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In addition to charge plasmons, a 2D electron system with Rashba-type spin-orbit coupling (SOC)
also supports three collective modes in the spin sector: the chiral-spin modes. We study the disper-
sions of the charge and spin modes and their coupling to each other within a generalized Random
Phase Approximation for arbitrarily strong SOC, and both in 2D and 3D systems. In both 2D and
3D, we find that the charge plasmons are coupled to only one of the three chiral-spin modes. This
coupling is shown to affect the dispersions of the modes at finite but not at zero wavenumbers. In
3D, the chiral-spin modes are strongly damped by particle-hole excitations and disappear for weak
electron-electron interaction. Landau damping of the chiral-spin modes in 3D is directly related
to the fact that, in contrast to 2D, there is no gap for particle-hole excitations between spin-split
subbands. The gapless continuum is also responsible for Landau damping of the charge plasmon in
3D - a qualitatively new feature of the SOC system. We also discuss the optical conductivity of clean
2D and 3D systems and show that SOC introduces spectral weight at finite frequency in a such way
that the sum rule is satisfied. The in-plane tranverse chiral-spin mode shows up as dispersing peak
in the optical conductivity at finite number which can can be measured in the presence of diffraction
grating. We also discuss possible experimental manifestations of chiral-spin modes in semiconductor
quantum wells such InGaAs/AlGaAs and 3D giant Rashba materials of the BiTeI family.

PACS numbers:

I. INTRODUCTION

Spin-orbit interaction lifts the spin degeneracy by cou-
pling electron momenta and spins. This provides a pos-
sibility to manipulate electron spins by purely electrical
means, which is the ultimate goal of the growing field
of spintronics.1–4 Of particular interest are the Rashba-
and Dresselhaus-type spin-orbit couplings (SOCs) which
occur in systems without center of inversion (either local
or global). The Rashba SOC has mostly been studied in
two-dimensional (2D) electron and hole gases in semicon-
ductor heterostructures, and also in surface states of met-
als. This effect (whose strength may be characterized in
terms of the splitting of the otherwise degenerate spin-up
and spin-down levels) is usually weak in semiconductors5

but is much stronger in the surface states of noble metals6

and of semi-metallic bismuth,7 and is further enhanced
in surface metal alloys.8–10

The new excitement in this field is stimulated by the
discovery of a number of three-dimensional (3D) ma-
terials with giant SOC; perhaps the most investigated
class of such materials are polar semiconductors BiTeX
(X=Br, Cl, I), both the bulk11 and surface states12 of
which were shown to have a giant spin splitting of the
Rashba type. While it is the surface-induced asymme-
try that is responsible for Rashba SOC in 2D systems,
the origin of the effect in 3D BiTeX is a local electric
field (along the c-axis), which acts on the Bi-plane sand-
wiched between the polar Te and X layers.14 Both ab

initio calculations13 and spin polarized angular-resolved
photoemission15 have provided support to this picture.
Another interesting feature of the BiTeX family is that,

in contrast to semiconductor heterostructures which usu-
ally have both Rashba and Dresselhaus spin-orbit inter-
actions, BiTeX are purely Rashba materials with no com-
peting Dresselhaus effect.
Investigating the electronic properties of a Rashba

metal requires a sound understanding of its excitations–
both of the single-particle and collective types; the focus
of this paper is on the latter. Various aspects of the col-
lective modes in 2D systems with SOC have been studied
in the past. It is important to bear in mind that a typical
2D system is a quantum well (QW) formed in a semicon-
ductor heterostructure. Quantization of electron motion
in the direction perpendicular to the QW plane splits
the conduction (or valence) band into subbands. As a
result, the excitation spectrum has both the intra- and
inter-subband parts. In the absence of SOC, the intra-
subband part consists of a particle-hole continuum and
a charge plasmon mode with a

√
q dispersion at small q

[Fig. 1(a), bottom].16 (As is the case for any system with
a repulsive inter-particle interaction,17 the intrasubband
spin collective mode lies entirely within the continuum
and is thus heavily damped.) If only the lowest transverse
subband is occupied, intersubband transitions occur be-
tween this and the first few unoccupied subbands. The
top part of Fig. 1(a) depicts the intersubband spectrum
for the case of transitions between the lowest and first
unoccupied subband. Intersubband transitions give rise
to a separate region of the particle-hole continuum and to
two kinds of collective modes: an intersubband plasmon
above the continuum and three degenerate spin modes
(“spin plasmons”) below the continuum, see Fig. 1(a),
top.18–20 The energy scales of the intersubband transi-
tions are on the scale of tens of meV, which makes them



2

accessible to inelastic light scattering spectroscopy (see
Ref. 21 for an extensive review of the experiment in this
area).

The effect of SOC on intersubband transitions has been
studied both theoretically22 and experimentally.23,24 The
main result of these studies is that SOC lifts the degen-
eracy of the three spin-plasmons at finite q [see Fig. 1(b),
top]. A detailed comparison between the theory and ex-
periment was carried out in Ref. 23.

The effect of Rashba SOC on the intrasubband charge
plasmons has also been studied in some detail.25–30 Cou-
pled spin-charge plasmons in a helical Fermi liquid (a
system with a Dirac spectrum due to SOC only) has
also been investigated within the Random Phase Ap-
proximation in Ref. 31. It is by now well established
that transitions between Rashba subbands give rise to
an additional–“Rashba”– continuum which lies above the
charge continuum [see Fig. 1(b), bottom]. Also, in ad-
dition to the usual 2D plasmon with a

√
q dispersion,

which corresponds to the oscillations of the total charge
density, a 2D Rashba metal supports also an optical
plasmon mode. (A third plasmon mode lies within the
Rashba continuum and is thus unobservable.) The intra-
subband

√
q plasmon gets damped by particle-hole exci-

tations within the Rashba continuum.

The spin collective modes in a 2D system with Rashba
SOC arising due to transitions between the two spin-
split bands have been studied only fairly recently32–34

and, so far, only theoretically. The main prediction of
the theory is the existence of three spin modes (“chiral-
spin waves”) that arise solely due to SOC [as opposed to
spin plasmons which exists even in the absence of SOC),
see Fig. 1(b), bottom]. These modes are intrinsic collec-
tive excitations of a 2D FL with Rashba SOC35 and, to
some extent, analogs of the Silin-Leggett spin modes in
a partially-polarized Fermi liquid (FL).36–38 The impor-
tant difference between the chiral-spin and Silin-Leggett
modes is that the former exist in the absence of the ex-
ternal magnetic field and arise from the effective Rashba
field acting on electron spins.

