracting E rely – by analyzing the
field dependence of the tunnel splitting between two
selected states.1,12,14,19 However, the detection of
such behavior in the conductance requires very spe-

cific low temperature conditions. This is in contrast
to the present experimental conditions where these
Berry-phase features are averaged out when taking
into account multiple accessible states. This leaves
only the large scale, collective variations of the tran-
sition energy spectrum caused by E which as we
have shown suffice for estimation of E. In Fig. 3(d)
we illustrate the importance of taking into account
many excited states for both charge states to de-
scribe current correctly.

(iii) Finally, Fig. 2(c) shows the relative CP amplitude
for increasing E/D. A qualitative distinction from
the E ≪ D limit is the appearance of an additional
shoulder close to B = 6 T. It is tempting to see
such a shoulder in the sample A curve of Fig. 2(a),
although the sample B curve exhibits features of
similar size where it should theoretically be smooth.
In summary, the calculations certainly show that a
sizeable E term leads to fingerprints in the linear
conductance as clear as those for the D term, even
for relatively high temperatures.
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T = 1.8 K
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FIG. 13. (color online) Signatures of the transverse magnetic anisotropy in electronic transport (magnetic field along the
hard axis, θ = 90◦ and φ = 0◦): Analogous to Figs. 3(b)-(d) with each column corresponding now to a different value of
E/D: (a)-(d) Occupation probabilities for several lowest-in-energy states in the spin multiplets for N and N + 1 at T = 1.8

K; (e)-(h) Transition energies εkN+1 − εk
′

N relevant for the SET processes at the Coulomb resonance (i.e., ε0N+1 = ε0N is restored
for each B by tuning Vg) for k, k′ 6 4. Different colors of lines are used to distinguish groups of transitions with respect to
possible combinations of indices k and k′ (see the discussion regarding Figs. 3(c) and 4); (i)-(l) energies εkn for n = N,N + 1
at the Coulomb resonance – observe that the curves for k = 0 overlap; (m)-(p) Dependence of the current on the number of
spin-multiplet states r included from each charge state. The left/right most column represents the case of absent/significant
transverse magnetic anisotropy. Importantly, each column shows a detailed analysis of selected conductance curves from
Fig. 2(c). We note that transition-energy lines in (e)-(h) can be easily identified with the use of Fig. 4(a). It can be seen that
increasing E/D results in shifting the minima of the transition-energy curves in (e)-(h) towards higher values of the field. Such
a behavior, in turn, affects the occupation probabilities (a)-(d), so that the probability of finding an SMM either in the ground
(k = 0) or first excited (k = 1) state for both charge states N and N+1 remain equal for a larger magnetic-field range (compare
the outermost columns). Recall that the position of the Coulomb peak is fixed mostly by D, see Fig. 8.
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FIG. 14. (color online) Signatures of the transverse magnetic anisotropy in electronic transport (magnetic field along the
medium axis, θ = 90◦ and φ = 90◦): Generally, this figure is analogous to Fig. 13 except that now the external magnetic field
is rotated to align with the molecule’s intermediate (y) axis. To begin with, we note that the results shown in the leftmost
column (i.e. for E/D = 0) are identical to those in the leftmost column of Fig. 13, which is the manifestation of the molecule’s
rotational symmetry about the easy (z) axis in the absence of transverse component of magnetic anisotropy. Unlike for the case
of φ = 0◦, the consequence of the increase of E/D is the displacement of the transition-energy curves minima (e)-(h) towards
smaller values of the field. Interestingly enough, in the situation under discussion one thus observes a more abrupt decrease of
the current [see dashed lines in (m)-(p)] for larger E/D occurring at smaller values of B.
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FIG. 15. (color online) Dependence of transport signatures of the transverse anisotropy on the orientation of magnetic field
in the hard plane (θ = 90◦) for E/D = 0.17: Analogous to Figs. 3(b)-(e) of the main article with each column corresponding
now to a different value of φ. Note that the case of φ = 0◦ is presented in Figs. 3(b)-(e) of the main article. Furthermore, here
each column shows a detailed analysis of selected conductance curves from Fig. 2(d) of the main article.
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FIG. 16. (color online) Evolution of the Coulomb peak amplitude in the absence of transverse magnetic anisotropy (E = 0):
This figure serves to illustrate the fact that even if the transverse magnetic anisotropy is absent, by making the uniaxial
magnetic anisotropy parameter D smaller (keeping a fixed temperature) one can eventually also produce a maximum as for
E 6= 0. However, this maximum occurs at a completely different (smaller) value of magnetic field. Moreover, the shape of
Gmax(B) remains invariant under rotation of the field in the hard plane, this is when the angle φ is varied. None of these are
the case in the experiment under discussion. (a)-(b) Dependence of Gmax(B) on the value of the uniaxial magnetic anisotropy
parameter D ≡ DN (and DN+1 = 1.2D) for an external magnetic field applied along the molecule’s hard axis (θ = 90◦ and
φ = 0◦). A detailed analysis of selected curves from (a)-(b) is carried out in (c)-(s), with each column corresponding to the
indicated value of D.
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