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ABSTRACT: As the isotopic concentration of ultrathin graphite is varied from natural abundance to 

nearly pure 13C, the thermal conductivity displays a slight dependence on the isotope concentration 

at temperatures near its maximum, ~150 K. The strength of phonon-isotope scattering in the high 

isotope impurity concentration regime is found to be well below that given by a commonly-used 

incoherent and independent isotope impurity scattering model. This finding is in agreement with 

some recent theoretical predictions that coherent multiple scattering of phonons are important in the 

measured thermal conductivity of low-dimensional materials in the high isotope impurity 

concentration regime. 
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INTRODUCTION 

Phonon scattering by isotopic impurities is an important mechanism for manipulating the 

thermal conductivity, κ, of high κ materials that are actively investigated for thermal management 

applications [1, 2]. Experiments on three-dimensional (3D) cubic crystals including diamond, 

silicon, and germanium [3-5] have shown that isotopic impurities considerably suppress the thermal 

conductivity at intermediate temperatures near the peak in κ. Two-dimensional (2D) hexagonal 

layered structures, such as single-layer graphene [6] and h-BN [7, 8], as well as quasi-2D bulk 

graphite [9, 10] and h-BN [11], are known to possess high in-plane κ due to large crystallite sizes, 

light atomic masses, and strong interatomic bonding in the basal plane. Isotope impurity scattering in 

the low concentration, independent scattering regime [12] is relatively well understood for both 3D 

[13] and 2D [14, 15] cases, although there is still uncertainty in the exact scattering rate expression 

for quasi 2D graphite. In comparison, a number of coherent scattering phenomena have been 

predicted for isotope-impurity scattering in the high concentration regime [14, 16, 17], and remain to 

be better understood. In this regime, whether and how interference among the scattered lattice waves 

can play an important role in the measured thermal conductivity is one of the central topics in recent 

phonon transport investigations [16]. One issue in question is whether such wave interference can 

result in observable phonon localization phenomenon and a much stronger isotope scattering effect 

than that predicted by the incoherent, independent scattering theories [16]. In comparison, 

interference of scattered electromagnetic waves by particle agglomerates in the dependent, multiple 

scattering regime has been shown to result in smaller scattering cross section than that predicted by 

the independent scattering theory [18-20]. Although it has also been predicted that multiple 

scattering of phonons in one-dimensional nanotubes [16] can result in weaker phonon-isotope 

scattering than that calculated with such wave interference effect ignored, it is unclear whether such 

an effect is important in existing measured thermal conductivity results of nanotubes [21], graphene 

[22], diamond [3], and germanium [4] with high isotope impurity concentrations. Clarifying this 

question is essential not only for correctly evaluating the impact of phonon isotope scattering on 

thermal conductivity, but also for developing the currently lacking knowledge in coherent phonon 
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transport phenomena, the study of which has recently been limited mainly to thin film superlattice 

structures [23, 24]. 

Here we report a study of the effects of isotope impurity scattering on the measured thermal 

conductivity of high-quality ultrathin graphite (UG) samples with both low and high isotope 

impurity concentrations. The peak thermal conductivity of the UG samples occurs at a temperature 

close to 150 K, and is reduced in a UG sample with about 50 at.% 13C and 50 at.% 12C compared to 

two other UG samples with 1.1 and 99.2 at.% 13C, respectively. However, our analysis suggests that 

the reduction is well below those predicted by an independent, incoherent isotope scattering model 

derived from perturbation theory, although the phonon dispersion of the isotopically disordered 

graphite can still be obtained from the virtual crystal approximation with the use of an average mass. 

Such discrepancy is in agreement with recent theoretical predictions of the effects of multiple 

scattering of phonons by high-concentration isotope impurities in low-dimensional systems. 

EXPERIMENTAL METHODS AND RESULTS 

The UG was synthesized with chemical vapor deposition (CVD) on the surface of 

commercially available nickel foams as discussed in [25]. The isotopic concentration of each 

obtained ultrathin graphite foam (UGF) was controlled through the methane source: (i) 1.1 at.% 13C 

UGF used methane with the naturally occurring isotopic concentration (98.9 at.% 12C), (ii) 50.2 at.% 

13C UGF used equal partial pressures of natural methane and isotopically enriched 13C methane (99.2 

at.% 13C), and (iii) 99.2 at.% 13C UGF used isotopically enriched 13C methane. The nickel was 

etched using (NH4)2S2O8 (1 M) at 80°C for about one week followed by HNO3 (0.5 M) at 80°C for 

about three days. In order to clearly observe the isotopic effect on thermal conductivity, the sample 

should possess high crystalline quality so as to minimize phonon scattering by defects and grain 

boundaries. We therefore performed post-synthesis annealing of the UGF at 3000oC for 1 hour in 

argon at positive pressure. A high resolution scanning electron microscope (SEM) was used to 

examine the condition of the UGF strut walls before and after annealing. X-ray diffraction (XRD) 

was conducted using the Cu Κα1 X-ray line, λ = 0.15408 nm. The unit cell parameters were 

measured to be a = b = 2.4675 Å and c = 6.7452 Å before annealing, and a = b = 2.4659 Å and c = 
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6.7370 Å after annealing. Based on SEM (Fig. 1) analysis, annealing the UGF had an observable 

effect on the surface morphology of the UG constituents, suggesting mesoscale ordering 

improvement in the highly-ordered as-grown material was achieved upon annealing. 

A high precision electronic balance was used to determine the mass density and volume 

fraction of the UGF. The mass densities of the UGF samples were (2.74±0.01)×10-2, 

(2.40±0.01)×10-2, and (2.67±0.01)×10-2 g cm-3 for 1.1%, 50.2%, and 99.2% 13C, respectively. Based 

on the measured mass density data, the corresponding volume fractions, φ, of the UGF in this work 

are 1.21±0.05, 1.06±0.05, and 1.19±0.06 vol.% for the samples with 1.1%, 50.2%, and 99.2% 13C, 

respectively. The φ values are comparable to those reported in other recent works [25, 26]. Based on 

the measured volume fraction and pore size, the wall thickness of the synthesized UG is estimated in 

the range between tens of nanometers to nearly micrometer scale. 

