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We propose a practical scheme to generate a pure valley current in monolayer transition metal
dichalcogenides by one-photon absorption of linearly polarized light. We show that the pure valley
current can be detected by either photoluminescence measurements or the ultrafast pump-probe
technique. Our method, together with the previously demonstrated generation of valley polarization,
opens up the exciting possibility of ultrafast optical-only manipulation of the valley index. The tilted
field effect on the valley current in experiment is also discussed.

PACS numbers: 73.63.-b, 75.70.Tj, 78.67.-n

I. INTRODUCTION

Recent years have seen a surge of interest in the manip-
ulation of the valley index of Bloch electrons,1–8 largely
driven by its potential applications in electronics and op-
toelectronics.9 The valley index enumerates degenerate
energy extrema in momentum space. Such degeneracies
are often present in 2D materials with a honeycomb-like
structure, such as graphene, boron nitride, and transi-
tion metal dichalcogenides (TMD). In these materials,
weak intervalley scattering renders the valley index an
effective degree of freedom that can be utilized in novel
devices. This realization of valley-based electronics is
called valleytronics, which depends crucially on the dy-
namical control of two quantities: valley polarization
and valley current. The optical generation of valley po-
larization by circularly polarized light10,11 shows some
promise as a realization of valleytronics and has been ex-
perimentally demonstrated in monolayer MoS2.11–13 On
the other hand, so far only valley-polarized electric cur-
rent has been reported.14–16 In analogy to spintronics, it
would be desirable to generate a pure valley current, in
which there is no net motion of charge; carriers in oppo-
site valley move in opposite direction. Such a pure valley
current would rule out any charge-related effect17–19 and
generate minimal Joule heating, similar to a pure spin
current20.

In this work, we propose a new approach to the gen-
eration and detection of a pure valley current by optical
means. Based on both symmetry analysis and an effec-
tive k ·p Hamiltonian, we show that a pure valley current
can be generated by linearly polarized light in monolayer
TMDs. The generating mechanism parallels that for spin
current.21 However, the role of spin-orbit coupling is re-
placed by the trigonal warping in the band structure,
which is entirely a lattice effect. Due to the unique spin-
valley coupling in this system,10 the generated valley cur-
rent is accompanied by a spin current. We also present
a theory for valley diffusion that takes into account the
spin-valley coupling, and show that the pure valley cur-
rent can be detected by either photoluminescence mea-
surements or the ultrafast pump-probe technique. Our
method, together with the previously demonstrated gen-

eration of valley polarization,11–13 opens up the exciting
possibility of ultrafast optical-only manipulation of the
valley index.

The paper is organized as follows. In Sec. II, we
present the optical generation of valley current, where
the symmetry analysis is given in Sec. II A and the nu-
merical result is shown in Sec. II B. Detection of the
generated valley current is considered in Sec. III, where
the ultrafast pump-probe and photoluminescence mea-
surements are proposed in Sec. III A and Sec. III B,
respectively. Finally, discussion and conclusion are made
in Sec. IV.

II. OPTICAL GENERATION OF VALLEY
CURRENT

A. Symmetry analysis

Figure 1 shows the schematic setup. A linearly po-
larized light E(ω) = E0(cos θx̂ + sin θŷ) at normal in-
cidence is considered, where E0 and θ refer to the am-
plitude and polarization angle of the electric field, re-
spectively. We choose x̂ to be along the zigzag direction
and ŷ the armchair direction. In monolayer TMD, each
transition metal cation is trigonal-prismatically coordi-
nated by six nearest neighbor chalcogen anions, explicitly
breaking the inversion symmetry. The relevant symme-
try operations of the system include three-fold rotation
C3 around the ẑ axis, mirror reflections Mx(x → −x)
and Mz(z → −z), and time-reversal.

