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An interesting route to the realization of topological Chern bands in ultracold atomic gases is
through the use of optical flux lattices. These models differ from the tight-binding real-space lattice
models of Chern insulators that are conventionally studied in solid-state contexts. Instead, they
involve the coherent coupling of internal atomic (spin) states, and can be viewed as tight-binding
models in reciprocal space. By changing the form of the coupling and the number N of internal spin
states, they give rise to Chern bands with controllable Chern number and with nearly flat energy
dispersion. We investigate in detail how interactions between bosons occupying these bands can lead
to the emergence of fractional quantum Hall states, such as the Laughlin and Moore-Read states.
In order to test the experimental realization of these phases, we study their stability with respect
to band dispersion and band mixing. We also probe novel topological phases that emerge in these
systems when the Chern number is greater than 1.

I. INTRODUCTION

Recent years have witnessed a surge of interest in
variants of the fractional quantum Hall (FQH) problem,
which depart from the original setting of interacting elec-
trons in uniform magnetic field by replacing the elec-
trons by interacting bosons and/or by introducing strong
lattice effects1–9. These generalizations are motivated
both by new experimental settings where such questions
emerge naturally (e.g. in ultracold atomic gases, or ma-
terials with strong spin-orbit coupling), and also, in light
of the many forms of topological insulator that are now
understood to be possible, by the urgent search to under-
stand the full range of possible strongly correlated topo-
logical phases.

For the case of two-dimensional lattices, with “Chern
bands” replacing the lowest Landau level, the generalized
strongly correlated phases are referred to as fractional
Chern insulators (FCIs)10–14. Most theoretical studies
of FCIs have focused on tight-binding lattice models for
the Chern bands, these being most readily related to
electronic materials. Significant understanding has been
reached in how to generate topological bands with con-
trollable Chern number and with controllable dispersion,
typically by introducing and tuning hopping parameters.
However, in the context of ultracold gases – where the full
range of generalized fractional quantum Hall systems has
great potential for experimental exploration – such tight-
binding models are not necessarily the most natural mod-
els to consider. Indeed, it has been shown that adapta-
tions of schemes involving the Raman coupling of internal
atomic states15 (as studied in experiments at NIST16) to
optical lattice geometries allows the formation of topolog-
ical bands (including Chern bands) in lattices in which
the atoms remain far from the tight-binding limit. In-
stead, these “optical flux lattices”17,18 are best under-
stood in reciprocal space19. Design strategies allow sig-

nificant control over the band topology, dispersion and
Berry curvature distribution of these optical flux lattices,
by controlling the number of internal states and the laser
couplings19. As an example, a practical scheme has been
proposed for Raman coupling of N = 3 internal states of
87Rb20, which leads to flat lowest band with Chern num-
ber C = 1, and strongly correlated bosonic FQH phases
including the Moore-Read21 phase even for the (weak)
two-body interactions expected in that experimental set-
ting.

Different from a single Landau level, CIs can be used to
generate an almost flat band with a Chern number C > 1.
Once strong interactions are turned on, it is expected22

that these systems host new phases that are a generaliza-
tion of the Halperin states23 in the FQH with color-orbit
couplings. Indeed, numerical evidence for such states
has been obtained in various FCIs24–29. Since optical
flux lattices allow to tune the Chern number of the low-
est band while preserving its approximate flatness, these
systems appear to be natural candidates to implement
these phases.

In view of the very wide range of control of band topol-
ogy and dispersion that is possible using optical flux
lattices, they provide a very interesting and adaptable
framework in which to study FCIs. In this paper we
explore the range of bosonic FCIs that emerge in these
model systems, varying the number of internal states
that are coupled N and the Chern number of the low-
est band C. The possibility to implement these models
directly in experiment raises important practical issues.
We test possible experimental realizations of these phases
by studying their stability to the band dispersion rela-
tion and to band mixing. We also probe novel topologi-
cal phases that emerge in these systems when the Chern
number is greater than one.

The paper is arranged as follows. In Section II, we
describe the non-interacting model of the bosonic atoms



2

with N internal degrees of freedom trapped in the op-
tical flux lattice, introduced in Ref.19, that we consider
for our numerical simulations. In Section III, we give a
brief overview of FCIs both for C = 1 and C > 1. We
also give a brief introduction to the particle entanglement
spectrum30 that we use to probe the different states. We
then discuss in Section IV the numerical results for in-
teracting bosons in an optical flux lattice with Chern
number C = 1. In particular, we compute the value of
the neutral gap above the Laughlin state both in the flat
band approximation and in the presence of band mixing.
We also present evidence for the emergence of a Moore-
Read phase with two-body interactions and we discuss
its stability. Finally in Section V we provide a detailed
study of the emergence of Halperin-like states in optical
flux lattice with Chern number C = 2 and C = 3, includ-
ing their topological signature, neutral gap and stability.

II. OPTICAL FLUX LATTICES

In this paper, we consider bosonic atoms with N in-
ternal degrees of freedom (e.g. spin states) subjected to

the optical flux lattice described in Ref. 19. The inter-
nal states are coupled by two-photon Raman transitions
driven by laser beams that are arranged to form a peri-
odic lattice. (We consider a uniform system, made finite
by applying periodic boundary conditions commensurate
with this lattice, as described below.) The one-body
Hamiltonian reads

Ĥ =
P 2

2M
1̂1N + V̂ (r) (1)

where 1̂1N is the N ×N identity matrix. V̂ (r) describes
the coupling between the internal atomic states induced
by the laser beams and is given by19

V̂ (r) = −V


2 cos(r · κ3) A1 +A2e

−iC π
N 0 . . . A∗1 +A∗2e

iC
π(2N−1)

N

A∗1 +A∗2e
iC π

N 2 cos(r · κ3 − 2Cπ
N ) A1 +A2e

−iC 3π
N . . . 0

0 A∗1 +A∗2e
iC3π
N 2 cos(r · κ3 − C 4π

N ) . . . 0
...

...
...

. . .
...

