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The broken inversion symmetry at the surface of a metallic film (or, more generally, at the
interface between a metallic film and a different metallic or insulating material) greatly amplifies
the influence of the spin-orbit interaction on the surface properties. The best known manifestation
of this effect is the momentum-dependent splitting of the surface state energies (Rashba effect).
Here we show that the same interaction also generates a spin-polarization of the bulk states when
an electric current is driven through the bulk of the film. For a semi-infinite jellium model, which
is representative of metals with a closed Fermi surface, we prove as a theorem that, regardless of
the shape of the confinement potential, the induced surface spin density at each surface is given by
S = −γ~ẑ × j, where j is the particle current density in the bulk, ẑ the unit vector normal to the
surface, and γ = ~

4mc2
contains only fundamental constants. For a general metallic solid γ becomes

a material-specific parameter that controls the strength of the interfacial spin-orbit coupling. Our
theorem, combined with an ab initio calculation of the spin polarization of the current-carrying film,
enables a determination of γ, which should be useful in modeling the spin-dependent scattering of
quasiparticles at the interface.

I. INTRODUCTION

Physical phenomena in which an electric current is con-
verted into a spin polarization and/or a spin current, are
receiving a great deal of attention in the context of or-
bital spintronics1–17 – an appealing alternative to “clas-
sical” spintronics18–22. While in classical spintronics the
spin dynamics is mainly controlled by exchange interac-
tions, in orbital spintronics the central role is played by
the spin-orbit (SO) interaction, which allows direct ma-
nipulation of the spins by electric fields.23–34 In recent
years both the exchange interaction-based approach and
the spin-orbit interaction-based one have been shown to
be viable for achieving current-induced switching of the
magnetization of a ferromagnetic metal.26,35–39 Although
spin-orbit interactions are generally much weaker than
exchange interactions, they are known to produce a char-
acteristic linear in momentum spin splitting of surface
states – the so-called Rashba effect40, which is observed
in semiconductor as well as metallic interfaces. The size
of this splitting can be tuned by an external electric field,
which creates the possibility of using the effect as the
basis for a field-effect transistor.41 In a different man-
ifestation of the Rashba effect, a non-equilibrium spin
accumulation in the surface states can produce a spin-
galvanic current (or voltage) – a phenomenon that has
been experimentally demonstrated in semiconductors42

and, more recently, in metallic (Bi/Ag) interfaces.43

The Rashba splitting of surface states is by no means
the only important manifestation of SO at a surface. Re-
cently, it has been pointed out that the surface-induced
SO coupling can have large effects also on the bulk states
of a thin metallic film that is sandwiched between two
insulating barriers44–47. The bulk of such a metal is
typically inversion-symmetric and its electronic

states remain therefore doubly degenerate – at
variance with the spin-split bands of the Rashba
model. Nevertheless, it has been predicted that
such films could exhibit large spin Hall angles,
and that an electric polarization perpendicular to
the surface should appear to second order in the
electric field driving a current in the plane of the
film.46

In this paper we focus on the non-equilibrium spin
polarization that appears in the immediate vicinity of
the surface of a metal when a uniform current is driven
throughout the bulk of the metal, parallel to the sur-
face. The effect bears some similarity to the well known
Edelstein effect,2,3 which occurs in two-dimensional elec-
tron gases at the surface of semiconductors and metals.
The crucial difference here is that the spin polarization
of interest occurs in a continuum of bulk states scatter-
ing off the surface, with a relatively minor contribution
from the surface state. The induced spin polarization
is perpendicular to the current, parallel to the surface,
and confined to a distance of order k−1F of the surface,
where kF is the three-dimensional Fermi wave vector of
the bulk electrons. The origin of the effect is spin-
dependent electron scattering by the surface and,
more specifically, the interference between the in-
cident and the reflected wave. For a semi-infinite
jellium model, taken to be representative of metals with
a simply connected Fermi surface, we prove as a theorem
that the surface spin density (i.e., the spin density inte-
grated over the coordinate perpendicular to the surface)
is completely independent of the details of the confine-
ment potential and is given by the elegant formula

S = −γ~ẑ× j , (1)

where j is the particle current density in the bulk, ẑ the
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FIG. 1. (a) A metal film sandwiched between two insulators
and separated from them by potential barriers of height V .
The black arrows and dots indicate the direction of the spin
polarization induced by the interfacial spin-orbit interaction
when a current j flows along the x axis in the bulk of the
film. (b) A more detailed view of the confining potential as
a function of the coordinate z perpendicular to the interface.
Only one interface is shown in this drawing, at z = 0, the
other one being located far away on the negative z axis.