Compared to planar few-layer graphene or UG grown by CVD on a planar nickel substrate 

with a comparable layer thickness, the macroscopic size of the UGF structure used in this study 

allows it to be handled and measured relatively readily by an electro-thermal method over a large 

temperature range [25] (see Appendix A). The measured electrical resistance of the UGF, RUGF, is 

shown in Fig. 2 along with the electrical resistivities of the UGF, ρUGF, the UG within the UGF, ρUG, 

and the normalized change in electrical resistance with temperature of the UGF. The solid electrical 

resistivity of the UG strut walls was calculated using the foam theory of Lemlich [27], ρUG
 = (φ / 

3)ρUGF. We note that the room temperature ρUG of the 50.2 and 99.2 at.% 13C samples is 

approximately 15% higher and 14% lower than that of the 1.1 at.% 13C sample. Such small variation 

in the electrical resistivity can be caused by similar variations in the charge carrier concentration or 

mobility in the three samples. 

The effective thermal conductance of the UGF, GUGF, is shown in Fig. 3 and was obtained 

from the electrical resistance, RUGF, measured during electrical self-heating of the UGF by coupling 

a small AC current (~10-3 A) to the DC current and measuring the AC voltage drop using a lock-in 

amplifier. When the frequency of the AC current is sufficiently high compared to the thermal 

response of the sample [25, 28], the average temperature rise in the suspended UGF, θ , can be 
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obtained from the RUGF measured by the lock-in technique and the measured dRUGF/dT. GUGF can 

then be obtained using the following expression incorporating radiation heat loss from the sample 

surface [25, 29] 
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In the above equations, L is the suspended length of the sample, P = 2(w+t) and A = wt are the 

effective perimeter and cross-sectional area, respectively, w and t are the width and thickness, 

respectively, εUGF(T) is the temperature-dependent total hemispherical emissivity and was measured 

to be near unity [25], σ is the Stefan-Boltzmann constant, and T0 is the environment temperature. 

The measured thermal conductance data of the UGF samples suggests that the radiation loss is not 

negligible at high temperatures and if not accounted for can lead to overestimation of GUGF by 17–

21% at room temperature, but only contributes less than 5% to the total thermal conductance below 

200 K. With the radiation heat loss accounted for, the effective thermal conductivity of the UGF, 

κUGF, reached a maximum of 5.5±0.2, 4.3±0.2, and 5.4±0.3 Wm-1K-1 for 1.1%, and 50.2%, and 

99.2% 13C isotopic concentrations at ~150 K, respectively (Fig. 3).  

To determine the solid thermal conductivity, κUG, of the UG within the UGF, we use the 

approach of Schuetz & Glicksman [30] to obtain κUG
 = (3/φ)κUGF, which is shown in Fig. 4. The κUG 

of the UGF samples reached a maximum of 1375±85, 1209±86, and 1369±101 Wm-1K-1 for 1.1%, 

and 50.2%, and 99.2% 13C isotopic concentrations at ~150 K, respectively, illustrating a small effect 

of isotopic impurity scattering at temperatures near the peak in thermal conductivity. We note that 

the uncertainty expressed in the above solid thermal conductivity values is mainly due to the 

uncertainty in measured density and hence volume fraction, which is on the order of 4−5% and does 

not affect the observed temperature dependent trends. The variation of room temperature κUG was 

marginal and and comparable to the measurement uncerntainty, 880±54, 819±58, and 854±63 Wm-
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1K-1 for 1.1%, and 50.2%, and 99.2% 13C isotopic concentrations, respectively. Above room 

temperature, κUG is found to decrease rapidly with increasing temperature, suggesting phonon-

phonon scattering processes are dominant at this temperature range in the highly ordered crystalline 

materials. In addition, the solid thermal conductivity values for the three samples are nearly identical 

at temperatures below about 50 K, suggest that the grain sizes are similar for the three samples 

because grain-boundary scattering is expected to be the dominant mechanism in the low-temperature 

regime. 

In order to gain a better understanding of the phonon dynamics underlying the observed 

thermal conductivity results, the UGF samples were characterized with Raman spectroscopy at 

different laser excitation energies of 1.96 eV (632.8 nm), 2.41 eV (514.5 nm), and 2.54 eV (488.0 

nm). The Raman measurements were carried out after calibration to the first-order peak associated 

with scattering by the zone-center optical phonon polarization of crystalline Si (111) at ~520 cm-1 

[31, 32]. As shown in Fig. 5, other than the G peak associated with scattering by the longitudinal 

optical (LO) polarization at the Brillouin zone center [33], no other first order peaks (e.g. D peak) 

were detected for the UGF. As the D peak is associated with scattering between excited electrons 

and one in-plane transverse optical (iTO) phonon and one defect, the absence of the D peak in the 

Raman spectra reveals the high crystal quality of the CVD UGF samples. The measured Raman 

spectra contain second order peaks associated with double-resonance scattering by two LO phonons 

near the zone-center, by two iTO phonons near the zone-boundary, and by one iTO phonon and one 

longitudinal acoustic (LA) phonon near the zone-boundary [33-35]. While the first-order peaks are 

insensitive to excitation energy, these second order peaks shows aparent dependence on the laser 

exctiation energy, as shown in Fig. 5. Such dependence can be used to extract the phonon dispersion 

of the UGF samples with different isotope impurity concentrations, as discussed below. 

THEORETICAL ANALYSIS 

One critical question is on the effect of isotopic disorder on the phonon dispersion of the 

UGF samples. In particular, it is important to evaluate whether the phonon dispersion of the high-

isotope impurty concentraiton sample can still be described with the virtual crystal approximation 
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[36], where the system is approximated as a homogeneous crystal with a single average mass ( M ) 

of the actual crystal with isotope impurities. To address this question, we have first calculated the 

phonon dispersions for each isotopic concentration at which κUG is calculated, from pure 12C to pure 

13C, using the virtual crystal approximation and ab initio density functional perturbation theory 

(QUANTUM ESPRESSO) [37]. In accordance with a prior work [38], the phonon dispersion 

calculations were based on fixed lattice constants of a = 2.458 Å and c = 6.701 Å, the generalized 

gradient approximation, and a plane wave basis set with a wave function cutoff of 60 Ryd and a 

charge density cutoff of 600 Ryd, with ultrasoft pseudopotentials for carbon created by a RRKJ 

method. The plane wave self-consistent calculations were carried out on a k-point grid of 8×8×4. 