The primary goal of this paper is to study the nature of
collective modes in both 2D and 3D metals with Rashba
SOC; when dealing with the 2D case, we will be focusing
entirely on the modes arising from transitions within the
lowest spin-split subbands and ignoring transitions to the
“confinement-split”subbands. Separate treatment of the
excitations between the spin-split and confinement-split
subbands is possible if the energy splitting due to con-
finement is much larger than that due to SOC–this is in
fact true for the semiconductor heterostructures, where
the confinement energy is significantly larger than the
SOC splitting.23,24 In what follows, the term “intersub-
band” will be reserved for the spin-split subbands of a
SOC system.

The chiral-spin modes have been studied within a FL
theory32,33 and within Random Phase Approximation
(RPA) in the spin channel of a neutral system (cold
atoms).34 There is an infinite number of such modes but

only three of them are isotropic in the momentum space
and thus couple to macroscopic electric and magnetic
fields. These three isotropic modes correspond to lon-
gitudinal and transverse oscillations of magnetization in
the absence of the magnetic field.

In principle, a FL theory should give a full description
of the collective modes in both the charge and spin sec-
tors. However, the spin sector of a Rashba metal with
arbitrarily strong SOC cannot be described by the FL
theory, at least not by its conventional version that oper-
ates with almost free quasiparticles.35 The reason is that
to describe excitations in the spin sector one needs to
take into account states located in between the Rashba
subbands, and these states are strongly damped if SOC
is not weak. One way to avoid this problem is to focus on
the case of weak SOC, which can be then treated as a per-
turbation imposed on an SU(2)-invariant FL. The advan-
tage of this approach is that the electron-electron inter-
action can be treated non-perturbatively. This was how
the chiral-spin waves at q = 0 and finite q were analyzed
in Refs. 32 and 33, correspondingly. If SOC is not weak,
the FL approach breaks down, and one needs to retort
to some kind of the perturbation theory in the electron-
electron interaction while keeping SOC arbitrary. Within
this approach, the zero-sound and spin modes of a neu-
tral Rashba system with short-range interactions were
studied in Ref. 34 using the RPA theory. The new ele-
ment arising from strong SOC is that the charge and spin
sectors are no longer decoupled (as they were assumed to
be in Refs. 32 and 33).

In this work, we study the charge and chiral-spin
modes, as well as coupling between them, in both 2D
and 3D electron systems. We treat the electron-electron
interaction within a generalized RPA, which takes into
account both the long- and short-range components of
the screened Coulomb interaction, while keeping SOC
arbitrary.

In 2D, our results are as follows. 1)In the charge sector,
we find that there are two plasmons–the first one is the
usual 2D,

√
q plasmon (damped by particle-hole excita-

tions within the Rashba continuum) and the second one is
an optical plasmon lying exponentially close to the upper
edge of the Rashba continuum. The two-plasmon feature
is generally consistent with earlier work25–28,39 although
our result for the dispersion of the second plasmon mode
disagrees with that found in Refs. 27,28. 2) We calcu-
late the optical conductivity and explicitly show that the
spectral weight is redistributed between the Drude peak
and the Rashba continuum in a such way that the sum
rule is satisfied. 3) In the spin sector we find, in agree-
ment with the previous literature,32–34 that there are
three modes split off from the lower edge of the Rashba
continuum. However, we also find that SOC couples the
charge the chiral-spin modes in a very specific manner:
the plasmons are coupled to only one of the chiral-spin
modes while the other chiral-spin modes are coupled to
each other. These couplings affect the dispersions of the
respective modes but not their masses, i.e., the mode fre-
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FIG. 1: Schematic picture of the single-particle continua (shaded region) and collective excitations (lines) in the absence(a)
and presence(b) of Rashba SOC in a 2D quantum well with the lowest subband occupied. The lower-frequency part is the
intrasubband region, the higher-frequency part is the intersubband region. The solid (dashed) lines correspond to spin (charge)
modes. Inset: zoom of the intersubband region. While SOC affects both inter- and intrasubband regions, it brings about
qualitatively new effects, i.e., new spin and charge modes and the Rashba continuum, in the intrasubband region.

quencies at q = 0. 4) Within the FL approach, valid for
weak SOC, the masses of the chiral-spin modes were ex-
pressed via the FL parameters in Refs. 32,33. We show
that, depending on the strength of SOC, there are, in
fact, two regimes. The first one corresponds to that
found within the FL theory which assumes that SOC
is the weakest interaction in the system. The second one
corresponds to the case when SOC is stronger than the
electron-electron interaction. At the weakest electron-
electron coupling, the chiral-spin modes in this case are
exponentially close to the continuum boundary. 5) Thus
far, all collective modes were studied for the case when
both the spin-split subbands were occupied. We show
that the chiral-spin modes survive even if only one the
lowest subband is occupied.
In 3D, however, collective modes behave in a way that

is qualitatively different from the 2D case. (By “3D” here
we mean a situation when the free-electron term in the
Hamiltonian is extended to 3D while the Rashba term
remains 2D; such a case is relevant to BiTeI.) 1) In the
charge sector, there is one out-of-plane optical plasmon
which is not affected at all by in-plane SOC; the other
charge mode is an in-plane optical plasmon which, for
material parameters relevant to giant Rashba semicon-
ductors of the BiTeX family, is damped by the particle-
hole excitations between Rashba subbands - a new fea-
ture of SOC systems. 2) In contrast to 2D, where the
Rashba continuum starts at finite energy, the continuum
in 3D is present at all energies. Therefore, the chiral-
spin modes are Landau-damped by particle-hole excita-
tions even at q = 0. However, for a sufficiently strong
electron-electron interaction, the imaginary part of spin
susceptibility shows a broad dispersing peak correspond-
ing to a damped chiral-spin mode. 3) We also calculate
the optical conductivity in 3D and show explicitly that
the redistribution of the spectral weight is consistent with
the sum rule (just like in 2D).

The rest of the paper is organized as follows. In Sec II,
we introduce the model and lay out the general strat-

egy for finding the collective modes. The formalism in
this section is general and holds both for the 2D and
3D cases. In Sec. III, we revisit the collective modes
in 2D, demonstrate consistency with previous work, and
point out some details missed earlier in the literature. In
Sec. IV, we consider the 3D case. In Sec.V, we relate our
theoretical predictions to the experiment. Sec. VI sum-
marizes our results. Appendices A-E contain details of
derivations not presented in the main text.