A1 +A2e
−iCπ(2N−1)

N 0 0 . . . 2 cos(r · κ3 − C 2π(N−1)
N )

 (2)

where Aj = exp(−ir · κj), κ1 = (1, 0)κ ,κ2 =
(

1
2 ,
√

3
2

)
κ

and κ3 = κ2 − κ1. C is an integer and corresponds to
the Chern number of the lowest band of this model. The
energy scale (bandwidth) of this Hamiltonian is given by

the recoil energy ER = ~2κ2

2M . Here we do not discuss
experimental implementations of this model, but note
that Ref. 20 showed how to implement a closely related
model for N = 3, and that schemes for gauge fields using
the coupling of N > 3 levels have been suggested in the
literature31,32.

This Hamiltonian is invariant to translations along
a′1 = 2π

κ (1, 1/
√

3) and a′2 = 4π
κ
√

3
(0, 1). Thus, it can

be diagonalized in the plane waves basis |α,k,G〉 where
α = 0 . . . N−1 denotes the particle internal state, k is the
momentum in the first Brillouin zone andG is a vector of
the reciprocal space spanned by κ1 and κ3. In real space
the wave function is simply 〈r|α,k,G〉 = |α〉 eir·(k+G).

In this basis, the non zero matrix elements of V̂ are:

〈α,k,G± κ3| V̂ |α,k,G〉 = −V e±iC 2πα
N (3)

〈α± 1,k,G± κ1| V̂ |α,k,G〉 = −V (4)

〈α± 1,k,G± κ2| V̂ |α,k,G〉 = −V e±iC
(2α±1)π

N (5)

which show that, indeed, k is conserved due to Bloch’s
theorem in a cell of sides a′1,a

′
2.

Beyond this translation invariance, many matrix el-
ements are zero due to the form of the spin coupling
under momentum exchange. For instance, Eq. 4 shows
that an increase in the momentum by κ1 must be ac-
companied by a change of α by one. This is related to
the presence of a higher degree of translational symme-
try (i.e. a smaller real space unit cell) than one would
expect from a reciprocal lattice of sides κ1 and κ3: by
combining real space translation with spin rotation the
effective reciprocal lattice can be chosen to have sides κ1

and Nκ3. This structure can be readily seen by repre-
senting the matrix elements (3)-(5) in reciprocal space.
They cause momentum transfers only by values ±κα so
form a triangular lattice tight-binding model as depicted
in Fig. 1. The unit cell of this reciprocal-space model has
sides Nκ1 and κ3. Note that the phases of the matrix
elements (3)-(5) imply that each triangle is pierced by
a φ = π CN flux. For a weak lattice limit, one can show
that the Chern number of the lowest energy band is the
total flux in the unit cell made of 2N triangles is equal
to 1

2π ∗ φ ∗ 2N = C19. A similar reciprocal space struc-
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ture has been used to construct a generalization of the
Landau level to Chern numbers greater than one28.
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FIG. 1. Reciprocal space tight-binding representation of the
optical flux lattice model. The reciprocal space is spanned
by G̃1 and G̃2. A circle represents one internal state α =
0, ..., N −1. Blue links between two internal states are associ-
ated to the hopping amplitude (in the reciprocal space) given
the matrix element of by Eq. 3. Similarly, black (resp. red)
links are related to the matrix element of Eq. 4 (resp. Eq. 5).
Each triangle is pierced by a flux π C

N
, leading to the lowest

band Chern number C.

Using this higher spin-translational symmetry, one can

reduce the Hilbert space using another basis:
∣∣∣α,k, G̃〉

where G̃ is a vector of the reciprocal space spanned by
G̃1 = Nκ1 and G̃2 = κ3. In real space the wave function

is
〈
r|α,k, G̃

〉
= |α〉 eir·(k+ακ1+G̃). The real space unit

cell of this new reciprocal space is the parallelogram de-
fined by a1 = 2π

Nκ (1, 1/
√

3) and a2 = 4π
κ
√

3
(0, 1), with an

aspect ratio of N . The energy eigenstates can be decom-
posed on this basis∣∣ψnk〉 =

∑
α,G̃

cnk
αG̃

∣∣∣α,k, G̃〉 (6)

where n is the band index, α runs over the internal degree
of freedom and G̃ runs over all sites of the reciprocal
lattice. For numerical calculations, we need to introduce
a cut-off on momenta. Since G̃ can be written as nxG̃1 +
nyG̃2, where nx and ny are integers, we choose nx and ny
between −NG̃/2 and NG̃/2 (NG̃ even). Thus, the single-
particle Hilbert space dimension for a given value of k
is N(NG̃ + 1)2. In order to make sure that the value of
NQ is large enough, we check that inversion symmetry
is satisfied with a relative error on energies smaller that
10−12.

In Fig. 2 we show the density of states for C = 1 and
different numbers of internal degrees of freedom. The
ratio of the lowest band spread δ and the gap ∆ be-
tween the lowest band and the higher band (depicted in
Fig. 2a) varies from δ/∆ = 2.3× 10−2 (for N = 3) down
to δ/∆ = 1.7 × 10−3 (for N = 5). In these cases, as-
suming the lowest band is perfectly flat is a fairly good
approximation for a wide range of interaction strengths.
In Fig. 3, we give the density of states of this model for
the Chern numbers C = 2 and C = 3 and N = 5 for the

internal degrees of freedom. While for C = 2, the lowest
band is still relatively flat, the band dispersion is more
prominent for C = 3. In the latter case, increasing N
would improve the flatness.
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FIG. 2. Density of states for C = 1, V/ER = 1 and N = 3
(top panel), N = 4 (center panel) and N = 5 (lower panel).
The band spread δ of the lowest band and the band gap ∆
between the lowest band an the higher bands are depicted in
the top panel. Their values are δ = 1.5×10−2ER, ∆ = 0.65ER
for N = 3, δ = 4.1× 10−3ER and ∆ = 0.86ER for N = 4 and
δ = 1.7 × 10−3ER and ∆ = 1.0ER for N = 5. Note that for
N = 5, we have rescaled the density of states of the lowest
band by a factor 0.1.