The interatomic force constants were calculated from dynamic matrices on a 5×5×4 Monkhorst-Pack 

q-vector phonon grid that allowed for determination of the phonon frequencies at arbitrary wave 

vectors q. As shown in Fig. 6, the obtained zone-boundary optical phonon frequency and sound 

velocities exhibit the expected M −1/2 dependence. In addition, it is worth noting that the specific 

heat calculated from the obtained dispersion for 50.2 and 99.2 at.% 13C is higher than that for pure 

12C at low temperature due to the reduced group velocity of the isotopically enriched material.  

In order to evalaute the accuracy of the phonon disperison calculated with the virtual crystal 

approxiamtion, the first- and second-order Raman peak positions obtained at different laser energies 

were analyzed according to an approach similar to those reported recently [33-35] to obtain the 

phonon energies at different phonon wave vectors. Instead of making the isotropic linear dispersion 

assumption at the Κ and Κ′ points, we obtained the excited and scattered electron wave vectors using 

ab initio electron band structure for graphite calculated by density functional theory [37] in a method 

similar to [38] (see Appendix B). In addition, the electron energy loss by phonon scattering is 

accounted for in our analysis, as explained in Appendix C. As shown in Fig. 7, the mapping of the 

measured 2LO, 2iTO, and iTO+LA Raman modes along Γ−Κ direction and the first order mode all 

match well with the ab initio phonon dispersion calculated with the virtual crystal approximation. 

The mapping of the measured 2iTO frequency along Κ−Μ is just somewhat lower than the ab initio 

phonon dispersion.  



 8 

We note that the virtual crystal approximation does not take into account the exact atomic 

positions of atomic impurities. However, the mass difference between 12C and 13C is small so that 

the calculated phonon dispersions for nearly pure 12C and 13C graphite are still rather similar. In 

addition, our measured Raman G peak and 2D peaks even for the 50% 13C graphite sample are still 

rather similar to those of low isotopic impurity concentrations. Moreover, the measured Raman peak 

positions for both near zone center and near zone boundary phonons clearly exhibit the M −1/2 

dependence predicted by the virtual crystal approximation (Fig. 5a,inset), in agreement with earlier 

measurements of graphene with different isotope concentrations [22, 39]. Hence, even the 50% 

impurity concentration sample can still be treated as a virtual crystal with clearly defined phonon 

dispersion of graphite, as supposed to a highly disordered system or amorphous solid. As such, the 

thermal conductivity of the isotopically disordered graphite samples should still be described by that 

established for crystals with well-defined lattice vibration modes, instead of with the Allen-Feldman 

diffusion model [40] for describing random walks of thermal energy in disordered or amorphous 

solids.  

Hence, we have analyzed the measurement results with a theoretical model for in-plane bulk 

graphite thermal conductivity based on the following solution to the Boltzmann transport equation 

under the relaxation time approximation [41] and with the use of the full phonon dispersion 

calculated for the entire Brillouin zone of graphite [42], 

 ( )∑∑∑
= ==

Δ
−

==
6

1 0

3
2

22
,2

B
3

26

1
UG

max

18 p

q

q
Tk

Tk

ppxp
p

p q
e

ev
Tk Bp

Bp

ω

ω

ωτ
π

κκ
h

h
h

, (2) 

where ħ and kB are the reduced Planck constant and Boltzmann constant, respectively, T  is the 

temperature, τ is the relaxation time, ω and q are the phonon angular frequency and wave vector, 

respectively, Δq3 is the volume of each element within the discretized Brillouin zone, and vx is the 

component of phonon group velocity (v) parallel to the transport direction. The subscript p denotes 

each of the six lowest-lying phonon polarizations of AB stacked graphite. The direct contribution of 

the six remaining optical modes to the thermal conductivity is expected to be small due to low 

occupation probability in the temperature range considered here as well as strong scattering of high-
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frequency modes [15]. This model does not include the Callaway term for correcting normal 

scattering [4, 5, 43], because such correction is found to be important only for highly pure, low-

defect samples and is deemed to be unnecessary for the polycrystalline samples with appreciable 

isotope impurity concentrations [4].  

To calculate the total relaxation times, τ, for each phonon polarization, we consider the 

contributions of phonon-boundary (τb), phonon-impurity (τi), and anharmonic phonon-phonon (τanh) 

scattering processes. These contributions are combined according to Matthiessen’s rule τ-1 = τb
-1 + τi

-1 

+ τanh
-1. Phonon-boundary scattering for a given mean free path for all polarizations, lb, is obtained as 

τb
-1 = |v|/lb. In the incoherent, independent scattering regime, phonon-isotope impurity scattering has 

been obtained according to a commonly used analytical model derived by Tamura [13], based on the 

original model of Klemens [12] and perturbation theory, and later refined by Lindsay et al. for 

graphene as [15]  

 ( )ωωτ DVBgi
2

02
1 =− ; ( )∑ −=

j
jj MMcg 2

2 1  (3) 

where g2 is the second order mass variance parameter, cj is the jth impurity concentration, jM  and 

M  are the jth impurity and average atomic masses in a crystal with mixed isotopes, respectively, V0
 

= 33/2ac–c
2δ/4 is the volume per atom, ac–c and δ are the carbon–carbon nearest neighbor distance and 

interlayer spacing, respectively, D(ω) is the polarization-specific phonon density of states, and B is a 

polarization-independent constant. The value of B has been derived as π/6 for a three-dimensional 

cubic crystal [13], and becomes π/4 and π/2 for the in-plane and flexural (out-of-plane) phonon 

polarizations of two-dimensional graphene [15]. 

