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Abstract 
 

Interaction between K adatoms on graphene is investigated by first-principles 

calculations based on density function theory and analytical analyses based on the k•

p perturbation theory. The calculation shows that there is a strong repulsion between 

K adatoms. The main origin of this strong repulsion is not from the dipole-dipole 

interaction as suggested for K adatom on graphite surface, but comes from the 

screened Coulomb interaction. Potassium adatom on graphene donates its s electron 

and becomes K+. The positively charged K adatom induces electron density 

oscillation on graphene which is responsible for the screened Coulomb repulsion 

between the K adatoms.  
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Coulomb impurity in graphene is a problem of fundamental interest due to the 

unique electronic structure of graphene. Because graphene has linear energy 

dispersion and very small density-of-states around the Fermi level and consists of two 

sub-lattices, the electronic structure and transport properties of graphene are very 

sensitive to impurities [1-8]. Understanding and manipulating the interaction among 

the Coulomb impurities and between the impurity atoms and carbon atoms on 

graphene provide an effective approach for engineering the electronic structures to 

meet various requirements in the application of graphene.  

While it is well-known that Coulomb or magnetic impurities on metal surface 

induce interesting phenomena such as Friedel oscillation in electron density thus the 

indirect interaction between the impurities, interaction between such impurities on 

graphene has not been well understood. It has been proposed that oscillation of the 

charge density induced by a charged impurity on graphene has a faster (δρ ~ r-3) decay 

than that in conventional 2D electron systems which decay as r-2 [5, 7]. Calculations 

based on tight-binding models suggested that in addition to the long wavelength 

Friedel oscillation, a short wavelength modulation of electron density also emerges 

due to the two sub-lattices on graphene [4, 9]. Energy-resolved maps of the local 

density-of-states by using STM also reveal electron density modulations on two 

different length scales, reflecting both intravalley and intervalley scattering [8]. 

Despite of intensive studies, our understanding of the behavior of charge oscillation 

and especially impurity interactions on graphene is still far from being completed. 

Most of the previous theoretical studies are based on model Hamiltonians, a fully 

self-consistent first-principles calculation is highly desirable and can provide useful 

insight for a better understanding of the mechanism of impurities on graphene.  

In this paper, we performed first-principles calculations and analytical analyses 

based on the k•p perturbation theory to study the interaction between K adatoms on 

graphene and characterize the electron density oscillation behavior induced by the K 

adatoms. Potassium on graphene is chosen because alkali metal adatoms on graphene 

or graphite provides a prototype system for studying electron screening and Coulomb 

impurity interactions in two dimensions. Alkali metal-graphene system is also a topic 
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of great interest in device application and in the structural phase transition when alkali 

metal growth on graphene. Such a system has been a subject of intensive experimental 

and theoretical interest over the past twenty years [10-16]. Nevertheless, the nature of 

alkali metal interactions on graphite or graphene is still under much debate. For 

example, while Ref. [10] attributed the repulsions between K adatoms to the 

dipole-dipole interaction induced by charge transfer, Ref. [15] demonstrated that the 

interaction between Cs adatoms on graphene originates from a long-range repulsive 

Coulomb interaction. Our studies provide clean evident that the major contribution to 

the interaction between the K adatoms can be attributed to the screened Coulomb 

interaction. K adatoms donate their valence electrons to graphene and induce 

oscillation of electron density on graphene which is responsible for the screened 

Coulomb interaction. The findings from our study are useful for understanding the 

electron screening mechanism in graphene and the interactions controlling the 

assembly of metal nanostructures on graphene for future device applications.  

The first-principles calculations are performed using the density functional 

theory (DFT) with generalized gradient approximation (GGA) in the form of PBE [17] 

implemented in the VASP code [18,19], including spin polarization and dipole 

moment corrections [20,21]. Valence electrons are treated explicitly and their 

interactions with ionic cores are described by projector augmented wave 

pseudopotentials [22,23]. The adatoms/graphene system is modeled by having two K 

adatoms at different separations on a 10×10 graphene supercell with periodic 

boundary conditions. The dimension of the supercell in the z direction is 15 Å which 

allows a vacuum region of about 12 Å to separate the atoms and their replicas in the z 

direction. The wave functions are expanded in a plane wave basis set with an energy 

cutoff of 600 eV. A k-point sampling of 2×2×1 Monkhorst-Pack grids in the first 

Brillouin zone and a Gaussian smearing with a width of σ=0.05 eV are used in the 

calculations. All atoms in the supercell are allowed to relax until the forces on each 

atom are smaller than 0.01 eV/Å. The supercell dimensions are kept fixed during the 

relaxation.  