For the many-body calculations, we will consider a fi-
nite size system with periodic boundary conditions de-
fined by the two vectors Lx = Nxa1 and Ly = Nya2.
The number of sites is Nx×Ny. The aspect ratio of this

finite size system is r =
Ny
Nx
N , since the unit cell itself
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FIG. 3. Upper panel: Density of states for C = 2 and V/ER =
1 for N = 5. Here δ = 3.3× 10−2ER and ∆ = 0.50ER. Lower
panel: Density of states for C = 3 and V/ER = 1 for N = 5.
Here δ = 8.6× 10−2ER ∆ = 0.19ER.

has an aspect ratio of N . This extra multiplicative factor
N in r does not appear in its usual definition for a FCI.
Since a small aspect ratio spoils the signatures of the
topological phases in finite size systems, we can use this
additional knob to move away from these pathological
cases.

III. FRACTIONAL CHERN INSULATORS

In this section we give a brief overview of FCIs and
summarize some of the main results that will be useful to
understand the emergence of FQH-like phases in optical
flux lattices.

A. FCI in a C = 1 band

FCIs are incompressible liquids formed in a partially
filled band with a non-zero Chern number, which gives
rise to a topological phase in the presence of interactions
that are strong compared to the bandwidth. The emer-
gence of such phases depends on several parameters such
as the one-body dispersion relation, Berry curvature33,
the range of the interaction or the band mixing. The
flat-band procedure allows one to freeze the kinetic en-
ergy and to project onto the single partially filled band,
effectively setting the one-body gap to infinity. This pro-
cedure is analogous to the Landau level projection. Start-
ing from the one-body Hamiltonian written in the Bloch

basis

Hband(k) =
∑

n bands

En(k)Pn(k) (7)

where En(k) is the dispersion relation of the n-th band
and Pn(k) is the projector on the n-th band with mo-
mentum k. Without affecting the topological properties
of the system, we can consider the flattened Hamiltonian

Hflat
band(k) = ∆band

∑
n bands

nPn(k) (8)

The energy separation ∆band between two consecutive
bands can be set to infinity to consider a single band.
In the following, we will focus on the lowest band i.e.
n = 0. In the presence of the interaction Hint and in the
flat band approximation, the effective Hamiltonian reads

Heff = P0HintP0 (9)

where P0 =
∑

k P0(k) is the projector onto the lowest
band. This expression is similar to the effective Hamil-
tonian projected onto the lowest Landau level for the
FQHE. Note that the natural energy scale for this effec-
tive Hamiltonian is the two particle energy scale. Such a
choice will be discussed in Sec. IV B.

Among the signatures that reveal the emergence of
a FQH-like phase in FCIs, the simplest ones are those
that can be extracted from the spectral analysis of finite
size exact diagonalizations. We consider a system of Nb

bosons on a lattice of Nx × Ny unit cells with periodic
boundary conditions in both x and y directions. The
filling factor is defined as

ν =
Nb

Nx ×Ny
(10)

Nx × Ny is equivalent to the number of flux quanta for
FQH systems.

For the FQHE with periodic boundary conditions in
both directions (the torus geometry), the physics of topo-
logical phases leads to a low-energy manifold with a char-
acteristic degeneracy. At filling factor ν = 1/2 for bosons
where the Laughlin state is realized, we observe two de-
generate states separated by a gap from the neutral ex-
citations. This exact degeneracy is a consequence of the
magnetic translation symmetries34,35. Such a symmetry
is absent in FCIs due to the non-flatness of the Berry
curvature35–37. Thus for these systems, the degeneracy
is generically lifted in a finite-size system but we still ex-
pect to observe a low energy manifold separated by a gap
from higher energy excitations.

The states in the low energy manifold of a given topo-
logical phase have well-defined quantum numbers, in par-
ticular momentum. The number of states per momentum
sector of many FQH model wavefunctions can be derived
from a generalized Pauli principle38. From this knowl-
edge and using the FQH to FCI mapping developed in
Ref. 35, one can predict what should be the number of
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states per momentum sector for each FQH phase realized
on a FCI. Such a characterization can be done both at the
exact filling factor where the state is expected and when
deviating from this filling factor by inserting quasihole
or quasielecton excitations. Nucleation of these excita-
tions can be done in the FCIs by increasing or reducing
the number of lattice unit cells at fixed particle number,
which is the equivalent of adding or removing flux quanta
in the FQHE language.

A typical energy spectrum for a FCI at filling factor
ν = 1/2 is shown in Fig. 4. The energies are displayed
as a function of the linearized momentum Kx + NxKy

where Kx (resp. Ky) is the total momentum in the x
(resp. y) direction.
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FIG. 4. Low energy spectrum for the optical flux lattice at
filling factor ν = 1/2 with Nb = 8 bosons on a Nx = 8 and
Ny = 2 lattice with N = 4. Bosons interact through the
hardcore interaction given by Eq. 16. The calculations are
performed in the flat band limit. The energies are displayed
as a function of the linearized total momentum Kx+Nx×Ky.
They are shifted by E0, the system lowest energy. The two
low energy states in the (Kx,Ky) = (0, 0) momentum sector
are almost degenerate. The inset provides a zoom on these
two states, the energy splitting δ being ' 2.6×10−7Vint. The
energy gap ∆ is defined as the difference between the third
lowest energy state and the second lowest energy, irrespective
of the momentum sector.

Beyond the flat band limit, the band mixing or the
one-body dispersion relation can affect the stability of
the FCI phase. As was pointed out in the context of
the FQH on a lattice8,39 and more recently in FCI sys-
tems40, the Laughlin phase survives even in the presence
of strong interactions that induce a large band mixing,
independent on whether the higher bands have an iden-
tical or an opposite Chern number. More complicated
states such as the Moore-Read are more sensitive to the
band mixing8.