Compared to the original model by Klemens [12], Tamura’s [13] and Lindsay et al.’s [15] 

models do not assume the Debye approximation, and allowed for the use of the actual phonon 

dispersion and density of states, which are calculated from first principles and incorporated into the 

isotope scattering model with a numerical approach in this work. The validity of these different 

versions of the Klemens model in the high-isotope impurity concentration regime is the focus of this 

work and examined in a subsequent section. 



 10 

 The umklapp phonon-phonon scattering rate is calculated according to the relaxation time 

approximation of Klemens & Pedraza [44] 

 
max

2

2
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B21 2
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ωγτ
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where γ is the polarization-specific Grüneisen parameter, Munit_cell is the mass of the graphite unit 

cell, and ωmax is the zone-boundary frequency for each phonon polarization [45]. The Grüneisen 

parameters in Eq. 4 are modeled as in [25], γ = aTn, where a and n are polarization-specific 

adjustable parameters made in observance of the wave vector dependence of γ reported in [38]. The 

calculated Grüneisen parameters for the out-of-plane transverse polarizations (oTA and oTO′ in Fig. 

8) and high-frequency optical polarizations are much larger in magnitude than for the in-plane 

transverse and longitudinal modes [38]. Consequently, Eq. 4 results in strong phonon-phonon 

scattering of these polarizations and the calculated κUG is dominated by the in-plane acoustic and 

low-lying optical (LA, iTA, LO′, and iTO′) polarizations in graphite. 

By fitting the theoretical model with the low-temperature experimental κUG, the phonon-

boundary scattering mean free path, lb, was found to be 3.83 μm for all samples. This value is 2.6 

times larger than lb for the un-annealed thick-layered samples reported in [25] and indicative of the 

beneficial effect of post-synthesis thermal treatment at 3000oC. Grüneisen parameters of 

γLA=γLO'=0.136T0.568 and γiTA=γiTO'=0.055T0.568 were used to match the calculation results with the 

high temperature thermal conductivity values for all samples. As shown in Fig. 4, while the 

calculated κUG values based on B=π/4 for the in-plane polarized modes fit well over the entire 

temperature range for the low-impurity-concentration regimes, this B value considerably over-

predicts the strength of isotope scattering in the 50% 13C sample compared to the experimental 

results. The isotope scattering strength needs to be reduced by nearly a factor of 2.75 by using 

B=π/11 for the in-plane polarized modes in order to match the calculation result to the measured κUG 

of the 50% 13C sample. At this reduced B value, the largest thermal conductivity reduction for 

isotopic impurity scattering with respect to pure 12C, about 19%, occurs for 50% 13C at a temperature 
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of ~125 K. For other temperatures, the maximum reduction of κ in comparison with isotopically 

pure 12C is about 18%, 14%, 8% and 6% at 100, 200, 300, and 400 K, respectively. 

In the above calculation, the RTA expressions of Klemens & Pedraza [44] yield negligible 

thermal conductivity contribution from the oTA branch. However, the oTA polarization dominates 

the specific heat at low temperatures. A recent first principle calculation by Lindsay et al. has 

suggested that the thermal conductivity contribution from the oTA branch in graphite is not as 

important as that in suspended graphene but is not negligible [15]. Hence, in addition to the above 

calculation for the limit of negligible oTA contribution to the thermal conductivity, we have adjusted 

the Grüneisen parameters for each polarization to obtain another limit where the relative contribution 

from the oTA polarization in graphite is as large as that calculated by Lindsay et al. for 5-layer 

graphene. In this case, while the independent isotope-scattering model can fit the measured thermal 

conductivity of the two low-isotope concentration samples, the isotope scattering rate needs to be 

reduced by a factor of 12.5 from the independent scattering model in order to fit the sample with 

50% 12C and 50% 13C, as shown in Appendix D.  

Hence, the two calculations for both negligible and significant oTA contributions suggest 

that the isotope scattering rate in the high-concentration sample is considerably smaller than that 

calculated by the independent scattering model. This discrepancy can be either caused by the 

inaccuracy in the calculation of the phonon-defect or phonon-phonon scattering, or suggest the 

failure of the independent isotope scattering model in the high isotope concentration regime. For 

example, the isotope effect is expected be small in samples with a high concentration of other point 

defects such as vacancies besides isotope impurity. However, such point defects are expected to 

yield an observable Raman D peak, which is absent for our samples. Another possibility is that the 

ignorance of the correction term for the normal processes in the two calculations results in an 

underestimation of the thermal conductivity contribution from the low-frequency, long wavelength 

phonons, which are not scattered much by isotope impurities. However, increasing the relative 

contribution from these low-frequency phonons is expected to alter the temperature dependence of 

the calculated thermal conductivity.     
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While it remains a question whether the discrepancy is caused by the inaccuracy in the 

phonon-defect and phonon-phonon scattering models used in the calculation, the discrepancy is in 

agreement with recent theoretical finding of lower isotope scattering rate in the high-concentration 

regime [16] than the independent scattering model [13]. In arriving at the independent scattering 

expression of Eq. 3 [13], Tamura assumed randomly distributed isotope impurities and dropped the 

phase factor and higher order variance parameter terms, ( )n

j
jjn MMcg ∑ −≡ 1 , in agreement with 

Klemen’s assumption that interference terms cancel in the average for randomly distributed defects 

[46]. Even at these high isotope concentrations, the difference between the atomic mass of any 

isotope from the average mass is still small, so that gn decrease rapidly with increasing n above 2. 

Tamura considered corrections due to higher order contributions to account for effects of wave 

interference due to multiple scattering by the same or different isotope sites [13], and concluded that 

such correction was negligibly small for the case of a Ge sample with g2, g3, and g4 being 5.87×10-4, 

7.1×10-7, 7.57×10-7, respectively. Therefore, it has been assumed in most prior works that such 

independent scattering expressions are still adequate in describing the experimental thermal 

conductivity data of 3D crystal structures in the high isotope impurity regime. For example, such 

independent scattering models have been used for calculating the isotope impurity scattering rate in 

the high isotope impurity regime for Ge, BN, and SiC [4, 5], with g2 values of 1.53×10-3, 1.61×10-3, 

and 1.45×10-3, respectively. As one exception, Berman et al. [47] noted that their measured thermal 

conductivity results of LiF crystals at high isotope concentrations were higher than those predicted 

by Klemens’s independent scattering model, although they stated that the validity of the independent 

scattering expression is not limited explicitly to a particular range of concentrations, provided that 

the imperfections scatter only through their mass deviation. However, in a subsequent report, 

Berman and Brock [48] stated that Klemens’s isotope scattering rate model could explain their LiF 

data even in the high isotope impurity concentration regime. 