The generation of a dc current by imposing an op-
tical field—namely, the photogalvanic effect (PGE)—is
a second-order nonlinear phenomenon characteristic of
non-centrosymmetric materials. Under a monochromatic
light E(t) = E(ω)e−iωt + c.c., the photocurrent has the
standard form

jα =
∑
k

χαβγ(k, ω,−ω)Eβ(ω)E∗γ(ω) , (1)

where the k-resolved second-order susceptibility tensor
χαβγ(k, ω,−ω) is given from the perturbation theory
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FIG. 1. (color online). The crystal structure of monolayer
TMD, where M (red) is the transition metal atom and X
(blue) is the chalcogen atom. (a) Side and (b) top view of the
lattice structure. The thick arrow depicts a normally incident
linearly polarized light with the polarization angle θ. The yz
plane is defined as one of the mirror planes (shaded region).

by22,23

χαβγ(k, ω,−ω) =
e3

h̄2ω2S

∫ 0

−∞
dt1

∫ t1

−∞
dt2e

−iω(t1−t2)

× et2/τχαβγ(k, t1, t2),

χαβγ(k, t1, t2) = Tr(ρ̂0(k)[[v̂α, v̂β(t1)], v̂γ(t2)]).

(2)

ρ̂0(k) is the initial equilibrium density matrix operator
and v̂α,β,γ(t) are the velocity operator in the Heisenberg
picture at time t. Tr denotes the trace and S is the area.
Since we are dealing with a strictly 2D system, the in-
dices α, β, γ can be either x or y. According to Ref. 24,
χαβγ(k, ω,−ω) is further decomposed into three terms:
two constant terms and one linear-in-time term, the lat-
ter of which is cut off by relaxation time τ based on the
relaxation time approximation. In this work, we restrict
ourselves to the high quality samples with τ � h̄/∆E,
in which the response is dominated by the linear-in-time
term, and the other two terms can be neglected.25 ∆E is
the optical transtion gap. As a result, the susceptibility
reduces to

χαβγ(k, ω,−ω) = − πe
3τ

h̄ω2S

∑
n,m

(vβ,k)nm(vγ,k)mn

× [(vα,k)mm − (vα,k)nn]Fnm,k

× δ(h̄ω + εmk − εnk) .

(3)

Here (vα,k)mn = 〈m,k|v̂α|n,k〉 is the velocity matrix ele-
ment in the Bloch basis |n,k〉, εnk is the band dispersion,
Fnm,k = fnk − fmk with fnk = [1 + exp[β(εn,k − µ)]]−1

being the Fermi-Dirac distribution. µ is the chemical po-
tential and β = 1/kBT . Note that the expression for jα,
when transformed into the real space representation, is
also recognized as the “shift current”.26,27

For a system with time-reversal symmetry (TRS),
PGE vanishes under linearly polarized light. The rea-
son is that linear polarization picks out the real part of
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FIG. 2. (color online). The first Brillouin zone (BZ) of mono-
layer MX2. P1,2,3,4 are symmetry-related points.

χ in Eq. (1), which satisfies

χ↑αβγ(k) = −χ↓αβγ(−k) , χ↓αβγ(k) = −χ↑αβγ(−k) (4)

due to the TRS. For simplicity, we have omitted the ar-
guments ω and −ω in χ. Summing over each pair of χ’s
in Eq. (4) then yields zero charge current. Equation (4)
suggests that it is possible to generate a pure spin cur-
rent. However, without breaking the spin degeneracy,

one has χ↑αβγ(k) = χ↓αβγ(k); consequently, the total spin
current still vanishes. In Ref. 21, Bhat et al. showed that
introducing the spin-orbit coupling can break the spin
degeneracy, giving rise to a pure spin current.

We now show that a similar effect can generate a pure

valley current, i.e., jK + jK
′

= 0, and jK 6= 0. In mono-
layer TMD, the two valleys, located at the K and K ′

points of the hexagonal Brillouin zone, are related by the
TRS. As such, the valley-resolved susceptibility tensor
satisfies

χKαβγ(q) = −χK
′

αβγ(−q) , χK
′

αβγ(q) = −χKαβγ(−q) , (5)

where q ≡ k −K(K ′) defines a small momentum away
from the valley center K (K ′). Again, the charge current
vanishes. However, the K and K ′ points have C3 rota-
tional symmetry. This allows χKαβγ(q) 6= χK

′

αβγ(q), lead-

ing to a pure valley current ∝
∑

q

∑
η ξηχ

η
αβγ(q),where

ξη = ±1 for η = K,K ′. For a system symmetric un-
der Mz, C3 is the only possible rotation symmetry that
can break the valley “degeneracy” and induce the valley
current; all other rotational symmetries yield zero valley
current, even though they given rise to an anisotropic
band structure.