II. MODEL AND GENERAL STRATEGY

We start with the following Rashba Hamiltonian for
non-interacting electrons (we set ~ = 1, unless specified
otherwise):

Ĥ0 =
∑

k

Ψ†
kHkΨk, (1a)

Ĥk =

(

k21 + k22
2m1

+
k23
2m3

)

σ̂0 + α(σ̂ × k)3, (1b)

Ψ† = (c†k↑, c
†
k↓), (1c)

where the x1 and x2 axes of a Cartesian system are the
in plane, the x3 axis is along the normal to the plane,
m1/3 is the effective in-plane/out-of-plane mass, α is the
Rashba parameter that encodes the strength of the spin-
orbit interaction, and σ̂ = (σ̂0, σ̂1, σ̂2, σ̂3) is a vector of
Pauli matrices with σ0 = σ̂0. (Later on, in Sec. V, we
will also take Dresselhaus SOC into account.) Upon di-
agonalizing the Hamiltonian, one obtains two branches of
the energy spectrum corresponding to the opposite chi-
ralities:

ε±k =
k2‖
2m1

+
k23
2m3

± αk‖, (2)

where k2‖ = k21 + k22. It is worth noting that Rashba SOC

in 3D can have various forms depending on the lattice
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symmetries of the material.40 In our continuum model,
we restrict our consideration to Rashba SOC that cou-
ples only in-plane components of the electron spin and
momentum. The 3D ellipsoidal dispersion corresponds
to the case of BiTeI, where the Fermi energy is smaller
than the inter-plane hopping and thus the Fermi surface
is closed. In this case, the 2D regime is obtained by
putting k3 = 0 (rather than taking the limit m3 → ∞ in
the final results for the 3D case).
The Matsubara Greens’ function for the noninteracting

system is then given by

Ĝ(K) =
∑

s

Ω̂s(k)gs(K), (3a)

Ω̂s(k) =
1

2
[σ̂0 + s (σ̂1 sin θk − σ̂2 cos θk)] , (3b)

gs(K) =
1

iωm − εsk + µ
, (3c)

where K ≡ (iωm,k), s = ± is the chirality index, µ is
the chemical potential (measured from the Dirac point),
and θk is the angle between the projection of k onto the
x1x2 plane and the x1-axis. (In 2D, the k vectors are
always in the x1x2 plane.)
The collective modes of an interacting system show up

as poles of the full susceptibilities defined as

χij(r, r
′) = −

∫ 1/T

0

dτ〈TτOi(r, τ)Oj(r
′, 0)〉, (4)

where Oi = Ψ†σiΨ with i = 0 . . . 3 are the charge and
spin densities. Equations (4) will be evaluated within the
perturbation theory in the electron-electron interaction
but for an arbitrary spin-orbit strength α. It is useful to
define bare susceptibilities as χ0

ij(Q) = −Π0
ij(Q), where

Π0
ij(Q) =

∫

K

Tr
[

σ̂iĜ(K)σ̂jĜ(K +Q)
]

, (5)

with Q = (q, iΩn) and
∫

K
≡ T

∑

ωm

∫

dDk
(2π)D

, D = 2, 3.

To obtain the full susceptibilities, we perform a general-
ized RPA sum as illustrated in Fig. 2. The generalized
RPA sums up a chain-like series of polarization bubbles
which, in turn, contain ladder series of vertex corrections.
The interaction vertex (due to the Coulomb interaction)
in the Ψ basis is given by

Γαγ;βδ(q) = V (q)δαβδγ̂δ,

V (q) ≡ V =

{

2πe2

q in 2D
4πe2

q2 in 3D.
(6)

Making use of the tensor structure of the bare interac-
tion vertex, it is straightforward to carry out the sum in
Fig. 2 with the result

χij(Q) = −
[

ΠU
ij +ΠU

i0

V

1− VΠU
00

ΠU
0j

]

, (7)

FIG. 2: (Top): RPA sum for χij . The wavy line is the bare
coulomb interaction V (q) which carries the external momen-
tum q. The shaded corners denote the vertex corrections to
each bubble which is obtained by summing a ladder series.
(Bottom): The ladder series for the vertex corrections. Each
boxed wavy line is a screened Coulomb interaction.

where ΠU
ij is the bubble that contains the vertex correc-

tions. This object includes all diagrams that cannot be
split into two by cutting just one interaction line. No-
tice that the summation scheme in Fig. 2 is so far ex-
act. However, one needs to resort to some kind of an
approximation to actually compute the vertex-corrected
bubble. The interaction inside a bubble is supposed to
be a screened Coulomb potential. Here, we adopt an
approximation in which this interaction is replaced by
a momentum-independent constant (U). We will show
that this approximation reproduces the known results ob-
tained within the FL theory once U is properly identified
with the FL parameter. With the assumptions formu-
lated above, it is now possible to evaluate the ladder sum
in the following way:

ΠU
ij(Q) = Tr

∫

K

σ̂iĜ(K)γ̂jĜ(K +Q), (8a)

γ̂j = σ̂j − U

∫

K

Ĝ(K)γ̂jĜ(K +Q), (8b)

where γ̂j is a 2 × 2 vertex which, due to isotropy of the
interaction, can only be a function of the transferred mo-
mentum q (which is the same as the external momen-
tum). We now expand γ̂j over a complete set of Pauli
matrices

γ̂j = Ma
j σ̂a, (9)

where a ∈ 0, 1, 2, 3 and the coefficients Ma
j form a 4 × 4

matrix. Substituting this back into Eq. (8b), we find

Π̂U = Π̂0M̂,

M̂ =

(

σ̂0 +
U

2
Π̂0

)−1

. (10)

In the absence of SOC, Π0
0j = 0 for j = 1, 2, 3. The

collective modes in the charge sector are given by the
roots of 1 − V (q)ΠU

00 = 0, while the collective modes in
the spin sector are given by the poles of ΠU

ij which are

solutions of Det(M̂−1) = 0. To associate the modes with
the corresponding susceptibilities, one can first find the
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poles at q = 0, when all the modes are decoupled and
then trace the dispersions at finite q. If the modes do
not intersect, as it will be shown to be the case here,
such an identification is unique.
The problem is thus reduced to calculating Π0

ij(Q).
Using the definition of the Greens’ function in Eq. (3a),
the sixteen components Π0

ij(Q) can be expressed in the
following compact form

Π0
ij(Q) =

1

2

∫

K

Tij ,

Tij =
∑

r,s∈±
grgsFrs

ij . (11)

Explicit expressions for Tij and for the matrix elements,
Frs

ij , are presented in Appendix A. It is useful to re-
alize that, both in 2D and 3D, the system possesses a
rotational symmetry in the x1x2 plane. This allows us
to choose the projection of q onto the x1x2 plane as the
x1 axis. One more simplification occurs if we note that
while performing an integral over k, reflection about the
x−axis (θk → −θk) implies that θk+q → −θk+q. In the
subband Green’s function gr [Eq. (3c)], the angular de-
pendence always enters as cos θk and/or cos θk+q. These
two points together imply that all the terms with sin θk,
sin θk+q, and sin(θk ± θk+q) that appear in Tij ’s (see
Appendix A) vanish. This reduces our consideration to
only the following six components: Π0