In comparison for the 50% 13C sample, g1
 = g3

 = 0, g2
 = 1.6×10-3, and g4

 = 2.56×10-6. The g2 

value is still comparable to those for the reported Ge, BN, and SiC samples [4, 5]. In addition, the 

g4/g2 is as small as 1.6×10-3, which would still result in negligible higher order corrections based on 
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Tamura’s analysis [13]. However, with wave interference effects due to multiple scattering 

accounted for in a Green’s function calculation of the phonon transmission function, Savić et al. 

obtained the isotope scattering rate was lower than the incoherent approximation by a factor of two 

or larger in carbon nanotubes and boron nitride nanotubes with isotope impurity concentration larger 

than 10% [16]. While such first principles calculation remains an unresolved computation challenge 

for the complex UG samples measured in this experiment, the factor of two or larger difference 

found by Savić et al. for nanotubes is rather close to the reduction of the Bi parameter from π/4 to 

π/11 in order to match the above calculation with the experimental κUG values of the 50% 13C 

sample. This similarity suggests that multiple scattering is an important factor of the reduced B 

parameter. 

 SUMMARY 

The enhanced crystal quality of the annealed 2D UG structures has enabled the experimental 

finding of the suppressed isotope scattering rate in the high isotope concentration regime compared 

to the incoherent, independent isotope scattering model, which has been assumed in most prior 

works to be adequate for analyzing experimental thermal conductivity data for crystals with high 

isotope impurity concentrations. This finding is in agreement with two recent theoretical predictions 

[16, 17] that wave interference effects due to multiple scattering are important in the high isotope 

impurity regime in low-dimensional, high-κ materials where isotope scattering is an important 

mechanism. Hence, while phonon coherence effects have recently been suggested to be observable 

in the measured thermal conductivity of some thin film superlattice structures [23, 24], the 

experimental results reported in this work emphasizes another phonon transport process where 

consideration of coherent phonon transport is necessary. Additionally, our Raman measurement 

results show that the virtual crystal approximation is still accurate for the calculation of the phonon 

distribution in graphite with large isotope impurity concentrations. These findings are expected to 

motivate further investigations of theoretical computational models to accurately evaluate the 

coherence isotope scattering effects in ultrathin graphite and other materials. 
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APPENDIX A: THERMAL CONDUCTIVITY MEASUREMENT 

UGF samples, approximately 33–38 mm long, 4.9–5.8 mm wide, and 1.58–1.62 mm thick, 

were fixed at each end to a copper heat sink using a high thermal conductivity, electrically insulating 

epoxy. Four electrodes were attached to the two ends of the suspended sample using an electrically 

conducting silver epoxy, as shown in Fig. 8. The suspended length of the UGF samples was 25.0–

25.5 mm. The samples were then placed into a vacuum cryostat connected to a turbomolecular 

pumping system, which maintained a vacuum level of ~10-6 Torr. The local environment 

temperature surrounding the UGF samples was actively controlled through a cryogenic temperature 

controller. A direct current power supply and high power resistors were used to source a DC current, 

Idc, through the suspended UGF, raising its temperature through Joule heating, Q = Idc
2RUGF. 

APPENDIX B: COMPUTATIONAL METHOD 

 The electron band structure of graphite was calculated using the ab initio calculation package 

QUANTUM ESPRESSO [37]. In accordance with [38], fixed lattice constants of a = 2.458 Å and c = 

6.701 Å, the generalized gradient approximation, and a plane wave basis set with a wavefunction 
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cutoff of 60 Ryd and a charge density cutoff of 600 Ryd were used for all calculations, with ultrasoft 

pseudopotentials for carbon created by a RRKJ method [49]. The plane wave self-consistent 

calculations were carried out on a k-point grid of 8×8×4. The electron band structure is shown along 

high symmetry points in Fig. 9. 

APPENDIX C: RAMAN SPECTROSCOPY ANALYSIS 

 In order to obtain information about the phonon dispersion of isotopically disordered graphite, 

we have used Raman spectroscopy combined with an ab initio electron band structure calculation. 

Quantitative analysis was conducted using multi-energy Raman spectroscopy based on methods 

reported previously [33-35, 50-53], which extract the phonon frequency-wave vector relationship by 

varying the momentum of electron-hole pairs generated using multiple laser exitation energies. 

 Raman spectroscopy was conducted using a Ramascope System 2000 (Renishaw plc) with 

three different laser wavelengths, after calibration to the first-order peak associated with scattering 

by the zone-center optical phonon polarization of crystalline Si (111) at ~520 cm-1 [31, 32]. Laser 

exitation wavelengths of 488.0 nm (2.54 eV) and 514.5 nm (2.41 eV) were generated with an argon-

ion source (Stellar-Pro Select 150, Modu-Laser, LLC), and the laser exitation wavelength of 632.8 

nm (1.96 eV) was generated with a helium-neon source (Research Electro-Optics, Inc.). The ultra-

thin graphite (UG) samples were supported on a glass substrate and Raman spectra were collected 

for around 1 hour each in order to increase the signal-to-noise ratio. The Raman G peak, 

corresponding to scattering with a single zone-center longitudinal optical (LO) phonon, does not 

display excitation energy dependence, while the 2D peaks, corresponding to scattering by two 

phonons with non-zero wave vectors, display noticeable excitation energy dependence since the 

wave vector of the participating phonons are dependent on the wave vector of the excited electron-

hole pair. This feature allows us to map the phonon frequency-wave vector relationship of 

isotopically engineered UG as discussed below. 