To substantiate the preceeding argument, we carry out
a detailed group theory analysis. The symmetry group
of the K point is C3h; χ transforms as a direct product
E′⊗E′⊗E′, which contains two copies of the identity rep-
resentation. This indicates that there are two indepen-
dent components of χ: χηyyy = −χηxxy = −χηxyx = −χηyxx
(denoted by χηe) and χηxxx = −χηxyy = −χηyxy = −χηyyx
(denoted by χηo). However, due to the TRS, we find that
the combined symmetry TMx requires the contribution
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from χηe to vanish. To see this, let us consider two k-
points P1 and P2 in the K valley. These are related by
qy → −qy (Fig. 2). We also introduce two intermediate
points P3 and P4. P1 and P3 are related by the mirror
symmetry Mx and satisfy

χKe (qx, qy) = χK
′

e (−qx, qy) . (6)

Meanwhile, P3 and P4 are related by the TRS, so that

χKe (qx, qy) = −χK
′

e (−qx,−qy) . (7)

Finally, P2 and P4 are equivalent up to a reciprocal lattice
vector. Therefore, upon summing over k-states in one
valley, the contribution from χηe vanishes. The only non-
vanishing contribution to the valley current is from χηo ,
with an angular dependence

jη ∝ χηxxx cos(2θ + ϕ) , (8)

where ϕ is the detection angle. Experimentally, by fixing
ϕ, a π-period oscillation of the signal is expected.

B. Numerical results

A unique property of monolayer TMD is the strong
spin-valley coupling, which refers to the opposite spin
splitting at the valence band edge in opposite valleys [see
Fig. 3(a)].10 We can see immediately that a pure spin cur-
rent will accompany the generated valley current. Note
that this spin current would vanish if the energy bands at
the K and K ′ points are isotropic, even in the presence
of spin-orbit coupling.

Another important parameter in Eq. (1) is the relax-
ation time τ . Due to its multivalleyed band structure,
there are several scattering channels in monolayer TMD.

They give rise to four relaxation times τ
e/h
intra/inter which

refer to intra- and intervalley scattering by electrons (e)
and holes (h). These lifetimes satisfy28–30

τeintra ∼ τhintra � τeinter � τhinter . (9)

Given that 1/τ = 1/τintra+1/τinter, the optically gener-
ated valley current is predominantly determined by the
intra-valley scattering time τintra. Electrons and holes
exhibit almost the same intra-valley scattering time when
neglecting the weak intrinsic electron-hole asymmetry in
the system. The last inequality in Eq. (9) comes from
the aforementioned spin-valley coupling.28–30 Although
not essential in the generation of the valley current, it
is important to the detection process as discussed below.
In the absence of spin-dependent scattering, the upper
limit of τhinter is set by the Bir-Aronov-Pikus mechanism,
which could be as large as ∼ 1ns.13,31

To calculate the valley current in monolayer TMD, we
employ a low-energy effective k ·p Hamiltonian32 around
valley K(K ′), which includes both the C3 symmetry-
allowed trigonal warping and k-cubed corrections. We
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FIG. 3. (color online). Linear valley and spin photogalvanic
effect (PGE) of monolayer MoS2. (a) Schematics of band dis-
persion around valley K(K′) along the kx axis. Red (green)
curves denote states with spin up (down). Thick (thin) solid
blue arrows depict strong (weak) optical transition rates in
each valley. Fermi energy EF = 0. (b) Angular dependence
of valley current on the polarization angle θ along the x̂ axis
(zigzag direction). Red solid and blue dashed curves label
photon energy h̄ω = 1.68eV and 1.80eV. (c) Valley and spin
current as functions of photon energy (minus by band gap
Eg). τ = 55 fs, E = 3.01× 104 V/m, T = 5 K. Band param-
eters are adopted from Ref. 32 and band gap Eg = 1.585eV.

also take into account the large spin splitting in the va-
lence bands; the small spin splitting in the conduction
bands is ignored.