unit vector normal to the surface, and γ = ~
4mc2 (with m

the electron mass) contains only fundamental constants.
The relation holds also for a general metallic solid, but γ
then becomes a material-specific parameter that controls
the strength of the interfacial spin-orbit coupling. In a
thin metal film having two surfaces separated by a dis-
tance much larger than k−1F the two surfaces induce inde-
pendent spin polarizations of opposite sign, such that the
total integral of the spin density across the film vanishes.
This situation can be described as a kind of bulk spin Hall
effect, in which the current flowing in the bulk of the film
induces spin accumulations of opposite signs on the two
surfaces. But the driving force is not the spin-orbit inter-
action in the bulk of the metal, nor the spin-orbit inter-
action with impurities – rather, the spin-orbit interaction
with the surface confinement potential, if one adopts the
jellium model description, or, alternatively, in the real
material, the combination of the atomic spin-orbit inter-
action with the loss of inversion symmetry induced by
the termination of the bulk crystal. This kind of spin
Hall effect is different from the one investigated in
Ref. 46 (where the accumulated spin was perpen-
dicular to the plane of the film), but is quite simi-
lar (although conceptually distinct from it) to the
standard spin-Hall effect, which arises from the

spin-orbit interaction in the bulk of the metal. It
is remarkable that the final result has the simple and uni-
versal form of Eq. (1): such a structure is reminiscent of
exact results about impurities in metals, where the sum-
mation of contribution from all occupied scattering states
generates the Friedel sum rule or Fumi’s theorem.48.
Similar results were previously obtained for the
surface accumulation of spin in doped semicon-
ductors49 and for the edge-induced spin den-
sity in two-dimensional semiconductor quantum
wells which break inversion symmetry50–55, as well
as for normal-metal/superconductor interfaces56.
Ref. 53, in particular, presents strong numerical
evidence for the robustness of the edge spin ac-
cumulation with respect to the form of the edge
confinement potential. However, to the best of
our knowledge, ours is the first work that demon-
strates as a theorem the universality of the sur-
face spin accumulation in the three-dimensional
jellium model.

There remains the fundamental problem of determin-
ing the value of the constant γ, which mimics in the jel-
lium model the surface spin-orbit coupling of the real ma-
terial. This constant is expressed in terms of the effective
electron mass m and the effective Compton wavelength
λc as follows:

γ = s
mλ2c
4~

, (2)

where s = ±1 is the overall sign of the expression
(for a free electron in vacuum one has s = +1 and
λc = ~/mc ' 10−2Å, but these values can be dramat-
ically different in a solid state environment: for electrons
in GaAs, for instance, s = −1 and λc ' 2Å) To deter-
mine the quantities s and λc in any specific situation one
must draw on detailed microscopic calculations, which
take into account the effect of the atomic spin-orbit in-
teraction on the electronic states. Here we propose a
novel approach to the calculation of s and λc, based on
the use of Eq. (1). The idea is to perform an ab ini-
tio calculation of the spin polarization of the bulk states
of a thin metal film in the presence of a homogeneous
current. Assuming the standard relaxation time approx-
imation the current is introduced by shifting the Fermi
surface in momentum space. The resulting coefficient of
proportionality between the surface spin density and the
particle current density yields an ab initio estimate of γ.
In what follows, we apply this idea to the calculation of γ
at the surface of a gold film. Although in Au(111) there
is a Rashba-split surface state at the Fermi level, in our
ab initio calculation we find its contribution to the sur-
face spin polarization to be an order of magnitude smaller
than the contribution from the bulk continuum. More-
over, a careful study of the three-dimensional spin density
confirms that the induced spin is confined to a relatively
small region (∼ k−1F ) near the surfaces. We believe that
Eq. (1), combined with ab initio theory, provides a re-
markably simple approach to the determination of γ, a
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crucial parameter for the spintronics of thin metal films.

II. PROOF OF THE THEOREM

We consider the setup of Fig. 1: a semi-infinite three-
dimensional electron gas (jellium model) is confined to
the half space with z < 0 by a potential that rises from
V (z) = 0 for z → −∞ to V (z) = V for z → ∞. No
assumption is made about the shape of this potential.
It is further assumed that the chemical potential of the
electrons µ is smaller than the barrier height V . Our ob-
jective is to calculate the integrated spin density induced
by the interface in the infinite jellium. In the absence
of spin-orbit interaction the electronic states are charac-
terized by a conserved two-dimensional momentum p in
the x-y plane (parallel to the interface) and by an asymp-
totic one-dimensional wave vector k > 0 in the z-direction
(perpendicular to the interface):

ψp,k(r, z) = eip·rϕk(z) , (3)

where the wave functions ϕk(z) are spinors of definite
spin orientation (↑ or ↓) and have the asymptotic form

ϕk(z) =

{
eikz + r̂ke

−ikz , z → −∞
(1 + r̂k)e−κz , z → +∞ (4)

where r̂k is a phase factor and κ =
√

2mV − k2.
This classification of states is essentially preserved by

the spin-orbit interaction of form

HSO(z) = γV ′(z)(ẑ× vp) · σ , (5)

where vp is the velocity operator and V ′(z) is the deriva-
tive of the potential with respect to z. The only difference
is that r̂k becomes a unimodular 2× 2 matrix, mixing ↑
and ↓ spin states.