00, Π
0
02, Π

0
13, Π

0
11,

Π0
22, and Π0

33. A simple exercise shows that this also en-

sures a block-diagonal structure of the matrices Π̂0 and
Π̂U . It is important to note that, while this property is
valid for any rotationally-invariant interaction, it is only
guaranteed for linear Rashba SOC.
The six non-zero components of the 4×4 susceptibility

tensor (Eq. 7) can then be subdivided into two decoupled
sectors: the 1-3 sector

χij(Q) = −ΠU
ij with {ij} ∈ {11, 13, 33} (12)

and the 0-2 sector

χ00(Q) = − ΠU
00

1− VΠU
00

,

χ02(Q) = − ΠU
02

1− VΠU
00

,

χ22(Q) = −ΠU
22 −

ΠU
20V ΠU

02

1− VΠU
00

. (13)

The remaining χij vanish. This is precisely the (par-
tial) decoupling of the charge and chiral-spin modes men-
tioned in Sec. I: the 22 susceptibility is coupled to the
00 (charge) susceptibility, whereas the 11 susceptibility
is coupled to the 33 susceptibility. The formulation pre-
sented above is applicable in both 2D and 3D; the specific
results depend on the structure of Π̂0. We now apply this
general scheme to specific situations, beginning with the
2D case.

III. COLLECTIVE MODES IN A

TWO-DIMENSIONAL RASHBA SYSTEM

The 2D case is obtained by setting k3 = 0 in Eqs. (1b)
and (2). In Secs. III A-III C, we discuss the analytic re-
sults for the collective modes at small q, in particular,
we derive analytical expressions for the masses of the
collective modes in the spin and charge sector, discuss
the coupling between the spin and charge modes, and
analyze the redistribution of the spectral weight in the
conductivity. The numerical results for dispersions of the
modes, valid for any q, are presented in Sec. III C 2.

A. Spin-charge polarization tensor in two

dimensions

We begin by discussing the polarization tensor for
non-interacting electrons, Π0

ij , for the case when both
Rashba subbands are occupied, i.e., µ > 0, as shown in
Fig. 3a. The case of only one occupied subband, cor-
responding to Fig. 3b will be discussed in Sec. III C 3.
Since Π0

00(0,Ω) = 0 by total charge conservation, to cap-
ture the physics in the charge sector we need to preserve
the leading order q dependence in Π0

00 which, as will be
shown below, appears as q2. This requires expanding
all the components of Π̂0 to O(q2). The diagonal com-
ponents are expandable in even powers of q while the
off-diagonal components are expandable in odd powers
of q. Upon analytic continuation iΩn → Ω + iδ, we ob-
tain expansions of the six non-zero components of Π̂0 to
O(q2)

Π0
00 =

m1

2π

[

(

p0q

m1Ω

)2

− q2

8m1Ω
L(Ω)

]

,

Π0
11 =

m1

2π

[

−1− Ω

8m1α2
L(Ω) +A11(Ω)

(

q

2m1α

)2
]

,

Π0
22 =

m1

2π

[

−1− Ω

8m1α2
L(Ω) +A22(Ω)

(

q

2m1α

)2
]

,

Π0
33 =

m1

2π

[

−2− Ω

4m1α2
L(Ω) +A33(Ω)

(

q

2m1α

)2
]

,

Π0
13 = −i

m1

2π
A13(Ω)

(

q

2m1α

)

+O(q3),

Π0
02 = −m1

2π
A02(Ω)

(

q

2m1α

)

+O(q3). (14)

Here,

p0 ≡
√

2m1µ+m2
1α

2 (15)

and

p± ≡ p0 ∓m1α (16)
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are the Fermi momenta of the Rashba subbands. The
expressions in Eq. (14) are valid in the limit of q ≪
m1α,Ω/vF .
The functions Aij in Eq. (14) are given by

A11(Ω) =
(p0α

Ω

)2

+
m1α

2

4Ω
L(Ω) +

3Ω

2α
a1 −

3

8
m1Ωa2,

A22(Ω) = 3
(p0α

Ω

)2

− m1α
2

4Ω
L(Ω) +

Ω

8α
a1 −

1

8
m1Ωa2,

A33(Ω) =
m1α

2

2Ω
L(Ω) +

Ω

2α
f1 −

1

2
m1Ωa2,

A13(Ω) = − Ω

4m1α2
L(Ω) +

Ω

4α
a1,

A02(Ω) = −1

8
L(Ω) +

2m1α
2

Ω
(17)

with

a1 ≡ 2Ω(p− +m1α)

m1(4α2p2− − Ω2)
− (α → −α),

a2 ≡ 2Ω

m1(4α2p2− − Ω2)
− (p− +m1α)

2

m2
1

8p−αΩ

(4α2p2− − Ω2)2

−(α → −α). (18)

The function

L(Ω) = ln

[

(Ω− Ω− + iδ)(Ω + Ω+ + iδ)

(Ω− Ω+ + iδ)(Ω + Ω− + iδ)

[

(19)

with Ω± = 2αp± arises from transitions between the
Rashba subbands, as shown in Fig. 3. The interval of fre-
quencies Ω+ ≤ Ω ≤ Ω−, where ImL(Ω) 6= 0, corresponds
to the Rashba continuum of width Ω− − Ω+ = 4m1α

2.
The logarithmic structure of L(Ω) is responsible for most
of the interesting properties of the collective modes.

FIG. 3: Intersubband transitions for the cases when a) both
the Rashba subbands are occupied and b) only the lowest sub-
band is occupied. Labels ± denote chiralities of the Rashba
subbands.

A note on a small q expansion: While the above expan-
sions are completely straightforward, the entire deriva-
tion is too cumbersome to be presented here. Never-
theless, we would like to highlight some key aspects in
the behavior of Π0

ij ’s that differ from the case without

SOC. It follows from Eq. (A2a) that, in the limit of
small q, the angular factors arising from the matrix el-
ements reduce to 1 + cos(θk − θk+q) ≈ 2 − O(q2) and

1− cos(θk − θk+q) ≈ q2

2k2 sin
2 θk. Furthermore, the com-

bination g+g+ + g−g−, which corresponds to intrasub-
band transitions, gives the same contribution as in the
absence of SOC and thus scales as ∝ q2/Ω2, while the
combination g+g− + g−g+ involves integration in the re-
gion between the two Fermi surfaces giving rise to the
logarithmic factor L(Ω) [Eq. (19)]. The latter is the in-
tersubband contribution that makes a system with SOC
qualitatively different from a 2D Fermi gas. The need
to integrate over the momentum interval in between the
Rashba subbands, where quasiparticles are in general not
well-defined, is also a roadblock for the development of
a FL theory for systems with arbitrary SOC.35 To eval-
uate Π0

00 [Eq. (A2a)] to O(q2), we notice that the con-
tribution of the convolution of the Green’s functions to
the intrasubband part scales as q2, while the matrix ele-
ment is independent of q in the limit of q → 0. For the
intersubband contribution, the matrix element scales as
∝ q2 while the Green’s functions give a q independent
logarithmic factor [L(Ω) in Eq. (19)]. For the Π0

33 com-
ponent, however, a similar consideration shows that the
intrasubband contribution is absent to order q2 (the first
non-zero term occurs at order q4), while one needs to
keep O(q2) corrections to L(Ω) in the intersubband part.
This is the origin of the function A33. All the Π0

ij ’s thus
have both intrasubband and intersubband contributions
dressed appropriately by the angular factors arising from
the matrix elements.