 We first calculate the interaction energy between the two K adatoms on 
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graphene as the function of the separation distance between the two adatoms. The 

interaction energy is defined as Einter(r)=Ea2(r)-2Ea1. Here, Ea2(r) is the adsorption 

energy of two K adatoms on graphene at separation r and Ea1 is the adsorption energy 

of a single K adatom. Fig. 1 shows the Einter(r) (blue solid circles and blue solid line) 

as the function r between the two K adatoms. It is interesting to note that the 

interaction between K-K adatoms is repulsive for all the separation distances larger 

than 4.92 Å. The repulsive interaction energy between two K adatoms is about 0.6 eV 

which is significant. 

 We note that in a recent paper [10], repulsive interaction between potassium 

adatoms on graphite has been observed by STM experiment and molecular dynamics 

simulations. It was proposed that such repulsive interactions are mainly due to 

long-range electric dipole-dipole interaction resulted from the significant charge 

transfer from K adatoms to graphite [9]. In order to see if the electric dipole-dipole 

interaction is responsible for the repulsion of K adatoms on graphene, we calculated 

the electric dipole moment and dipole-dipole interaction on graphene. We found that 

adsorption of K adatoms on graphene can induce electric dipole moment as large as 

6.33 Debye per adatom as long as the separation distance between the two K adatoms 

is larger than 7.0 Å. At the smaller distance of 4. 92 Å, the electric dipole moment is 

about 3.40 Debye per adatom due to the overlap of wave functions between the two 

adatoms. Using the electric moments obtained from our calculations, we can estimate 

the contribution of the dipole-dipole interaction to the total interaction energy. 

Electric dipole-dipole interaction for two non-overlap dipoles perpendicular to the 

graphene layer and at a distance r is 1 2
3

0

( )
4dV r

r
μ μα

πε
= . Here μ1 and μ2 are the electric 

dipole moments on each K adatom, respectively. The value of α should be 1.0 if the 

two dipoles are in vacuum and 2.0 if on a metal surface due to the screening effect 

[18]. Since graphene is a two dimensional system and the density of free carrier is 

smaller than that on a metal surface, the screening effects would be weaker than that 

on metal surface and the value of α would be between 1.0 and 2.0. Using the electric 

dipole moments obtained from our first-principles calculations and α=1.5, the 
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dipole-dipole repulsive energy Ed-d(r) as the function of distance r is also plotted in 

Fig. 1 (red solid circles and red dot line). We found that Ed-d(r) accounts for only a 

small fraction of the total interaction energy as seen in Fig. 1. Therefore, electric 

dipole-dipole interaction can only partially contribute to the repulsive interaction in 

this system but it is not the dominant one, at least at the interaction range studied in 

this paper. 

 Since K on graphene causes very little lattice distortion to the graphene, elastic 

interaction is expect to play a negligible role in the interaction energy. On the other 

hand, from the charge transfer analysis we found that in the very dilute adsorption 

limit as in the present case of study the outer shell s electrons of the K adatoms 

transfer completely to graphene upon adsorption and leave the K adatoms in K+ states 

[24]. Therefore, strong repulsion between the two K adatoms on graphene can be 

attributed to Coulomb interaction. However, as shown in Fig. 1, although the 

repulsive interaction between the two K+ is strong, it is much smaller than the bare 

Coulomb interaction (pink dash line in Fig. 1). This result indicates strong screening 

effect caused by the redistribution of the electrons on graphene due to the presence of 

the K+ adatoms. We note that experiment in Ref. [15] also suggests strong Coulomb 

interaction between Cs adatoms on single layer or bi-layer of graphene since the 

interaction between Cs adatoms decay as a power law (~1/r).  

In order to gain a better understanding of the screening and the interaction 

between the K adatoms, we have investigated the electron density redistribution 

induced by a K adatom on graphene by first-principles calculations. A 12×12 

graphene supercell with periodic boundary conditions is used in order to see the 

electron density oscillation further away from the K adatom. Because the electron 

density on graphene is very small, in order to see the charge oscillation due to the K 

adatom adsorption more clearly, we calculated the change in the electron density Δρ(r) 

(we call it interaction electron density (IED) afterwards) due to the adatom-graphene 

interaction instead of total electron density. The IED Δρ(r) is defined as 

( ) ( ) ( ( ) ( ))gra adsr r r rρ ρ ρ ρΔ = − +  where ρ(r) is the charge density of the K/graphene 
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system, ρgra(r) and ρad(r) are the charge densities of the pure graphene and the K 

adatom calculated separately. The Δρ(r) defined in this way accounts for the electron 

redistribution due to the interaction between K adatom and graphene. In Fig. 2 (a), the 

top view of the 2D-contour of Δρ(r) in the plane through the graphene layer is plotted. 