The spin polarization at position z is obtained from
the trace of the spectral function

Ap(z, ω) = −2=mGRp (z, z, ω) , (6)

where the retarded Green function GRp (z, z′, ω) is a 2× 2
matrix in spin space, in the following manner

s(z) =
1

2

∑
p

Tr

∫ +∞

−∞

dω

2π
fp(ω) [σAp(z, ω)] , (7)

where fp(ω) is the average occupation of a state of paral-
lel momentum p at energy ω. In equilibrium this would
be the Fermi distribution at chemical potential µ and
temperature T , f(ω) = [eβ(ω−µ) + 1]−1 independent of
p. In a current-carrying state, such as we are consider-
ing here, the occupation is given by a displaced Fermi
distribution function fp(ω) = f(ω − p · vd), where vd
is the average drift velocity of the electrons in the plane

of the film. The surface spin density S, defined as s(z)
integrated over z is then given by

S = −
∑
p

∫ +∞

−∞

dω

2π
fp(ω)=m

∫
dzTr

[
σGRp (z, z, ω)

]
.

(8)
Notice that we have set ~ = 1 in these calculations.

This formula is exact and obviously yields zero spin
polarization if spin-orbit coupling is absent. We will
now proceed to evaluate GRp (z, z, ω) to first order in the
strength of spin-orbit coupling. The first-order expres-
sion for this is

GRp (z, z, ω) =

∫
dz′gRp (z, z′, ω)HSO(z′)gRp (z′, z, ω) (9)

where HSO(z) is defined in Eq. (5) and gRp (z, z′, ω) is the
retarded Green’s function in the absence of spin-orbit
coupling, i.e.,

gRp (z, z′, ω) =
∑
k

ϕk(z)ϕ∗k(z′)

ω − εp(k) + iη
, (10)

where εp(k) ≡ p2

2m‖
+ k2

2m . Making use of the explicit form

of HSO(z) we find

=m
∫
dzTr

[
σGRp (z, z, ω)

]
=

2γ(ẑ× vp)=m
∑
k

〈ϕk|V ′(z)|ϕk〉
(ω − εp(k) + iη)2

, (11)

where orthonormality of the states ϕk(z) has been used.
A crucial observation is that −V ′(z) is the operator of
the force exerted by the interface on the electron. Its
expectation value in the scattering state |ϕk〉 is there-
fore the negative of the pressure exerted by the electron
of incoming perpendicular momentum k being reflected
at the interface with outgoing perpendicular momentum
−k. This pressure is simply the current of perpendic-

ular momentum impinging on the surface, 2k2

m . This
can be easily understood by considering the flux
of incident electrons ∝ k/m, with each electron
transferring momentum 2k to the surface. Thus
we have

〈ϕk|V ′(z)|ϕk〉 =
2k2

m
, (12)

regardless of the detailed form of the potential. Armed
with this result, we evaluate the momentum sum in
Eq. (11). After an integration by parts we find

=m
∑
k

〈ϕk|V ′(z)|ϕk〉
(ω − εp(k) + iη)2

= 2π
∑
k

δ(ω − εp(k)) . (13)

Plugging this into Eq. (11) and then Eq. (11) into Eq. (8),
and reinstating physical units, we arrive at the promised
“universal” result of Eq. (1), where the three three-
dimensional particle current density j is given by j = nvd,
and n is the electron density.
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III. AB INITIO CALCULATION FOR AU(111)
SURFACE

To demonstrate the usefulness of our theorem we have
performed an ab initio atomistic calculation of the spin-
density profile induced by a current at the Au(111) sur-
face. This is the classic system, in which the Rashba
splitting of surface states was first observed57, and for
which a thorough theoretical analysis of both the surface
states splitting57 and the bulk continuum polarization45

is available. The calculations were done for a finite-
thickness slab of 19 atomic layers: the self-consistent
(within the local density approximation) band structure
was obtained with augmented plane waves method using
the full-potential scheme of Ref.59, and the spin-orbit
coupling was included with the second variation tech-
nique of Koelling and Harmon60. The spin-resolved band
structure was calculated in the Γ̄M̄ direction, and, to
simplify the integration over the two-dimensional (2D)
Brillouin zone, the hexagonal surface was assumed to be
axially symmetric. In the finite-thickness slab formalism
the eigenfunctions are two-component spinors labeled by
a 2D Bloch wave vector p parallel to the surface and by
a band index n, which subsumes the perpendicular-to-
surface component of the Bloch wave vector. Each Bloch
function contributes a spin density ~