B. Charge sector: plasmons, optical conductivity,

and the sum rule

As mentioned in Sec. I, the plasmon mode of a two-
dimensional electron gas (2DEG) with Rashba SOC has
been studied in great detail in earlier work.25–28,39 Here,
we demonstrate how the plasmon modes are obtained
within our formalism and compare our results with those
of prior work. We also study coupling between plasmons
and the modes in the spin sector. We show that the
existence of two plasmon modes is a 2D Rashba metal
follows naturally from the RPA-ladder approach devel-
oped in Sec. II. As a consistency check, we also show in
Appendix B that the same results can also be obtained by
calculating the conductivity by using either the quantum
Boltzmann equation or the Kubo formula.

1. Plasmons from the RPA-approach

Plasmon modes are manifested by poles in the charge
susceptibility, χ00. The poles coincides with the roots
of the equation 1 − V (q)ΠU

00 = 0, where ΠU
00 =

Π0
00

(

1 + U
2 Π

0
00

)−1
. Neglecting the short-range compo-
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nent of the interaction (U), upon which ΠU
00 = Π0

00, and
using the form of Π0

00 from Eq. (14), we see that the
long-wavelength limit of plasmon modes occur as solu-
tions of a transcendental equation (we choose Ω > 0 for
convenience)

Ω2

q
= e2

(

p20
m1

− Ω

8
ReL(Ω)

)

. (20)

FIG. 4: Graphic solution of Eq. (20). The root marked by
a dot corresponds to the 2D plasmon with a

√
q dispersion.

Inset: A zoom on peak at Ω− in logarithmic scale showing the
second root which corresponds to the optical plasmon mode
arising solely due to SOC.

It is obvious that Eq. (20) has a real solution(s) only
outside of the Rashba continuum, i.e., either for 0 ≤
Ω < Ω+ or for Ω > Ω−. The left- and right-hand sides
(LHS and RHS, correspondingly) of Eq. (20) are plot-
ted in Fig. 4. One of the roots (marked by the dot) is
prominent. To obtain its dispersion analytically, one can
neglect the second term in the RHS of Eq. (20), which
yields

Ω1(q) =

√

e2p20
m1

q1/2 + O(q). (21)

This is the usual 2D plasmon with a
√
q dispersion; the

coefficient of the
√
q term is renormalized by SOC. The

second root is more subtle. Since we have already found
the mode with dispersion vanishing at q → 0 and since
the state at q = 0 is non-degenerate, we expect the other
mode to have finite frequency at q → 0. At finite Ω
and q → 0, the LHS of Eq. (20) diverges; therefore, the
RHS must diverge too. This is only possible if Ω ap-
proaches the upper boundary of the Rashba continuum
(Ω−) from above, such that ReL(Ω) is negative and di-
verges as ln(Ω − Ω−). Neglecting the first term in the
RHS of Eq. (20) and replacing Ω by Ω− in all the factors
under the logarithm except for the one that vanishes at
Ω = Ω−, we obtain

Ω2(q) = Ω− +
Ω− +Ω+

p0/m1α
e
− 8Ω

−

e2q . (22)

This second root is shown in the inset of Fig. 4.
Thus a 2D Rashba system formally has two plasmon

modes: one mode is the usual,
√
q plasmon, expected for

any 2D system, and the other mode is split off (expo-
nentially weakly at small q) from the upper edge of the
Rashba continuum. At larger q, the boundaries of the
continuum themselves disperse with q (see, e.g., Ref. 29)
and the second plasmon tracks the upper boundary of
the continuum. At finite but small q (q ≪ m1α), the
dispersion of the second plasmon can be written as

Ω2 ≈ Ω−(q) +
Ω−(q) + Ω+(q)

p0/m1α
e
− 8Ω

−
(q)

e2q , (23)

where the q-dependent boundaries of the Rashba contin-
uum are29

Ω±(q) = ± (q ± 2m1α+ pF )
2 − p2F

2m1
. (24)

One might wonder if the exponentially weak dispersion
of Ω2 exceeds the accuracy of the small q expansion. We
would like to stress this is not the case. To see this, we
note that an expansion of Π0

00 to fourth order in q can
be expressed as (see Appendix C)

Π0
00 ∝ c1q

2 + c2q
4 + (c3q

2 + c4q
4)L[Ω(q)], (25)

where ci’s are some coefficients with appropriate dimen-
sions. Dropping the q4 terms implies the smallness of
the q4L[Ω(q)] term relative to the q2 term near the sec-
ond plasmon branch. For our result to be valid, we thus
need the distance between Ω2(q) and Ω− to be larger

than e−const/q2 . Our solution suggests that this distance

is of order ∼ e−Ω
−
q ≫ e−Ω2

−

/q2 , which is well within the
region of validity.
At this point we would like to compare our results with

the ones obtained previously by different groups,25–29,39

not all of which agree with each other on the number
and type of plasmons. Our results partially agree with
those of Refs. 25,29,39. Reference 39 identified the two
plasmon branches and also the exponential closeness of
the optical branch to the Rashba continuum; however,
the dispersion of the continuum boundaries was ignored
in this work. Reference 29 did not identify the opti-
cal plasmon–probably due to its exponential closeness to
the continuum. Reference 25 correctly identified the two
plasmons but also reported a third plasmon at the lower
edge of the Rashba continuum, which we do not find.
Reference 27 also reported the two plasmons, but both
the shape of the Rashba continuum and the

√
q-plasmon

dispersion disagree with our results, as well as with that
by others. Reference 28 identified two plasmons and no-
ticed correctly that the third plasmon is damped inside
the Rashba continuum; however, our result for the opti-
cal phonon dispersion disagrees with theirs. We believe
that the disagreement is due to the fact that the sign
in the equation for the plasmon dispersion in Ref. 28 is
opposite to that in ours, as well as to that in other works.
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Recall that we had neglected the short-range compo-
nent of the interaction in arriving at our results for the
plasmon modes. It is safe to do so because, to leading
order in q, the presence of the short-range interaction
does not affect the plasmons. To see this, let us go back
to the equation 1 − V (q)ΠU

00 = 0 and expand ΠU
00 in U

as ΠU
00 ≈ Π0

00 + U
2 (Π

0
00)

2. From Eq. (14) we see that

(Π0
00)

2 ∼ q4/Ω4. Hence, the equation for the plasmon
mode acquires a correction of order Uq3/Ω4. While this
provides a subleading, q3/2U correction to the

√
q plas-

mon, it leaves the exponential behavior of the second
plasmon unchanged.
It is necessary to point out that the exponential prox-

imity of the optical plasmon to the continuum makes it
hard to be detected. Any broadening of the continuum
due to finite temperature or disorder will smear this mode
out.