With realistic parameters,33 our numerical results are
shown in Fig. 3. In Fig. 3(a), the band dispersion of
the effective model is plotted for ky = 0, which clearly
shows the large spin splitting in the valence bands. Due
to the C3 symmetry, optical transitions excite states with
different |qx| in each valley. This results in different op-
tical transition rates (indicated by the thickness of the
arrow) and different velocity in the qx direction, both of
which contribute to generating the valley photocurrent.
Figure 3(b) shows the angular dependence of the valley
current on the polarization angle θ by fixing ϕ = 0. The
valley current jv = jK − jK′ has an order of 10−6 A/cm,
comparable to the magnitude of photocurrent observed in
GaAs quantum wells.34 Figure 3(c) displays both valley
and spin current as functions of photon energy. We note
that as soon as the lower spin-split valence band becomes
active, the spin current displays a downward trend. This
allows us to manipulate the generation of valley and spin
current either collectively or separately.
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III. DETECTION OF VALLEY CURRENT

Next we discuss the detection of the pure valley cur-
rent. Our idea utilizes the fact that the valley carriers in
monolayer TMD are described by a pair of massive Dirac
fermions with opposite mass,10 therefore each valley ex-
hibits opposite time-reversal symmetry breaking effects
such as circular dichroism10 and Faraday rotation.35 Note
that there is a possible complication due to the large ex-
citon binding energy observed in monolayer TMD,36–40

which makes the generation of free carriers difficult. To
remove the exciton effect, we may heavily dope the sam-
ple41 or apply a large in-plane electric field.42 Under
these circumstances, we propose two possible detection
schemes.

A. Ultrafast pump-probe measurement

In one scheme, one can observe the second-harmonic
generation (SHG) of the valley current using the ultra-
fast pump-probe technique43 as shown in Fig. 4(a). This
is similar to the proposed detection method of spin cur-
rent.44 First, the pump light (with frequency f1 > Eg)
generates a pure valley current. Then the probe light
(with frequency f2 < Eg/2) creates a population im-
balance between k and −k states, which leads to a
net Faraday rotation. This will induce a polarized field
P (2f2) ∝ (ẑ×E|E|), and emit a second-harmonic signal
(orthogonal to the probe light). Since the energy of the
SHG is still below the band gap Eg, the Faraday rota-
tion is related to the virtual interband transition, which
distinguishes it from other optical effects of the pump
light.

B. Photoluminescence measurement

An alternative proposal, unique to monolayer TMD,
is to investigate the photoluminescence (PL) helicity as
shown in Fig. 4(b). Suppose a linearly polarized light
illuminates the central region, generating a steady valley
current. As the valley carriers move outside of the central
region, they will start the diffusion process described by

D∇2δµ(x)− δµ(x)/τinter = 0 , (10)

where D = v2F τ/2 is the diffusion constant—derived from
the Fermi velocity vF and the momentum relaxation time
τ—and δµ(x) = µK(x) − µK′

(x) is the chemical poten-
tial difference between the two valleys. This equation
describes both electrons and holes. Consider the right re-
gion of the sample. For a valley current with initial veloc-
ity jv = ±(σxx/2e)∂xδµ(x), where +(−) corresponds to
holes (electrons) and σxx is the total longitudinal (Drude)
conductivity, we obtain

δµ(x) = (∓2ejv`inter/σxx) exp(−x/`inter) , (11)

FIG. 4. (color online). Detection of pure valley current in
monolayer MoS2. (a) The second-harmonic generation from
the pump-probe experiment. Red (green) line denotes pump
(probe) light, and purple line refers to the second-harmonic
generation. f1(f2) is the frequency of the pump (probe) light.
(b) Photoluminescence (PL) behavior over the electron-hole
recombination length d. Red (blue) ball labels carriers from
valley K(K′) and ’-’(’+’) denotes electrons (holes).