 C.1. FIRST-ORDER RAMAN MODES 
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 Graphite’s G peak arises from the E2g vibrational mode and is associated with the LO phonon 

polarization near the Γ point in the Brillouin zone, so that the corresponding phonon wave vector of 

G-mode phonons is assigned at the Γ point [33]. Graphite’s D peak is associated with scattering 

between excited electrons and one in-plane transverse optical (iTO) phonon and one defect. In this 

study, no D mode was observed. This finding is indicative of the highly ordered nature of the 

chemical vapor deposition (CVD) grown samples as evidenced by X-ray diffraction analysis. 

C.2. SECOND-ORDER RAMAN MODES 

 The second-order process associated with an excited electron scattered by two phonons, 

instead of one phonon and one defect, comes from the double-resonant Raman scattering processes 

shown in Fig. 10. The incident laser energy, E1, stimulates an electron from the valence band to the 

conduction band creating an electron-hole pair with a certain wave vector, k1. The excited electron’s 

wave vector, k1, was determined by finding the electron-hole pair with energy difference E1 around 

the Κ or Κ′ points of the ab initio electronic π and π* bands depicted schematically in Fig. 10(b–d). 

The excited electron is then inelastically scattered to another real state, E2, in which process a 

phonon is created. The real state E2 with electron wave vector k2 was obtained by the followed 

expression 

 ph12 ωh−= EE , (A1) 

where ωph is the frequency of the created phonon. The electron at state E2 is then inelastically 

scattered by a second phonon back to a virtual state which has the same electron wave vector as the 

real state E1(k1). To calculate the phonon energy for the double-resonance processes, we must have 

information about which specific processes are involved. For example, the Raman 2D and 2G peaks 

involve scattering by two identical in-plane transverse optical phonons (iTO) and two identical 

longitudinal optical phonons (LO) phonons respectively, hence we have defined the frequency of 

each created phonon as 

 
2

ph,2iTO
iTOph,

ω
ω =  and 

2
ph,2LO

LOph,

ω
ω = . (A2) 



 17 

In the above equations, ωph,2iTO and ωph,2LO are the frequencies of the second-order Raman modes 

2iTO and 2LO. For double-resonance scattering involving muliple polarizations, e.g. one iTO and 

one longitudinal acoustic (LA) phonon, we cannot directly use the measured phonon frequency in Eq. 

A1 because the two non-identical phonons have different frequencies. Thus to determine E2 we use 

the phonon energy for the LO polarization determined from ½ωph,2LO, since the excited electron has 

been observed to first scatter with an optical phonon then relax by scattering with an acoustic 

phonon [54]. Since the first scattering process is identical for iTO+LA and 2iTO, the phonon wave 

vector involved is the same for both processes and justifies this method. The electronic band 

structure for graphite (Fig. 9) is then used to determine the value of the scattered electron’s 

wavevector at E2(k2). 

The inelastic processes involved in double-resonance scattering can occur within the same 

electronic band or between two different electronic bands. However, resonance is cancelled due to 

destructive interference effects for scattering across the Γ point between two non-parallel electronic 

bands [50]. Thus, the two possible double-resonance scattering processes are (i) intervalley 

scattering across the the Γ point between non-identical Κ points, namely the Κ and Κ′ points, and (ii) 

intravalley scattering across the Κ or Κ′ point or between identical Κ points which will be discussed 

in the following sections. 

C.2.A. INTERVALLEY SCATTERING 

Intervalley scattering between Κ and Κ′ electrons creates a phonon with a wave vector of q1 

or q2 depending on whether the electron is scattered along slow or fast transport directions. In order 

to conserve momentum, the magnitude of the phonon wave vector involved in the scattering process 

is determined from the difference between the excited and scattered electron wave vectors, k1 and k2, 

respectively, which connects a real state at E1(k1) located around the Κ point to another real state 

E2(k2) located around the Κ′ point [Fig. 10(a–c)]. The phonon wave vectors are then determined as 

 ( )21 kkkq +±= Κ−Γ , (A3) 
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where kΓ–K is the magnitude of the zone boundary wave vector at Κ, k1 is determined from the laser 

exitation energy and electron bandstructure, and k2 is determined as per Eq. A1. The two values of q 

for intervalley scattering arise from the anisotropic electron dispersion around Κ, which consists of a 

fast transport direction along Γ−Κ and a slow transport direction along Κ−Μ. Based on the Raman D 

mode’s cross section integration, the lower intensity peak of the D mode occurs for the scattering 

between two locations along the slow transport direction, while the higher intensity peak of D mode 

occurs for the scattering between two locations along the fast transport direction [50, 55]. 

Considering that the Raman 2D mode is the second-order overtone of the D mode, we assign the 

lower intensity 2D1 mode to electron scattering between two slow transport locations denoted as q1 

in Fig. 10(a,b), while the higher intensity 2D2 mode is assigned to electrons scattered between two 

fast transport locations denoted as q2 in Fig. 10(a,c). This results in q1 lying along the Γ−Κ direction 

and q2 lying along the Κ−Μ  direction as shown in Fig. 10a. 

 An additional intervalley scattering process involves one iTO and one LA phonon. The 

excited electron first scatters with an iTO phonon, then is relaxed to the virtual electronic state in a 

process involving an LA phonon. For this reason, the phonon wave vector for the iTO+LA 

polarization is the same as for the 2iTO polarization. The iTO+LA frequency only satisfies the 

experimentally observed frequencies along Γ−Κ, and so we only plot this process along the Γ−Κ 

direction similar to [33, 34]. 