2. Optical conductivity and the sum rule

In this section, we demonstrate how the optical sum
rule is satisfied in the presence of Rashba SOC. The op-
tical conductivity can be found from the Kubo formula
as σij(Ω) = iKij(Ω)/Ω, where Kij is the current-current
correlation function at T = 0 (as before, Ω > 0)

K11(Ω) = e2
∫

d2k

(2π)2

∫ 0

−Ω

dω

2π
Tr
[

v̂1Ĝ
R
ω v̂1Ĝ

A
ω+Ω

]

(26)

where

v̂1 =
k1
m1

σ0 − ασ̂2 (27)

and the superscript R(A) denotes the retarded (ad-
vanced) Green’s function. Due to in-plane symmetry,
we have K11 = K22 ≡ K. As shown in Ref. 39 (see also
Appendix B2),

K(Ω) = −e2α2m1

2π

(

1 +
Ω

8m1α2
L(Ω)

)

. (28)

On adding the diamagnetic term n2De2/m1 to the last
result, the conductivity can be written as

σ(Ω) = ie2

[

n2D

m1
− m1α

2

2π

Ω
− L(Ω)

16π

]

. (29)

The real part of σ(Ω) is shown in Fig. 5. We added a
small imaginary part ( i

2τ ) to the denominators of the
Green’s functions in Eq. (26) to simulate disorder (un-
der a rather crude assumption that the interband and
intraband scattering rates are the same). A detailed de-
scription of the effects of disorder is outside the scope of
this work.41

In a clean system, the coefficient of the Ω−1 term in the
imaginary part of the conductivity is the Drude weight

D = e2π
n2D − m2

1α
2

2π

m1
, (30)

0 1 2 3
0

0.2

0.4

0.6

0.8

1

Ω/µ

R
e 

σ(
Ω

)/
e2

Drude Peak

Rashba Continuum

Ω
−

Ω
+

FIG. 5: The real part of the conductivity of a non-interacting
2D system with Rashba SOC. A small imaginary part, 1/τ =
0.01µ, was added to the denominators of the Green’s functions
in the Kubo formula to simulate of the effect of disorder.

which can also be defined as

D = e2π lim
Ω,q→0

Ω2

q2
Π00, (31)

where the limit q → 0 is taken first. There is thus, a cor-
rection O(α2) to the Drude weight due to SOC.39,42–44

In addition, Reσ(Ω) 6= 0 in the interval of frequencies
corresponding the Rashba continuum, Ω+ ≤ Ω ≤ Ω−.
This is to be contrasted to the case without SOC when
Reσ(Ω) = 0 for Ω > 0. Both the reduction of the Drude
weight and a non-zero Reσ at finite Ω occur because SOC,
being a relativistic effect, breaks Galilean (but not trans-
lational) invariance.42–44 While both these features have
been discussed in the literature, their consequences for
the optical sum rule has not been analyzed.
We now show explicitly that the sum rule is satisfied.

The integrated spectral weight should be equal to
∫ ∞

0

dΩ Reσ(Ω) =
π

2
e2

n2D

m1
. (32)

The spectral weight of the Drude peak at Ω = 0 is D/2.
In the absence of SOC, the area under the Drude peak
contains all the spectral weight and thus the sum rule
is satisfied automatically. In the presence of SOC, D
is reduced from its free-electron value of e2πn2D/m1.
However, this loss of weight in the Drude peak is ex-
actly recovered in the box-like feature at finite frequency
(see Fig. 5), the area under which is exactly e2m1α

2/4.
Adding up these two contributions, we recover the total
spectral weight of π

2 e
2n2D/m1. Electron-electron inter-

action gives rise two additional effects: (a) a correction to
the Drude weight44 and (b) a non-zero value of Reσ(Ω)
outside the Rashba continuum.43 Checking the sum rule
in the presence of interactions is a more challenging task
and we shall not dwell on this point any further.
For lattice systems, the above sum rule needs to be ap-

plied with care. Of course, if a sum is performed over all
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bands, we must recover the spectral sum e2πn2D/2me

(the f -sum rule), where me is the bare electron mass.
However, if we model the conduction band by a parabolic
spectrum with an effective mass m1, then the sum rule
is valid as long as there are no interband transitions. A
spectral weight rearrangement due to SOC occurs at the
energy scale 2αp0. If this redistribution were to be ex-
perimentally verified, then it requires the band gap Eg of
the semiconductor to be large compared to 2αp0 (which
guarantees that the energy scales are well separated). In
this case, one can formulate a “band” sum rule (with
the band mass m1 as opposed to me in the full f -sum
rule), which stipulates conservation of the spectral weight
within a given band. This procedure can then serve as
a consistency check between the optical and Hall mea-
surements: the latter provides the value of n2D, while
the former contains the spectral information. It is im-
portant to realize that for stronger SOC, n2D should be
deduced not from just the Drude weight but rather from
the spectral weight integrated up to Ω ∼ 2αp0.

C. Spin sector: chiral-spin modes and their

coupling to the charge modes

Thus far, we have analyzed the charge sector. We now
investigate the chiral-spin sector and the coupling be-
tween the two sectors. Some of the important features
can be tracked analytically in the limit of small q; those
are discussed in Sec. III C 1. The quantitative aspects of
coupling between the two types of modes require a full
numerical analysis, which will be presented in Sec. III C 2.