B. FCI in a C > 1 band

An interesting feature of the FCI systems is the ability
to consider a partially filled band with a Chern number
larger than one. Several studies have numerically inves-

tigated this problem24–29. In the non-interacting case,
Barkeshli and Qi22 mapped a C > 1 Chern band onto
a C-component lowest Landau level (LLL) using hybrid
Wannier states41. From that perspective, it is natural
to suggest that strong interactions would lead to spin-
ful (or more generally multi-component) FQHE. Fig. 5
depicts how the decoupling of the C = 2 case into a
2-component CI works. Let us consider a family of Wan-
nier states with a given momentum ky along the y direc-
tion. Each of these states is localized in the x direction
around positions X belonging to different unit cells. Un-
der an adiabatic flux insertion along the cylinder axis,
one shifts these Wannier states from X to X + C. Thus
one can disentangle C decoupled copies of a CI with unit
Chern number for which one associates a fictitious de-
gree of freedom. In this example, we associate a spin
up (resp. spin down) to the states localized around even
(resp. odd) values of X. With this picture in mind, we
clearly see that turning on strong interaction in such a
system should lead to multi-component FQH phases.

It can already be seen at the non-interacting level that
the situation for finite size systems might not be as sim-
ple as depicted in the paragraph above. For example if
the number of unit cells Nx in the x direction is not a
multiple of the Chern number C, the separation into C
copies of a CI with a unit Chern number breaks down.
Indeed, a flux insertion in a finite system with periodic
boundary conditions will mix the different fictitious de-
grees of freedom. Let us consider the example of Fig. 5
for C = 2 where we would choose Nx = 5. Under a flux
insertion, the orbital localized around X = 4 (with an
up spin) would flow to a position localized around X = 1
(with a down spin). Thus on a finite system with periodic
boundary conditions, the fictitious degree of freedom and
the translations projected onto the non-trivial band are
actually entangled28, giving rise to new topological states
unknown in the FQH picture.

In the FQHE with a SU(C) internal degree of freedom,
the Halperin state23 is the natural generalization of the
Laughlin state. In the simplest case, it reads

Ψ
SU(C)
[m;n] = Φintra

{m}Φinter
{n} exp

(
−1

4

C∑
i=1

Ni∑
ki=0

|z(i)
ki
|2
)

(11)

where

Φintra
{m} =

C∏
i=1

∏
ki<li

(z
(i)
ki
− z(i)

ki
)m (12)

is the product of a Laughlin state for each component
and

Φinter
{n} =

C∏
i<j

Ni∏
ki=1

Nj∏
kj=1

(z
(i)
ki
− z(j)

kj
)n (13)

accounts for correlations between components. Here, z
(i)
k

is the complex position (in the plane) of the k-th particle
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FIG. 5. Action of the flux insertion on the Wannier orbitals
in a C = 2 Chern insulator. Top panel: We consider Wannier
states localized in the x direction (cylinder axis). The family
of Wannier states for a given ky are localized along the x di-
rection in each unit cell X = 0, 1, 2, .... Center panel: When
adiabatically inserting half a flux along the cylinder axis each
Wannier state will be displaced by one step i.e. the one lo-
calized around X = 1 will now be centered around X = 2.
Lower panel: Upon a complete flux insertion, we have trans-
ported each Wannier state from X to X+2. Labeling spin up
(resp. spin down) the Wannier states centered around even
(resp. odd) values of X, we observe than the up and down
states act as two separate copies of a C = 1 Chern insulator.

of component i. In the following, we will focus on the
m = 2 and n = 1 case. The [2; 1] Halperin state is the
exact densest zero energy of the contact interaction (the
Laughlin ν = 1/2 state corresponding to the particular
case C = 1). It is a SU(C) singlet and describe a state at
filling factor νFQH = C

C+1 . On the torus geometry, this

[2; 1] Halperin state is (C + 1)-fold degenerate.
States analogous to [2; 1] Halperin states have been

observed in several FCI models with C > 124–27. Note
that the definition of the filling factor is slightly different
for the FCI and the FQHE. For the FCI, it is defined
with respect to the total number of one-body states of
the fully occupied band each carrying a “flux” C. For
the FQHE, using the notation ν for the filling factor of
the FCI (irrespective of the value of C) and νFQH for the
FQHE, we have

ν =
νFQH

C
. (14)

The [2; 1] Halperin state is a natural candidate to look
for in a bosonic C > 1 FCI. Unless engineered in a very
specific way29, the interactions that are considered for
FCIs are not sensitive to the fictitious degree of freedom
that is introduced to separate the CI into C copies of a CI
with a unit Chern number. Thus an on-site interaction
for a FCI is analogous to the model contact interaction

for the [2; 1] Halperin state. There are still subtle differ-
ences between the state emerging in these FCIs and the
Halperin state. The latter is only defined when the num-
ber of particles is a multiple of C. While in the FCI, an
almost C + 1 degenerate low energy manifold appears at
filling ν = 1/(C + 1) irrespective of the particle number.
This is a consequence28 of the entanglement between the
fictitious degree of freedom and the translations. Other
differences can also be unveiled through the entanglement
spectrum that we discuss later.

C. FCI and entanglement spectrum

In order to probe the topological order within the nu-
merical simulations, the entanglement spectrum42(ES) is
a valuable tool. Among the different entanglement spec-
tra, the particle entanglement spectrum30 allows one to
obtain the information encoded in the groundstate wave-
function related to the system’s bulk excitations. In the
context of the FCI, it has been shown43 that the ES dif-
ferentiates between a charge density wave and a Laughlin
state.

For a d-fold degenerate state {|ψi〉}, we consider the
density matrix

ρ =
1

d

d∑
i=1

|ψi〉〈ψi| (15)

We divide the N particles into two groups A and B with
respectively NA and NB particles. Tracing out on the
particles that belong to B, we compute the reduced den-
sity matrix ρA = TrBρ. This operation preserves the
geometrical symmetries of the original state, so we can
label the eigenvalues exp(−ξ) of ρA by their correspond-
ing momenta, Kx,A and Ky,A. A typical particle en-
tanglement spectrum is shown in Fig. 6, where the ξ’s
(generally called entanglement energies) are plotted as a
function of the linearized momentum.