C.2.B. INTRAVALLEY SCATTERING 

The phonon created during the intravalley double-resonance scattering process across Κ (or 

across Κ′) has a wave vector q3 around the Γ point (Fig. 10a,d). Two possible scattering processes 

can originate from both sides of the Κ point and create phonons with wave vectors q3' and q3" as 

shown in Fig. 10d. Since ħωph is much less than E1, the phonon energy is usually neglected to yield 

q3 ≈ 2k1, where k1 is calculated from the electronic band structure without considering phonon energy 

loss ħωph [50]. We do not make this assumption here, and the magnitude of phonon wave vectors 

was calculated by Eq. A4 considering phonon energy ħωph. The difference of phonon wave vectors 
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q3' and q3" arising from the two distinct intravalley scattering processes is small compared with the 

difference of the two intervalley scatterings discussed in Appendic C.2.a., and so we define the 

intravalley phonon wave vector as the average of q3' and q3" as [50] 

 ( )21 kkkq +±= Κ−Γ ; (A4a) 

 
2

33
3

qqq
′′+′

= . (A4b) 

C.3. COMPARISON WITH AB INITIO PHONON DISPERSION 

With the excitation energy-phonon wavevector relationships defined above, we can now 

estimate the uncertainty. As we are using the ab initio electron bandstructure and hence have not 

assumed a linear or isotropic E(k) relationship around Κ, the major source of uncertainty is in 

determining E2(k2). In the case that the phonon energy ħωph is neglected in Eq. A1, we calculated 

that the scattered electron energy, E2, is overestimated by 6.6–10.1% for E1=2.54–1.96 eV for all 

Raman active modes and all UG samples. The phonon wave vector then has uncertainties arising 

from the uncertainty in k2 as per Eq. A3, which is on the order of –4.2% to 1.9%. In order to avoid 

these uncertainties, we have accounted for inelastic energy losses in our calculations, and thus we do 

not expect uncertainties in our phonon frequency-wave vector determination to be greater than this 

range. 

We compare the first-order Raman G mode (LO) and the second-order Raman modes (2LO, 

2iTO, and iTO+LA) with the ab initio phonon dispersion calculation described in the main text. The 

experimental phonon dispersion matches the ab initio phonon dispersion well for the LO, 2LO, and 

iTO+LA polarizations. The measured 2iTO phonon frequency along Γ−Κ is slightly lower than the 

ab initio frequency. This small deviation is likely due to the approximations involved in 

computational modeling of the ab initio phonon dispersion calculation. 

APPENDIX D: THERMAL CONDUCTIVITY MODELING WITH SIGNIFICANT CONTRIBUTION FROM 

THE OTA POLARIZATION 
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In addition to the calculation presented in the main text where the thermal conductivity 

contribution from the out-of-plane transverse acoustic (oTA) is assumed to be negligible, here we 

discuss the other limiting case where the relative contribution from the oTA polarization with respect 

to the in-plane transverse acoustic (iTA) and longitudinal acoustic (LA) polarizations is as large as 

that reported in [15] for 5-layer graphene by adjusting the Grüneisen parameters for each 

polarization. In this case, we have used a boundary scattering mean free path lb = 1.7 μm to fit the 

low-temperature experimental thermal conductivity of all the ultrathin graphite samples, κUG. The 

Grüneisen parameters of γLA=γLO'=0.380T0.471, γiTA=γiTO'=0.155T0.471, and γoTA=γoTO'=-0.044T0.471 

were used to match the calculation results with the high temperature thermal conductivity values for 

all samples. As shown in Fig. 11 and similar to the case presented in the main text for negligible 

contribution from oTA and oTO′ polarizations, while the calculated κUG values based on Bi=π/4 for 

the in-plane polarized modes and Bo=π/2 for the oTA modes fit well over the entire temperature 

range for the low-impurity-concentration regimes, this B values considerably over-predicts the 

strength of isotope scattering in the 50% 13C sample compared to the experimental results. The 

isotope scattering strength needs to be reduced by a factor of 12.5 by using in order to match the 

calculation result to the measured κUG of the 50% 13C sample. Thus we conclude that in this limit of 

large contribution of out-of-plane polarizations to the thermal conductivity, we need an even smaller 

value of B to match the high impurity concentration regime, 12.5 times smaller than the isolated 

impurity value. 
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FIGURES AND CAPTIONS FOR ARTICLE 

 

FIG. 1 (color online). Scanning electron microscopy (SEM) images of (a) ultrathin graphite foam 

(UGF), (b) the surface of as-grown UGF, and (c) the surface of UGF after post-synthesis annealing 

at 3000oC. (d) X-ray diffraction (XRD) of the annealed UGF shown in comparison with the 

reflection positions of highly oriented pyrolytic graphite (HOPG) [56]. The intensities have been 

normalized to the {0002} peak. (d, inset) High resolution XRD of the {0004} peak. 
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FIG. 2 (color online). Temperature-dependent electrical properties of ultrathin graphite foam (UGF) 

after post-synthesis annealing. The isotopic concentration of 13C in 12C for the UGF samples is 1.1% 

(green down triangles), 50.2% (red diamonds), and 99.2% (blue circles). (a) Measured low-bias 

electrical resistance (RUGF) and (b) normalized low-bias resistance change with temperature at each 

temperature [(dRUGF(T)/dT)/RUGF(T)]. (c) Electrical resistivity (ρUGF) of the UGF. (d) Solid electrical 

resistivity of the ultrathin graphite (ρUG) within the UGF, calculated using the foam theory of 

Lemlich [27], ρUG
 = (φ / 3)ρUGF, where φ is the volume fraction. Shown in comparison are values for 

highly oriented pyrolytic graphite deposited at 2250oC (HOPG, gray crosses) [57], HOPG deposited 

at 2200oC and subsequently heat treated at 3200oC (HT-HOPG, gray asterisks) [10], and single 

crystal graphite (SC-G, gray stars) [58]. (d, inset) ρUG of the 50.2 and 99.2 at.% 13C samples 

normalized by that of the 1.1 at.% 13C sample. The legend shown in panel (a) applies to panels (a–d). 