2 sn(r,p), and we are
interested in its in-plane y component sy(r), perpendicu-
lar to the current j = x̂jx. To calculate sy(r) we populate
the electronic states with electrons according to a Fermi

distribution shifted by an amount δp = 4πe2

~ω2
p

j, where ωp

is the plasma frequency entering the Drude conductivity
σ = τω2

p/4π.61 After the angular integration (assuming
axial symmetry) we get

sy(r) = jx
e2

2ω2
p

∑
n

sn
(
r, pFn

)
pFn, (14)

where pFn is the Fermi wave vector in the 2D band of
index n.

Figure 2(a) shows the depth profile sy(z), which is the
average of sy(r) over the in-plane unit cell. The func-
tion sy(z) has a strong peak on the last atomic layer,
and deep inside the slab it converges to a lattice-periodic
function whose integral over the unit cell is zero. This
spatially-dependent spin polarization, first observed in
Refs.44,45, arises from the asymmetric occupation of the
bulk Bloch periodic states in the presence of a current
jx. The net spin polarization Sy (integrated over the
unit cell) must be zero due to inversion symmetry (jx is
odd under inversion, Sy is even), but a spin-dipole den-
sity can and does appear in each unit cell, reflecting the
intrinsic spin Hall effect of the material. This bulk effect
is completely absent in the jellium model. The red curve
in Fig. 2(a) is obtained from the total s(z) by subtract-
ing the lattice-periodic asymptotic function. This is the
proper surface-induced spin polarization to be compared
with the jellium-model calculations. It is thus seen that
the effect of the surface extends over several atomic layers
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FIG. 2. (Color online) Spatially resolved induced spin den-
sity sy(z) per unit particle current density jx at Au(111) cal-
culated for a symmetric 19-layer slab: (a) total spin density
and (b) surface state contribution. The center of the slab is
at z = 0. The three central layers are seen to be almost iden-
tical, which proves that the convergence with respect to the
layer thickness has been achieved. The red curve shows sy(z)
with the periodic asymptotic part subtracted.

into the interior of the crystal.62 The calculations suggest
that the main contribution to the surface-induced spin
polarization comes from bulk-continuum states, which
are not spin-split (they are Kramers degenerate). Some-
what unexpectedly, the contribution from the Rashba-
split surface state is found to be an order of magnitude
smaller, see Fig. 2(b), and opposite to the bulk spin po-
larization. In particular, the strong peak of the
spin density on the last atomic layer in Fig. 2a is
seen to be unrelated to the surface state.

The integral surface spin density Sy is related to the
current jx via Eq. (1) where the parameter γ is obtained
by averaging Eq. (14) over the 2D unit cell and integrat-
ing over z. Expressed in Hartree atomic units (a.u.), for
Au(111) the present calculation yields γ = 0.7 a.u. (1
a.u. of time is ~/1H ' 2.42× 10−17 s). Equivalently, us-
ing the standard value m = 1.1me of the effective mass
for Au in Eq. (2), we obtain λ2c ' 0.8 Å2. This value can
now be used in the effective surface spin-orbit Hamilto-
nian Eq. (5) to reproduce, in the jellium model, the spin
polarization obtained from the ab initio calculation. For
a charge current density of 1010 A/m2 (corresponding to
a particle current density of 1029 m−2s−1) we find an in-
duced spin density of the order of 1012 m−2 (in units of
~). It should be possible to observe this surface spin by
Kerr rotation microscopy used e.g. to detect spin polar-
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ization in 2D electron gases in semiconductors28,29

IV. CONCLUSION

Our analysis of the surface scattering problem
in the jellium model has led to a direct connec-
tion, Eq. (1), between the spin-orbit coupling pa-
rameter γ and the spin density – a quantity that is
not only measurable, but, more importantly from
our point of view, computable in realistic systems.
This connection is universal, in the sense of not
depending on the form of the potential barrier in
the jellium model. The value of this connection
lies in the fact that it suggests a method to extract
γ from a relatively simple ab initio calculation of
the electronic structure. In turn, knowledge of γ
allows many interesting and useful model calcu-
lations to be performed. Besides parameterizing the
spin dependent surface scattering, the value of γ will, for

example, be useful in modeling bulk effects of great inter-
est in spintronics, such as spin diffusion and the spin Hall
effect, particularly when a high degree of accuracy is not
required. In fact, from our ab initio γ (or equivalently

λc) the parameter
λ2
ck

2
F

4 which controls the extrinsic spin

Hall effect63 is found to be ' 0.2 , which is close the value
fitted to experimental transport coefficients for Au (see
Table I in Ref. 63).
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