The oscillation of Δρ(r) from the K adatom can be clearly seen from the plot. A 

quantitative measure of the oscillation and decay of Δρ(r) away from the K adatom is 

shown by the line scans in Fig. 2 (b), (c) and (d) respectively. The line scans are 

along the arm-chair direction through carbon atoms (Fig. 2(b)) and zigzag direction 

through carbon atoms (Fig. 2 (c)) or carbon bonds (Fig. 2(d)) as indicated in Fig. 2 

(a). The line scans show clearly the oscillatory and decay behavior of the Δρ(r) away 

from the K adatom. The line scans also show that the details of the oscillation and 

decay are direction dependent but the oscillations in all directions have short 

wavelengths.  

Electron density oscillation and screening effects induced by Coulomb impurities 

on graphene have recently attracted considerable theoretical interest [25-32]. It has 

been shown that a positively charged impurity on graphene induces short wavelength 

electron density oscillation due to the intervalley scattering in addition to the long 

wavelength Friedel oscillation due to the intravalley scattering. The decay of in 

electron density away from the impurity scales like r-3 instead of r-2 in 2D electron gas. 

A line scans of electron distribution from our first-principles calculation show that the 

peaks along the armchair direction in Fig. 2 (b) can be divided into three sets: those 

on sub-lattice carbon atom A (labeled A, i.e., pink solid circles), those on sub-lattice 

carbon atom B (labeled B, i.e., blue solid circles), and those between the two 

sub-lattice atoms (the rest, i.e., yellow solid circles). We can see electron charge on 

the atoms decay monotonically away from the impurity while electron density 

oscillated between the atoms. Similar behavior can also be seen from the line scans 

along the zigzag direction as one can see from Fig. 2 (c) and (d). Overall the decay of 

the electron density away from the impurity is close to the theoretical prediction of 

~r-3. The electron charge on the carbon atoms can also be seen from the Mullikan 

charge analysis using the QUAMBO method [33] as shown in Fig. 2 (e). The decay of 
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the electron charge on the carbon atoms away from the K adatom from our Mullikan 

charge analysis is found to decay slightly fast than the r-3 as shown in Fig. 2 (e). 

We also performed analytical analyses based on the k•p perturbation theory to 

elucidate the origins of electron charge oscillation and screening induced by the K 

adatom adsorption. Unlike the previous studies, we examine the effects of the inter- 

and intravalley scattering separately to investigate the role played by the intervalley 

electron scattering on the screening which is mostly relevant to our present 

first-principles calculations. We obtain the analytical expression of the dielectric 

function for a system with a positive charged impurity on graphene in terms of inter 

and intravalley scattering separately: 
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where 2s vg g= =  denote the spin and valley degeneracy, 610 /Fv m s=  is the 

Fermi velocity of electron in graphene, 2 2
22 cosq q Q qQ θ= + +%  and Q is the  

vector in the reciprocal lattice connecting the nearest neighbouring valleys K and K'. 

The detailed derivations about the dielectric function and the screened charge 

potential are given in the Appendix.  

Figs. 3 (a) and (b) clearly shows that the intervalley scattering indeed introduce 

short wavelength charge oscillation with the period of several Angstroms. 

Interestingly, the Friedel oscillations also show significant anisotropic behavior along 

the zigzag and armchair directions. The screened Coulomb potentials are shown in 

Figs. 3 (c) and (d) in comparison with the unscreened bare potential. We can see that 

the screened potential is much weaker than the bare potential, consistent with our 

first-principles calculation results shown in Fig. 1. We can see from the Figs. 3 (c) 
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and (d) that the screening from the intervalley electron scattering plays an important 

role which gives a short-wavelength oscillation. Although the analytical results can 

explain the short-wavelength oscillation of electron density and screened Coulomb 

potential, one still can see the difference between the results obtained from the DFT 

calculation and the analytical expression from the k•p model. The former shows a 

more rapid oscillation than the latter. This difference may arise from the lacking of 

detailed treatment of the local field, charge transfer, lattice distortion near the adatoms 

in the k•p calculation. Another source for the discrepancy would be due to the 

neglecting of non-linear screening effects in the k•p model. It has been shown [34, 35] 

that linear screening would be inadequate at and close to the charge neutrality point 

which is relevant to the low K coverage situation studied in this paper. 