where `inter =
√
Dτinter is the valley diffusion length. In

monolayer TMD, we have τeinter � τcom � τhinter, where
τcom is the electron-hole recombination time.13 There-
fore, after a diffusion length d ∼

√
Dτcom, holes will

have a local chemical potential difference δµh(x) < 0;
meanwhile, electrons become almost equally populated
in the two valleys and δµe(x) ' 0. Following the valley-
contrasting circular dichroism,10–13 this leads to a net
σ+ PL hecility. A similar argument can be applied to
the left region of the sample, where a net σ− PL is ex-
pected. Experimental results found13 that τhinter ∼ 1
ns, which leads to `hinter ∼ 1 µm; they further deter-
mined that τcom = 50 ps, resulting in a PL helicity
(µK − µK

′
)/(µK + µK

′
) = 0.8. Note that this phe-

nomenon is intimately related to the spin-valley coupled
bands, and hence absent in other multi-valleyed systems
such as staggered monolayer or biased bilayer graphene.

IV. DISCUSSION AND CONCLUSION

So far we have considered the normal incidence case.
For oblique incidence, the results are summarized in Ta-
ble I, where the general form of the valley-resolved cur-
rent jηx(jηy ) along the longitudinal (transverse) direction
is given. η refers to valleys K and K ′, and the xz plane
is the incident plane. For a linearly polarized light, val-
ley current is induced in both longitudinal and transverse
directions; in contrast, only the longitudinal valley cur-
rent is generated under circularly polarized light. In both
cases, charge current vanishes since χKxxx +χK

′

xxx = 0 due
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TABLE I. Valley-resolved longitudinal (transverse) current jηx(jηy ) under oblique incidence for linear and circular photogalvanic
and photon drag effect, with η = K or K′. θ and φ are polarization and incident angle, respectively. Txxxx, Txxyy and Txxxy
are independent components of a rank-4 tensor. E0 is the amplitude of the electric field.

Longitudinal (jηx) Transverse (jηy )

Linear photogalvanic effect χηxxx(cos2 θ cos2 φ− sin2 θ)E2
0 −χηxxx cosφ sin 2θE2

0

Circular photogalvanic effect −χηxxx sin2 φE2
0 0

Linear photon drag effect Qx(T ηxxxx cos2 θ cos2 φ+ T ηxxyy sin2 θ)E2
0

Qx
2

(T ηxxxx − T ηxxyy) cosφ sin 2θE2
0

Circular photon drag effect Qx(T ηxxxx cos2 φ+ T ηxxyy − 2iT ηxxxy cosφ)E2
0 0

to the mirror symmetry under Mx, leading to a pure val-
ley current. Apart from the PGE, there exists another
photocurrent generating mechanism under the oblique
incidence, namely the photon drag effect (PDE).45 In
this case, photons transfer both momentum and angu-
lar momentum to carriers, and the current is described
by jα = TαβγζQβEγE

∗
ζ , where T is a rank-4 tensor and

Q is the photon wavevector. Similar to the PGE, PDE
contributes to the valley current under both linearly and
circularly polarized light. However, TKxxxx + TK

′

xxxx 6= 0,

TKxxyy +TK
′

xxyy 6= 0, indicating that the net charge current
does not necessarily vanish in the system. To distin-
guish these two mechanisms in experiments, one notices
the fact that the response from PDE (PGE) is an odd
(even) function under the reversal of incident direction
Q → −Q, by which the dominant mechanism can be
identified.

The proposal of pure valley current generation can be
generalized to other systems with appropriate symme-
tries, however, the magnitude of the effect and the detec-
tion scheme may vary among different systems. In our
view, monolayer TMD has its advantage that the spe-

cific band and symmetries allow peculiar detection and
observable signal.

To conclude, we have demonstrated that a linearly-
polarized light can induce a pure valley current in mono-
layer TMD. This mechanism originates from the C3-
symmetry rather than spin-orbit coupling. Furthermore,
we propose two realistic optical approaches to detect the
pure valley current. The effect of oblique incidence is also
discussed.
Note added.—Upon the completion of this work, we

become aware of two recent papers, Ref. 46 and 47, which
also studied the nonlinear valley effect.
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