For FQH model states, the number of non zero eigen-
values of ρA matches the number of quasihole states for
NA particles and the same number of flux quanta as the
original state. The quasihole counting is characteristic
of each topological state, and the particle entanglement
spectrum acts as a fingerprint of the phase. In the FCI,
one expects to observe a low entanglement energy struc-
ture similar to the one of the model state (with the same
number of levels in each momentum sector) with a gap
∆ξ to higher energy excitations (see Fig. 6). Such a fea-
ture has been shown for Laughlin and MR-like states
in FCI12,33. Tracking the entanglement gap when tuning
any external parameters allows one to determine whether
or not the ground state manifold of the system is still cor-
rectly described by a given model state. While overlaps
between a FCI state and a FQH model states can be com-
puted44, or adiabatic continuation from FQH to FCI can
be performed44–46, the particle entanglement spectrum is
easier to implement and does not depend on gauge fixing.
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For those reasons, we will use the particle entanglement
spectrum over other approaches.
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FIG. 6. Particle entanglement spectrum computed for the low
energy state manifold at ν = 1/2 with Nb = 8 bosons on a
Nx = 8 and Ny = 2 lattice with N = 4 shown in Fig. 4. We
keep NA = 4 bosons and trace out the remaining particles.
The entanglement energies ξ are displayed as a function of the
linearized total momentum Kx,A +Nx ×Ny,A. We observe a
clear entanglement gap ∆ξ. The low energy structure below
the entanglement gap corresponds to the Laughlin state ν =
1/2.

For FCIs in a higher Chern number band, the particle
entanglement spectrum allows one to unveil the multi-
component nature of the FCI phases and their differ-
ence from usual multi-component Halperin states. The
total number of quasihole states for the Halperin [2, 1]
state and a given system size is identical to the number
of quasihole states for the Laughlin state at ν = 1

C+1 .
Since these two model states have the same filling factor
and the internal degree of freedom is not accessible in a
C > 1 FCI, one would naively expect that the particle
entanglement spectrum would not be able to discriminate
between them. However, this is untrue. As was shown
in Ref. 27, the interplay between the SU(C) symmetry
of the Halperin state and the number NA of kept parti-
cles can actually reduce the number of quasihole states
that appear in the particle entanglement spectrum from
the pure Laughlin case: More precisely, such differences
appear for NA > N/C. For C > 1 FCIs, this signature
of the Halperin state has been clearly observed in the
particle entanglement spectrum26,27. This is an evidence
for an internal degree of freedom in these systems. More-
over the differences introduced by the coupling between
the fictitious degree of freedom in C > 127,47 FCIs and
the translations in a finite-size system have signatures in
the particle entanglement spectrum27 that can be under-
stood using a modified version of the generalized Pauli
principle47.

IV. NUMERICAL RESULTS FOR C = 1

In this section, we provide an in-depth study of two
FQH phases that emerge in the optical flux lattice model
given by Eq. 1 for Chern number one. Ref. 20 gave

the first evidence for the appearance of Laughlin and
Moore-Read phases in a closely-related optical flux lat-
tice model. Here we provide a comprehensive analysis of
these phases for the present optical flux lattice model,
establishing their emergence on a firmer footing by pro-
viding results on larger system sizes, by characterizing
the topological nature through the excitations and the
particle entanglement spectrum, by presenting the gap
in the thermodynamic limit, and by studying the effects
of band mixing.

A. Two-body spectrum

Unlike most Chern insulators that are defined by a
tight-binding model, optical flux lattice models are con-
tinuous models in real space. Thus, the interaction
between the atoms mainly depends on the considered
atomic species. Here, we focus on the simplest interac-
tion: the s-wave scattering that correctly describes cold
gases of alkali atoms like 87Rb. Thus, the interaction
potential is given by

Hint = Vintδ(r − r′) . (16)

In the usual quantum Hall problem, two-body inter-
actions can be described by Haldane pseudopotentials48.
This is a set of parameters Vp that weight the two-particle
states with relative angular momentum p. On the two-
particle spectrum, each non-zero pseudopotential leads
to two almost degenerate bands with non-zero energies
independent of momentum, once mapped onto the FCI
Brillouin zone35 while other states have zero energy. The
ν = 1

m Laughlin states are the exact densest zero-energy
states of the Hamiltonian given by Vp = 1 for p < m,
Vp = 0 otherwise. There are m degenerate Laughlin
states in the torus geometry.

While the absence of continuous translation and rota-
tion symmetries in FCIs lead to an absence of a clear
definition of pseudopotentials49, it was suggested to look
at the two-body spectra as a tool to diagnose whether a
Chern insulator model could host a fractional topologi-
cal state50. In particular, it was conjectured that pairs
of bands separated by a gap could lead to a stable topo-
logical state.

Once projected onto the lowest band of the non-
interacting model, the two-body interaction, given by
Eq. 16 is very similar to the same interaction projected
on the lowest Landau level on the torus. This can be
seen at the level of the two particle spectra, shown in
Fig. 7: it is made of two branches, whose energies are
almost independent of momentum and very close to Vint

and get closer as N is increased. For FQH systems on
a torus, all the other eigenstates have strictly zero en-
ergy. In our model (and more generally in FCIs), we
can observe that some other eigenstates also have a non-
zero energy, but several orders of magnitude smaller than
those around Vint (for N = 4, these non-zero energies are
at most 10−4Vint). The separation observed in this model
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implies the possibility of a robust Laughlin state at ν = 1
2

in this model.
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FIG. 7. Two-body spectrum of the interaction given by Eq. 16
in the optical flux lattice model, given by Eqs. 1-2, for C = 1
and V/ER = 3.

B. ν = 1/2: the Laughlin state

We start our study with the Laughlin state at ν = 1/2.
This state, characterized by a two-fold (quasi-)degenerate
groundstate, is obtained quite generically in this optical
flux lattice model. We will first consider the flat band ap-
proximation discussed in Sec. III A. An example of energy
and particle entanglement spectrum is shown in Figs. 4
and 6, respectively: the two lowest energy states appear
in the momentum sectors expected from the FQH to FCI
mapping35 as explained in section III. We check the na-
ture of these states by computing their particle entan-
glement spectrum countings. In every case, we obtain
the same results as for the Laughlin state on the torus
except from some spurious entanglement eigenvalues of
very small probability (very large entanglement gaps).
By adding sites, which corresponds in the FQH language
to adding flux quanta, we can nucleate quasihole excita-
tions. The numbers of quasihole states per momentum
sector are those predicted for the Laughlin phase. An
example of energy spectrum with two quasiholes is given
in Fig. 8.