In order to further validate the screened Coulomb interaction picture, we 

examined the effects of electron doping level on the interaction energy between the 

two K adatoms. We compare the interaction energies for two K adatoms on 8×8 and 

10×10 graphene supercells respectively.  For two K adatoms on a 8×8 graphene, the 

electron doping density is about 6.0×10-3 electron/Ǻ2. For two K adatoms on a 10×10 

graphene, the electron doping density is ~3.8×10-3 electron/Ǻ2. As one can see from 

Fig. 4, the interaction energy for two K adatoms on 8×8 graphene is about 0.077 eV 

(or ~14.4%) smaller than that on 10×10 graphene at the K-K separation of 8 Ǻ. This 

result demonstrates that the higher the electron doping level, the stronger the 

screening effects, further confirming our conclusion of screened Coulomb interaction 

between K adatoms on graphene. 

 As discussed above, a K adatom on graphene induces oscillatory electron 

redistribution. When the second K adatom is introduced, it will feel the screening rather 

than bare Coulomb interaction from the first K adatom. The repulsive interaction 

between the two K adatoms is therefore dominated by this screening Coulomb 

interaction. In fact, when the second adatom is added, it will also cause the 

redistribution of the electron on graphene such that its positive local charge can be 

effectively screened. The electron density oscillations induced by the two adatoms will 

meet each other and form an interfered wave. As shown in Fig. 5, the interaction charge 
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density Δρ(r) is dependent on the separation distance and the orientation of the two 

adatoms relative to the graphene substrate. From Fig. 5, one can see that if the 

separation distance is small (less than 10 Å), the two adatoms look like forming a pair 

of impurity and create the charge oscillation around the pair of adatoms. As the distance 

become large, the oscillation from each adatom becomes more independent. Analytic 

modeling the interference of the charge oscillation induced by two or more Coulomb 

impurities would be a very interesting future research. 

In summary, we have studied the interaction between two K adatoms on graphene 

using first-principles calculations. We showed that the main contribution to the 

repulsion between the two K adatom is the strong screened Coulomb interaction 

rather than the dipole-dipole interaction proposed previously for potassium on 

graphite surface [10]. Short wave-length electron charge oscillation in graphene 

induced by the K adatom adsorption is also observed by the first-principles 

calculations. Analytical analyses based on the k•p perturbation theory indicate that 

the electron screening is originated from the oscillation of the electron density in 

graphene. Our study provides useful insights into the mechanism of the screening and 

its relation to the charge oscillations in two-dimensional systems. Understanding the 

unique interactions between adatoms on atomically well-defined surfaces such as 

graphene also paves a way for controlling the assembly of metal nanostructures on 

two-dimensional substrates for future device applications.  
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APPENDIX: Derivations of the dielectric function and the screened charge 
potential based on the k•p perturbation theory 
 
To obtain the Friedel oscillations of the screened potential and charge density, we 
derive the static dielectric function ε(0, q) including the intervalley scattering process 
based on the low-energy continuum k · p Hamiltonian.  Using the random phase 
approximation (RPA), the dielectric function is  

,

[ ]
( , ) 1 ( )

0ll l l

f f F
q

E E i
ε ω υ

ω +

−
= −

− + +∑
' ' '

k

k k k

q
h

'k ’ 

where 2
0( ) / 2q e qυ ε κ= is the bare Coulomb interaction component with κ  is the 

background dielectric constant, lE k , 
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. For the intravalley scattering, the form 
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. For the intervalley case, 

[1 cos( )] / 2interF ll φ φ= − + '
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k k
. After a long tedious derivation, we represent both the 

intravalley and intervalley static dielectric functions with the transition wave vector 

= − 'q k k  and its orientation along 2θ  away from the reference direction connecting 

the two nearest neighboring valleys (see the inset of Fig. 3(a)), 
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where 2s vg g= = denote the spin and valley degeneracy, 610 /Fv m s=  is the 

Fermi velocity in graphene, 2 2
22 cosq q Q qQ θ= + +%  and Q  is the vector in the 

reciprocal lattice connecting the nearest neighboring valleys K or 'K . 
Considering an charged impurity above the graphene at a distance d, the bare 