 
  



 29 

 

FIG. 3 (color online). (a) Measured thermal conductance of the UGF samples (GUGF) determined 

with (filled symbols) and without (open symbols) the inclusion of radiation in the heat transfer 

model, i.e. Equations 3 and 5 in [25], respectively. The isotopic concentration of 13C in 12C for the 

UGF samples is 1.1% (green down triangles), 50.2% (red diamonds), and 99.2% (blue circles). (b) 

Measured effective thermal conductivity of the UGF (κUGF) versus temperature. The legend shown 

in panel (a) applies to panel (a–b). 
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FIG. 4 (color online). (a) Solid thermal conductivity of the UG (κUG) versus temperature for 13C 

concentration of 1.1% (green down triangles), 50.2% (red diamonds), and 99.2% (blue circles). The 

lines are the calculated thermal conductivity based on the fitting parameters discussed in the text for 

different 13C concentrations. (b) Calculated solid thermal conductivity normalized by the theoretical 

value for isotopically pure 12C graphite (κUG/κ12C) as a function of 13C isotopic concentration at 

temperatures of 152 K (purple down triangles) and 303 K (orange circles). In one calcualtion, the 

isotope scattering coefficient B is taken to be Bi = π/4 for the in-plane mode and Bo = π/2 for the out-

of-plane modes. In another calculaiton, the two B coefficients are reduced to Bi = π/10.8 for the in-

plane mode and Bo = π/5.4. 
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FIG. 5 (color online). (a) Raman spectra normalized to the G peak intensity using 2.41 eV laser 

energy. The isotopic concentration of 13C in 12C for the UGF samples is 1.1% (green line), 50.2% 

(red line), and 99.2% (blue line). (a, inset) The Raman peak positions (ω) normalized by those for 

1.1 at.% 13C UGF exhibit the predicted dependence on the average atomic mass for Raman active 

phonon modes, i.e. ω /ω1.1% 13C
 = ( M / M 1.1% 13C)-1/2. The Raman peaks are labeled on the 1.1 at.% 13C 

spectra in the main panel, where circles and down triangles correspond to near-zone center LO and 

2LO processes, respectively, and asterisks, diamonds, and stars denote near-zone boundary iTO+LA, 

2iTO along Γ−Κ, and 2iTO along Κ−Μ processes, respectively. (b–d) Raman spectra of graphite 

foams with 1.1% (b), 50.2% (c), and 99.2% 13C excited by 2.54 eV (blue), 2.41 eV (green), and 1.96 

eV (red) laser energies. Legend in (b) applies to all panels (b–d). 
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FIG. 6 (color online). (a) Calculated phonon dispersion for bulk graphite with 1.1 at.% 13C (green 

solid lines), 50.2 at.% 13C (red dash-dot lines), and 99.2 at.% 13C (blue dashed lines) isotopic 

concentrations using the virtual crystal approximation. Experimental dispersion data obtained from 

first-order (filled symbols) and derived from second-order (open symbols) Raman scattering using 

an ab initio electron bandstructure calculation for graphite is shown for UGF with 13C concentrations 

of 1.1% (green down triangles), 50.2% (red diamonds), and 99.2% (blue circles). (b) Near zone 

center phonon group velocity (sound velocity, ωqq
∇≡

→0s limv ) taken along Γ−Μ for the longitudinal 

acoustic (LA) and in-plane transverse acoustic (iTA) polarizations as a function of 13C isotopic 

concentration. (b, inset) The sound velocities normalized by that for 12C graphite exhibit the 
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expected dependence on atomic mass, i.e. vs/vs,12C=( M /M12C)-1/2. (c) Calculated volumetric specific 

heat, c, versus temperature for 13C concentrations of 1.1 at.% (green solid line), 50.2 at.% (red dash-

dot line), and 99.2 at.% (blue dashed line). (c, inset) Due to the reduced group velocity of 

isotopically enriched graphite, c for 50.2 and 99.2 at.% 13C is higher than that for pure 12C at the 

temperature range of calculation, i.e. below 500 K. 
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FIG. 7 (color online). First-order (left panel) and second-order (right panel) Raman modes measured 

in the UGF samples with (a) 1.1%, (b) 50.2%, and (c) 90.2% 13C in comparison with ab initio 

phonon dispersions. Red, green, and blue symbols indicate experimental data obtained using laser 

exitations at 1.96 eV (632.8 nm), 2.41 eV (514.5 nm), and 2.54 eV (488.0 nm), respectively. 
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FIGURES AND CAPTIONS FOR APPENDICES 

 

FIG. 8 (color online). Top-view photograph of the experimental setup for measuring the electrical 

and thermal properties of ultrathin graphite foam (UGF). Units of integers printed on ruler are cm. 
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FIG. 9 (color online). Ab initio electron band structure of graphite. The red lines indicate the π and 

π* bands, i.e. valence and conduction bands, respectively, along Γ−Κ−Μ direction used in the 

electron scattering analysis. Dashed lines indicate σ and σ* bands. 
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FIG. 10 (color online). Double-resonant Raman scattering processes. (a) Brillouin zone of graphite 

showing electron energy contours (black dashed lines). Intervalley scattering processes q1 (orange 

solid arrow) involve two phonons belonging to the iTO branch along the Γ−Κ direction. Intervalley 

scattering processes q2 (teal solid arrow) involve two phonons belonging to the iTO branch along the 

Κ−Μ direction as q2 can be translated with a reciprocal lattice translational vecotr to lie along Κ−Μ 

Intravalley scattering processes q3 (magenta solid arrow) involve two phonons belonging to the LO 

branch. The corresponding dashed arrows have the same directions and lengths as the solid arrows 

and are used to denote the phonon wave vectors originating from the Brillouin zone center (Γ point). 

(b–d) Energy wave vector diagrams indicating corresponding scattering processes in (a). Photon 

energy resulting in creation of an electron-hole pair, E1, corresponding electron wave vector, k1, 

energy loss by phonon generation, ħωph, and corresponding electron wave vector, k2, are indicated 

on each graph and are exaggerated for clarity. 
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FIG. 11 (color online). (a) Solid thermal conductivity of the ultrathin graphite (κUG) versus 

temperature for 13C concentration of 1.1% (green down triangles), 50.2% (red diamonds), and 99.2% 

(blue circles). The lines are the calculated thermal conductivity based on the fitting parameters 

discussed in Appendix D for different 13C concentrations. (b) Calculated solid thermal conductivity 

normalized by the theoretical value for isotopically pure 12C graphite (κUG/κ12C) as a function of 13C 

isotopic concentration at temperatures of 152 K (purple down triangles) and 303 K (orange circles). 

In one calcualtion, the isotope scattering coefficient B is taken to be Bi = π/4 for the in-plane mode 

and Bo = π/2 for the out-of-plane modes. In another calculaiton, the two B coefficients are reduced to 

Bi = π/50 for the in-plane mode and Bo = π/25. 

 

 