While similar results were already obtained on other
Chern insulator models51, this model gives a particularly
strong Laughlin phase. Indeed, the gap separating the
groundstate manifold and the excited states is almost
independent of the number of particles and of the num-
ber of spin species, as can be seen in Fig. 9a. Thus,
we can extrapolate easily its values to be ∆ = 0.608Vint

in the thermodynamic limit of the flat band model. This
value is very close to the one found for the Laughlin state
(∆ = 0.615(5)Vint) on the torus52, or the sphere geome-
try53,54. Similarly, the energy splitting between the two
groundstates decreases with the number of spin species
and in each of the cases we studied (i.e. N = 3, 4, 5), is
much smaller than what was reported previously in tight-
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FIG. 8. Energy spectrum for C = 1, N = 4, Nb = 6, Nx = 7,
Ny = 2 and V = ER. There are 2 additional sites compared
to the ground states for Nb = 6. The counting of the low en-
ergy part match the number of quasiholes states for Laughlin
states with Nφ = 14 on the torus. The splitting in energy be-
tween the quasiholes states is δ = 0.002Vint. The gap between
quasiholes states and the higher energy states is 0.58Vint.

binding lattice-based FCIs33,55. Moreover, the manifold
of quasiholes states is also almost degenerate and is sep-
arated from excited states by an almost constant gap as
can be seen in Fig. 8.
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FIG. 9. Gap ∆ (Upper panel) and energy splitting δ (lower
panel) as a function of the particle number inverse for different
N values with V = 3ER, Nx = Nb and Ny = 2 . The purple
line shows the gap extrapolated for FQH on torus in Ref. 52.
The gap barely depends on the number of particles and on
the number of spin species.

We then study the stability of the Laughlin state in this
model. First, we look at the effect of the laser strength V .
As can be seen in Fig. 10 for Nb = 8 particles, both the
energy and the entanglement gaps (Fig. 10a) grow with
the laser strength at small values and, then, saturate.
The energy splitting decreases for every N except for
N = 3 where it increases slightly beyond V ∼ 1.2ER
(Fig. 10b) .

In order to investigate the stability of the Laughlin
state with respect to the band mixing and the importance
of the interaction strength, we implement the projection
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FIG. 10. Upper Panel: Gap ∆ and entanglement gap ∆ξ as
a function of the laser strength for different spin values for
Nb = 8, Nx = 8 and Ny = 2. Down Panel: Energy splitting
δ between the two groundstates as a function of the laser
strength V for different spin values for Nb = 8, Nx = 8 and
Ny = 2.

in the two lowest bands. This model takes into account
both the inter-band mixing and the band dispersion, sim-
ilar to Landau level mixing in the FQH. By varying the
interaction strength, one can investigate the role of the
mixing. In this model, the two-body interaction energy is
not simply given by Vint, as it was the case for the flat and
single band model, since band mixing and band disper-
sion affect it. In order to make meaningful comparison
between these two models, we normalized the energies,
for each Vint and N , with respect to the two-body inter-
action energy E2b of the respective model. The results of
this procedure for the Laughlin state with Nb = 8 par-
ticles are shown in Fig. 11. One striking difference with
the flat band limit is the absence of a Laughlin state for
N = 3 in the weak interacting regime. This is similar
to what was found in the related model of Ref. 20. This
effect is due to the dispersion of the lowest band, which
overcomes a very weak interaction, and should also be
present for N = 4, 5. However, in these two latter cases
the band splitting is much smaller and the data in Fig. 11
does not include the very small interaction strength nec-
essary to see this effect. For the interaction strengths we
have studied we find for small interaction that the Laugh-

lin state is realized and we have again ∆ ∼ 0.6E2b. More-
over, at larger Vint, the energy gap saturates to a value
that seems almost independent of N while it was grow-
ing linearly on the flat band model. Remarkably enough,
the Laughlin state is always obtained even though the
interaction strength is bigger than the band gap. For in-
stance, for N = 5 the maximum interaction strength we
looked at corresponded to Vint/∆1b = 1.5. The fact that
the Laughlin state is stable despite a large band mixing
is in agreement with previous work on the FQH on a
lattice8,39 and for FCI11,40,56.
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FIG. 11. Gap ∆ respective to the two-body interaction en-
ergy E2b with the two lowest bands taken into account as a
function of the interaction strength Vint for Nb = 8, Nx = 8,
Ny = 2 and V = 3ER.

C. ν = 1: the Moore-Read state

We now investigate the emergence of the Moore-Read
state at ν = 1. The MR state is characterized by a
three-fold degenerate groundstate on the torus geome-
try. Strong numerical evidence shows that the MR state
can emerge in the FQH for bosons with the hardcore two-
body interaction53,57. It was shown to appear in the Hof-
stadter model in Ref. 8 by looking at the entanglement
spectrum but the energy gap between the groundstates
manifold and the excited states was of the same order
than the groundstates splitting. Most of the FCI models
do not exhibit signatures for a MR state with a two-body
hardcore interaction. However, it can be stabilized using
three-body33,35 or long-range interactions58.