1. Chiral-spin modes at q = 0

The chiral-spin modes were investigated in Refs. 32
and 33 in the limit of weak SOC but for an arbitrarily
strong interaction within the FL theory. Here, we relax
the constraint of weak SOC and use the RPA+ladder
scheme to find the collective modes. We explicitly show
that this reproduces correctly the results in the small α
limit upon expressing the FL parameters in terms of the
short-range coupling constant, U .
We have already shown that, in general, the suscepti-

bilities can be grouped into the 0-2 and 1-3 sectors (we
remind that 0 stands for the charge component while 1, 2,
and 3 stand for the Cartesian components of magnetiza-
tion). As is evident from the structure of the polarization
tensor discussed in Sec III A, all the four channels decou-
ple in the limit of q → 0. All Π0

ijs with i 6= j scale as q
and hence vanish at q = 0. Thus the masses of the modes
(which are a q = 0 feature) are not affected by the 0− 2
and 1− 3 couplings.
In the q → 0 limit, Eqs. (10), (12) and (14) suggest that

the only non-zero components are χjj with j = 1, 2, 3
which, in this limit, are given by −ΠU

jj . The collective

modes correspond to poles of ΠU
jj and are thus are given

FIG. 6: Graphic solution of Eq. (33). The solid and dashed
lines are the real and imaginary parts of the RHS of Eq. (33),
respectively. The dash-dotted lines are the LHSs for u =
0.66. The analytical forms of the weak coupling solutions are
discussed in the text.

by the roots of the equations 1 + U
2 Π

0
jj = 0. This leads

to the following transcendental equations for the masses
of the modes

2

u
= 1 + Ω

8m1α2L(Ω), for 11 and 22 modes;

1

u
= 1 + Ω

8m1α2L(Ω), for 33 mode, (33)

where u = m1U/2π is the dimensionless interaction and
L(Ω) is defined in Eq. (19). The 11 and 22 modes are
degenerate at q = 0: this is guaranteed by the in-plane
rotational symmetry of Rashba SOC. The LHS and RHS
of Eq. (33) are plotted in Fig. 6. Due to a logarithmic
singularity in the real part of L(Ω), a solution exists for
any value of u. At weak coupling (u ≪ 1), the solution is
exponentially close to the lower boundary of the Rashba
continuum (marked by the dashed line). Searching for a
solution of the form Ω = Ω+ − δ with |δ| ≪ Ω+, we find
for the masses of the 11 and 22 modes

Ω11(0) = Ω22(0) = Ω+

(

1− 2m1α

p0
e
−( 2

u
−1) 8m1α2

Ω+

)

.

(34)

The mass of the 33 mode is obtained by replacing u → 2u;
therefore, Ω33(0) is the smallest mass. Equation (34) is
valid if the argument of the exponential is much larger
than unity in magnitude. For weak SOC (α ≪ vF , where
vF is the Fermi velocity at α = 0), the last condition im-
plies that u ≪ α/vF ≪ 1. Therefore, the found solution
corresponds to the regime when the electron-electron in-
teraction is weaker than SOC (when measured in appro-
priate units). To find the solution in the opposite regime
of weak SOC (α/vF ≪ u), we expand L(Ω) in 2m1α

2. A
straightforward calculation yields

Ω11(0) = Ω22(0) = 2αpF

√

1− u

2
. (35)
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[Again, Ω33(0) is obtained from Eq. (35) above by re-
placing u → 2u.] Equation (35) is valid if 2m1α

2 ≪
|Ω − 2αpF |, where one should substitute the masses of
the modes for Ω. Doing so and expanding in u, we in-
deed see that the condition for validity of Eq. (35) is
α/vF ≪ u. The crossover between regimes described by
Eqs. (34) and (35) occurs at u ∼ α/vF . In Fig. 7, we
show the exact solution of Eq. (33) for the 11 and 22
modes as a function of u along with the asymptotic so-
lutions given by Eqs. (34) and (35). We see here that
for weaker SOC (α/vF = 0.1), the solution is well ap-
proximated by Eq. (35). But, for the stronger SOC
(α/vF = 0.5), the crossover between Eqs. (34) and (35)
is clearly apparent.

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

u

Ω
11

(0
)=

Ω
22

(0
)

α=0.1v
F

Eq. (34)
Eq. (35)
Exact

0 0.2 0.4 0.6 0.8 1
0

0.5

1

1.5

u

Ω
11

(0
)=

Ω
22

(0
)

α=0.5v
F

Eq. (34)
Eq. (35)
Exact

FIG. 7: Masses of the 11 and 22 modes as a function of the
dimensional electron-electron coupling u. Solid: an exact so-
lution of Eq. (33). Dashed: Eq. (34) valid for u ≪ α/vF .
Dash-Dotted: Eq. (35) valid for u ≫ α/vF . Top: α = 0.1vF ;
Bottom: α = 0.5vF . The crossover between Eqs. (34) and
(35) occurs approximately at u ≈ 0.7.

Within the FL formalism, which assumes that SOC
is weak, the mode masses can be expressed via the FL
parameters evaluated in the absence of SOC.32,33 If one
further adopts the s-wave approximation, in which all
but the zeroth angular harmonic of the Landau function
are absent, the FL results for masses of the modes reduce

to:33

Ω11(0) = Ω22(0) = 2αpF

√

1 + F a
0 /2, (36)

where F a
0 is the zeroth harmonic of the spin-asymmetric

part of the Landau function. For the 33 mode, one re-
places F a

0 → 2F a
0 . Since F a

0 = −u to first order in
the short-range interaction,35 the FL result [Eq. (36)]
corresponds to the weak-SOC limit of the RPA result,
Eq. (35). We see, however, that the form of the RPA
result, Eq. (35), has no correspondence in the FL the-
ory. This implies that the assumption of weak SOC of
Refs. 32 and 33 is quite stringent: SOC must be smaller
not only compared to the Fermi energy but also to the
electron-electron coupling.

2. Dispersion and coupling of charge and spin sectors for
arbitrary q

In this section, we present numerical results for the
dispersions of the charge and chiral-spin modes, supple-
mented by the analytical treatment of limiting cases. The
collective modes are manifested by the poles in the com-
ponents of the susceptibility tensor given by Eqs. (12)
and (13). A collective mode is not Landau-damped if it
lies outside (regions where ImΠ0

ij 6= 0). Since the var-
ious components of the spin-charge polarization tensor
are coupled to each other, it is important to determine
the boundaries of the continua for all the six Π0

ij . These
are shown in Fig. 8 the lines are guides to the eye. The
top row corresponds the 0− 2 sector, where the continua
present in all Π0

ij ’s have both the charge and Rashba re-
gions. The charge continuum is the region starts below
the diagonal line, while the Rashba continuum occupies
a finite segment of the vertical axis and disperses into
the Ω − q plane. [The Rashba continuum in Π0

00 is not
easily seen on the color scale as ImΠ0

00 ∝ q2 but is never-
theless present–see Eq. (14)]. This suggests that the col-
lective modes in this sector are affected by both charge
and Rashba continua. In the 1 − 3 sector, Π0

11 has both
charge and Rashba continua, but Π0

13 and Π0
33 only have

a Rashba continuum.
The absence of the charge continuum in these two last

cases can be seen analytically, at least in the limit of α ≪
vF . Since the gap in the Rashba continuum is present
only for 0 ≤ q ≤ 2m1α ≪ p0, we can also look at the
small-q case, assuming that q ≪ pF . In this limit, the
first term in Eq. (A2p) is equal to zero to O(q2) since
cos(θk − cos θk+q) = 1−O(q2) and g+g+ ∼ O(q2). The
leading term in Π0

33(q,Ω) is thus given by

Π0
33(q,Ω) =

∫

K

(g+g− + g−g+) (37)

=

∫

d2k

(2π)2
nF (ε

+)− nF (ε
−)

Ω + iδ + (2m1α− q cos θ)vF
.
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FIG. 8: Imaginary parts of the six non-zero components of the spin-charge polarization tensor Π0
ij [Eq. (5), arbitrary units]. Ω

is in units of µ and q is in units of
√
2m1µ. The solid lines are guides to they eye that mark the boundaries of the single-particle

continua.