Coulomb potential, ( ) ( )Ze z dδ δ −r , is screened by free electrons in graphene due to 
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the Coulomb interaction. This changes the bare Coulomb potential and results in an 
in-plane charge density oscillation. The screened potential V(r) is obtained form a 
Fourier transform 
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Considering the intervalley scattering and the sixfold rotational symmetry in graphene, 
we obtain the final expressions of V(r) and Δρ(r) for further numerical calculations,  
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here θ is the angle between q and r and 0θ  is the orientation angle of r. 
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Figures Caption: 

FIG. 1. Interaction energy Einter (blue solid circles s and blue solid line) of K-K 

adatoms on graphene as a function of K-K separation. The electric dipole-dipole 

interaction Ed-d (red solid circles and red dot line) and bare Coulomb interaction Eb-c 

(pink dash line), respectively, are also shown for comparison. 

 

FIG. 2. (a) The top view of the 2D-contour (color scale from -0.002 to 0.002 

electrons/Å3) the IED Δρ(r) in the plane through the graphene layer. (b) The line 

scans of Δρ(r) along the arm-chair directions in graphene as indicated in (a). (c) and 

(d) The line scans of Δρ(r) along the zigzag directions cutting through C atoms or C-C 

bonds respectively in graphene as indicated in (a). The intensities of the peaks in each 

direction can be fitted well to ~r-3 as indicated by solid green lines. The vertical dash 

lines in (b), (c) and (d) indicate the position of carbon atoms and C-C bonds 

respectively, in the armchair and zigzag directions in graphene. (e) Mullikan exceeded 

charges on sub-lattices A and B respectively as the function of the distance from the K 

adatom. The green line is 1.7×r-3. 

 

FIG. 3. The electron density variation as a function of the distance r along the zigzag 

(a) and armchair (b) directions, respectively. In (c) and (d), the screened Coulomb 

potentials along the above two directions are compared with the bare Coulomb 

potentials. 

 

FIG. 4. Comparison of interaction energy between two K adatoms on 8×8 and 10×10 

graphene. Graphene supercell with smaller size will have higher level of electron 

doping.  Higher electron doping level in the smaller supercell results in smaller 

interaction energy due to stronger electronic screening. 

 

FIG. 5.  Interaction charge density Δρ(r) for two K adatoms on graphene (color scale 

from 0.00 to 0.008 electrons/Å3). Δρ(r) is found to be dependent on the separation 

distance and the orientation of the two adatoms relative to the graphene substrate. 
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FIG. 1. Interaction energy Einter(blue solid circles s and blue solid line) of K-K 

adatoms on graphene as a function of K-K separation. The electric dipole-dipole 

interaction Ed-d (red solid circles and red dot line) and bare Coulomb interaction Eb-c 

(pink dash line), respectively, are also shown for comparison. 
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FIG. 2. (a) The top view of the 2D-contour (color scale from -0.002 to 0.002 
electrons/Å3) the IED Δρ(r) in the plane through the graphene layer. (b) The line 
scans of Δρ(r) along the arm-chair directions in graphene as indicated in (a). (c) and 
(d) The line scans of Δρ(r) along the zigzag directions cutting through atoms or C-C 
bonds respectively in graphene as indicated in (a). The intensities of the peaks in each 
direction can be fitted well to ~r-3 as indicated by solid green lines. The vertical dash 
lines in (b), (c) and (d) indicate the position of carbon atoms and C-C bonds 
respectively, in the armchair and zigzag directions in graphene. (e) Mullikan exceeded 
charges on sub-lattices A and B respectively as the function of the distance from the K 
adatom. The green line is 1.7×r-3. 
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FIG. 3. The electron density variation as a function of the distance r along the zigzag 

(a) and armchair (b) directions, respectively. In (c) and (d), the screened Coulomb 

potentials along the above two directions are compared with the bare Coulomb 

potentials. 
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FIG. 4. Comparison of interaction energy between two K adatoms on 8×8 and 10×10 

graphene. Graphene supercell with smaller size will have higher level of electron 

doping.  Higher eletron doping level in the smaller supercell results in smaller 

interaction energy due to stronger electronic screening. 
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FIG. 5.  Interaction charge density Δρ(r) for two K adatoms on graphene (color scale 

from 0.00 to 0.008 electrons/Å3). Δρ(r) is found to be dependent on the separation 

distance and the orientation of the two adatoms relative to the graphene substrate. 