Thus it is interesting that numerical evidence for the
Moore-Read state was reported in Ref. 20 for weak two-
body interactions in an optical flux lattice model with
N = 3 which is closely related to the models we inves-
tigate here. Our results are qualitatively similar: for
most system sizes we find three low energy states in the
predicted momentum sectors. However, contrary to the
Laughlin case, the energy gap and splitting are of the
same order of magnitude, as can be seen in Fig. 12 for
Nb = 14. The energy gap and splitting are shown in
Fig. 13. While the gap and splitting are of the same order
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of magnitude, the former seems to increase, in average,
with the system size while the latter seems to decrease.
Note that for the case N = 5 we find large effects of
system geometry: the quasi-degeneracy of groundstates
expected for the MR phase is absent for Nb = 12 in a
system size Nx = 6 by Ny = 2, but present in a sys-
tem size Nx = 12 by Ny = 1, even though the aspect
ratio is further from 1 in the latter case. In general, we
find that the MR state is much more sensitive to the
aspect ratio than the Laughlin state, which makes any
interpolation quite difficult in the system sizes that can
be studied numerically. Similar sensitivity of the ν = 1
groundstate to boundary conditions (e.g. the aspect ratio
of the torus) appears for the continuum Landau level at
small system sizes (Nb ≤ 12)57 indicative of a competing
crystalline phase59, but studies on larger systems show a
robust Moore-Read state with well-developed gap54.
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FIG. 12. Energy spectrum of the two-body interaction at
ν = 1 for N = 4, Nb = 14, Nx = 7, Ny = 2 and V =
3ER. The energy splitting between the three groundstates is
δ = 0.15Vint whereas the energy gap is equal to ∆ = 0.24Vint.
Energies are shifted by the groundstate energy E0.
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FIG. 14. Entanglement spectrum of the three lowest energy
states for N = 5, Nb = 14, Nx = 7, Ny = 2, NA = 6 and
V = 3ER. The number of states below the entanglement gap
at around 12.5, is the number of quasiholes states of the MR
state.

V. NUMERICAL RESULTS FOR C > 1

As explained in section II, optical flux lattice models
provide a way to tune the Chern number of the lowest
band by changing the phase pattern. With N species, C
can be set from 0 to N−1. In this section, we investigate
the strongly correlated states that can be realized in this
model.

A. Two-body spectrum

As in the C = 1 case, we start our investigation of
the consequence of interaction in these bands by looking
at the two-body problem. The two particles spectra for
C = 2 is shown in Fig. 15. For C = 1, we obtained
(Fig. 7) two branches of non-zero energy states. Those
branches where almost dispersionless. Moreover, both
the energy splitting between the two branches and the
low energy manifold were quickly approaching zero. This
allowed us to extract a precise value for the two-body
interaction strength in the lowest band and to use that
value to normalize the energies. For C > 1, as can be seen
in Fig. 15 in the C = 2 example, we have C+1 branches.
We checked that this is also the case when one consid-
ers two-component bosons in the lowest Landau level on
the torus interacting through spin-independent hardcore
interaction. Thus, a natural generalization for C > 1 of
the conjecture of Ref. 50, would be that “good” Chern
insulator models for hosting C > 1 FCI states should
have C + 1 bands separated by a sizeable gap from the
other states. Such a rule has consequences on which kind
of models should be considered. In the atomic limit, i.e.,
without any tunneling, one can compute the number of
non-zero energy two-particle states a given interaction
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gives rise to. For example, if one considers a model with
Ns sites per unit cell with on-site interaction, one has
only Ns two-particle states per unit cell with non-zero
energy. Then, obviously, if one needs C + 1 bands to
have a stable FCI states, Ns has to be greater than C+1
as the projection of the interaction Hamiltonian onto the
topological band cannot increase its rank (Since the pro-
jection operator is just a matrix multiplication)60. Such a
rule seems to be verified by every model in the literature
where this kind of topological state were reported.

In the model we investigate, these bands are much
more dispersive than in the C = 1 case. Indeed, the av-
erage energy and the energy splitting between the bands
depends more on the number of spin flavor as well as on
the system size on both directions. We study in detail
the C = 2 case. In particular, we compute for differ-
ent systems the average energy and the energy splitting
of the three lowest bands, defined as being the difference
between the highest and the lowest energy in these bands
irrespective of momentum. We extrapolate these values
for different N in the limit of infinite system sizes. The
results are shown in Fig. 15b. As expected, the splitting
between the band goes to zero as we increase N while the
average band energy seems to converge to Vint. However,
the energy splitting has a non monotonous behavior as
its maximum is reached at N = 4.
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FIG. 15. Upper Panel: Two-body spectrum of the interaction
given by Eq. 16 in the optical flux lattice model for C = 2,
N = 5, Nx = 10, Ny = 6 and V = 3ER. The three branches
have average energies around, respectively, 0.4Vint, 0.5Vint and
0.6Vint Lower Panel: Average energy, energy splitting of the
three highest bands and minimum gap to the 4th band of the
two-body spectra for C = 2 extrapolated to infinite system.

B. ν = 1
C+1

: Halperin-color states

As it was shown in Ref. 61 for C = 2 and in Refs. 26
and 27 for C > 1, interactions in a fractionally filled
band with Chern number C can lead to emergence of
Halperin-like bosonic states at filling factor ν = 1

C+1 .

These states are characterized by a (C+ 1)-fold degener-
ate groundstates.

In the optical flux lattice model we studied, we found
evidence for the existence of these phases for C = 2 and
C = 3 with two-body interaction. Examples of the en-
ergy spectrum for these two cases are shown in Fig. 16.
As explained in Sec. III B, for C > 2 and NA > dNb

C e, the
particle entanglement spectrum counting of the Halperin-
color states are not identical to that of the corresponding
SU(C) singlet Halperin states. We found that this is in-
deed the case for the states we obtained for C = 3 while,
for C = 2, the particle entanglement spectrum countings
are, as predicted, identical to that of the (221)-Halperin
state.

The gap as a function of the inverse particle number,
normalized by the two-body interaction energy, is shown
in Fig. 18. Due to the system sizes that can be numeri-
cally reached, we will focus on the C = 2 case. As can be
expected from the two-body spectrum, the effect of the
number of spin species and of the number of particles on
the gap is more important than in the C = 1 case. It is
hence more difficult to give a precise extrapolation in the
thermodynamic limit. Notably there is a clear difference
between N = 4 and N = 3, 5 which is reminiscent of the
one of the two-body spectrum (Fig. 15b). We compare
these results to the gap we obtained for the FQH problem
of spin- 1

2 bosons on a torus at filling ν = 2/3 where (221)-
Halperin state is realized. The gap convergence is not as
good as the one of the model interaction for the ν = 1

2
Laughlin state. Nevertheless, the inset of Fig. 18 gives
a gap around ∆(221) ∼ 0.45V0. For N = 3, 4, the gaps
that we have obtained in the optical flux lattice model
are lower than those of the FQH case. For N = 5, the
gap seems to extrapolate to a value closer to ∆(221). No-
tice that for the FQH, the gap is only defined when the
number of particles is even while the C = 2 optical flux
lattice model does not have this restriction. The gap for
the C = 2 optical flux lattice model does not exhibit any
parity effect. This reinforces the picture that this phase
is indeed identical to the one of the (221)-Halperin, but
with “twisted” boundary conditions for Nx, Ny odd.

We now investigate the effect of the band mixing on
the realization of these states. Once again due to tech-
nical challenges, we will restrict to the C = 2 case. The
results are shown in Fig. 19. The behavior changes quite
dramatically depending on N . For N = 3, we find that
the Halperin states are realized for small interaction but
are destroyed by the band mixing. In the N = 4 case,
the system seems unable to support this kind of state.
For N = 5 we find that the state is stable against band
mixing but is destroyed by the band dispersion for weak
interaction. The value of the interaction strength where
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the transition (Vint ' 0.2ER) occurs is almost an order
of magnitude larger than the single particle band width
(δ = 3.3× 10−2ER as shown in Fig. 3b). For weak inter-
action, we have indications through the particle entangle-
ment spectrum that the phase might be a Bose-Einstein
condensate. Indeed, we found that the particle entan-
glement spectrum has low-lying states whose number is
independent of NA

8. This is different from band mixing
studies for fermionic systems56 where a metallic phase is
observed in this interaction regime. For the situations
were FCI states occur, while the gap is smaller than the
one extracted in the flat-band approximation, it is still
robust even for large interaction and the ground state
manifold has the same property as in the flat-band limit.
Note that this behavior is insensitive to the particle num-
ber parity. The robustness of the Halperin-like phase is
similar to that found in section IV B for the Laughlin
state in the C = 1 band. These results suggest that the
band mixing would not completely wash out a FQH phase
as long as the physical interaction is an implementation of
the related model interaction (here the two-body contact
interaction). One has to be careful about the conclusion
drawn from these calculations, as it is challenging to in-
clude more bands in our simulations. Contrary to the
tight-binding models of FCIs where the number of bands
is finite, optical flux lattices have an infinite number of
bands (similar to the situation of Landau levels). In the
large interaction limit, a possible scenario is that includ-
ing more bands will actually decrease the value of the
gap, as suggested by our two-band results. We will try
to address this open issue in future works.

VI. CONCLUSION

In this paper, we have investigated the emergence of
bosonic fractional quantum Hall states in optical flux lat-
tices. We have quantitatively studied the stability of the
Laughlin phase at half filling of the lowest band with
Chern number C = 1 of an optical flux lattice. In the flat
band approximation, we have numerically shown that the
extrapolated neutral gap for this system matches the one
of the FQH model interaction for which the Laughlin is
the exact densest zero energy state. Such a technique can
be applied to any good FCI model to deduce the neutral
gap in the thermodynamical limit once the two particle
energy scale is known. We have also investigated the ef-
fect of band dispersion and band mixing and obtained
convincing evidence that the Laughlin phase should stay
stable. Beyond the Laughlin state, we have also observed
signatures of the Moore-Read state at filling ν = 1 and
with two-body contact interaction. But the finite size
results point toward a much more fragile phase at ν = 1
than at ν = 1

2 .
By changing the Chern number C of the lowest band of

the optical flux lattice model we studied, we have studied
the emergence of Halperin-like phases at filling factor ν =

1
C+1 when C > 1. Similar to the Laughlin case: they
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FIG. 16. Upper Panel: Energy spectrum of the two-body
interaction for C = 2 with N = 5, Nb = 9, Nx = 9,
Ny = 3 and V = 3ER. The groundstate in the sector (0, 0) is
three fold degenerate. The energy splitting between the three
groundstates is δ = 4.6 10−5Vint. The energy gap is equal
to ∆ = 0.21Vint. Lower Panel: Energy spectrum of the two-
body interaction for C = 3 with N = 5, Nb = 9, Nx = 18,
Ny = 2 and V = 3ER. The groundstates are four-fold de-
generate and are found in the sectors (0, 0), (0, 1), (9, 0) and
(9, 1) . The energy splitting between the four groundstates is
δ = 2.2 10−3 Vint. The energy gap is equal to ∆ = 0.12 Vint.
Energies are shifted by the groundstate energy E0.
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FIG. 17. Particle Entanglement spectrum of the three
groundstates for N = 5, Nb = 9, Nx = 9, Ny = 3, V = 3ER
and NA = 4. The counting of states below the gap is equal
to (1, 2)2 spinful counting.

show a clear neutral gap whose value can be related to
that of the FQH case and they are stable to the band
dispersion and band mixing for N large enough and for
strong interaction. The robustness to large band mixing
of these states whose exact model interaction on the FQH
side is just the contact interaction is intriguing. Further
studies will try to address this property and especially
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at ν = 1/3. The energy gap are normalized by the two-body
interaction energy. The inset shows the gap of the model in-
teraction of the (221)-Halperin state on the torus at filling
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3
. Lower Panel: Gap as a function of the particle num-

ber inverse for different N values with V = 3ER, C = 3 at
ν = 1/4. Since only two system size are accessible for the
corresponding Halperin state (namely Nb = 6 and Nb = 9),
we cannot provide the gap extrapolation for the FQH on the
torus. Still, the gap at Nb = 9 is ' 0.37 is qualitatively in
agreement with what we observe in our model.
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FIG. 19. Gap as a function of the interaction strength when
the two lowest band are taken into account for Nb = 7, Nx =
7, Ny = 3 and V = 3ER. The energy gap are normalized by
the two-body interaction energy computed for each value of
N and Vint.

the effect of the nature and the number of higher energy
bands.

While optical flux lattices have not yet been realized
in a laboratory, unlike tight-binding based Chern insula-
tor model62 and Harper-Hofstadter Hamiltonian63,64, we
have found that this approach leads to much more sta-
ble phases. It therefore represents a promising way to
observe FQH states in cold atom systems. Our quanti-
tative studies of the gap, including dispersion and band
mixing, provide important information on the tempera-
ture scales required for the experimental realization of
these phases.
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