The imaginary part of this integral gives only the Rashba
continuum. Thus there is no charge continuum in Π33 to

O
[

(q/pF )
2
]

and O
[

(

m1α
p0

)2
]

.

Since the 33 mode is coupled to the 11 mode through
Π0

13, we also need to look at ImΠ0
13. We focus

here only on the diagonal,
∫

(g+g+ − g−g−) term in
Eq. (A2h), as the charge continuum can arise only from
this term. Integrating the product g+g+, we obtain
nF (ε+)−nF (ε+)
Ω+iδ+vF q cos θ)(cos θk− cos θk+q). Furthermore, (cos θk−
cos θk+q) ≈ − q

pF
sin2 θ. Integrating over k, we obtain for

the imaginary part

Im

∫

K

g+g+(cos θk − cos θk+q) =
m1

2π

√

v2F q
2 − Ω2

vFkF
(38)

for Ω < vF q and 0 otherwise. This is region where the
charge continuum should be. However, the combination
of g−g− also yields the same expression which cancels
the contribution of g+g+. This leads to complete can-
cellation of the charge part in ImΠ0

13 to O
[

(q/pF )
2
]

and

O
[

(

m1α
p0

)2
]

. While we have shown this explicitly for

weak SOC, we have also checked numerically that this
remains true for larger α as well.

The absence of the charge continuum has an important
consequence for the damping of the 33 mode. To see this,
we recall that, according to Eqs. (10) and (12),

χ33 = −
(

Π0
33M33 +Π0

31M13

)

. (39)

Since we have shown that in the charge-continuum region
both ImΠ0

33 and ImΠ0
13 are equal to zero, a trivial exercise

in matrix inversion suggests that Imχ33 is also zero in
that region (even though ImΠ0

11 is finite). Thus the 33-
mode does not “see” the charge continuum and hence is
not damped.

The dispersions of the collective modes are obtained by
numerically evaluating χij defined in Eqs. (12) and (13)
(see Appendix A for details).45 The results of these cal-
culations are shown in Fig. 9. The imaginary part of the
charge susceptibility (χ00) is shown in the top panel. The√
q-plasmon approaches the charge continuum for larger

Ω and q. The optical charge plasmon is not seen here
because of a weak damping added to improve numerical
convergence. The boundaries of the Rashba continuum,
which is also not visible on the color plot, are marked by
the yellow dotted lines. The charge plasmon is damped
within the Rashba continuum.

The chiral-spin modes are manifested by the poles in
the three components of the spin susceptibility (χ11, χ22,
and χ33). Their dispersions are shown in the bottom
panel of Fig. 9. The dashed line is the boundary of the
Rashba continuum. The insets show the calculated Imχii

(i = 1, 2, 3) separately. The 11 and 22 modes start out
degenerate at q = 0 but split off at finite q and eventually
run into the Rashba continuum. The fact that the two
modes split at finite q can already be seen analytically
from the Eq. (14); this analysis is presented in Appendix
D. The 33 mode disperses downward and approaches
the Rashba continuum but at larger value of q (in the
FL theory,33 the merging point coincides with the end
point of the continuum). The 33 mode is not damped by
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the charge continuum, but will be damped due to broad-
ening of the Rashba continuum by disorder and thermal
fluctuations, as well as by quasiparticle scattering.

FIG. 9: Top: Imaginary part of the charge susceptibility
Imχ00 in the Ω-q plane. The

√
q plasmon is shown by the

solid red line. For larger Ω and q, the plasmon merges with
the charge continuum (whose boundary is marked by the solid
yellow line). The second (optical) charge plasmon is smeared
out by weak damping, added to improve numerical conver-
gence, and is not visible in the plot. Bottom: The dispersions
of the spin modes shown are shown by solid red lines. The
11 and 22 modes are degenerate at q = 0 but split off at
finite q and run into the Rashba continuum. The 33 mode
disperses downward and merges with the Rashba continuum.
This mode does not feel the charge continuum, as discussed in
the text. The boundary of the Rashba continuum is marked
by the dashed yellow line. The insets show individual Imχii

(i = 1, 2, 3), from which the dispersions are extracted. Here,

α = 0.25
√

2µ/m1, u = 0.2, and 1/τ = 0.02µ.

Figure 10 shows the effect of coupling of the plasmon
to the 22 mode and the coupling of the 33 mode to the
11 mode. The dashed lines are the dispersions obtained
by ignoring the coupling between the respective modes;
the solid lines are the actual dispersions of the modes.
We note two important features: 1)The masses of the
modes are not affected by the inter-mode coupling but
the dispersions are. 2) The 33 mode is pushed away from
the continuum but the plasmon is pulled towards the
continuum.

FIG. 10: (Top) Effect of spin-orbit coupling on the dispersion
of plasmon. The red line is the true dispersion in a system
with Rashba SOC (where Π02 6= 0) The dashed line is the
dispersion ignoring the coupling to chiral sector (Π02 = 0).
(Bottom) Change in dispersion of the 33 mode as a result of
coupling to the 11 mode via Π13 (red line). The dashed line
is the dispersion ignoring this coupling. Here mα√

2mµ
= 0.25

and u = 0.2.

3. Spin-chiral modes for µ < 0

In this section, we show that chiral-spin modes ex-
ists even when only the lower Rashba subband is occu-
pied, i.e., µ < 0 To see this, let’s look at Π0

33(0,Ω) =
1
2

∫

K
(g+g− + g−g+) for µ < 0. Carrying out the ω and

angle integrations, we find

Π0
33(0,Ω) =

1

2

∫

kdk

2π

[

nF (ε
+)− nF (ε

−)

iΩ+ 2αk
+ α → −α

]

.

(40)

For µ < 0, nF (ε
+) = 0 and nF (ε

−) = 1 in the interval

p1 < p < p2 where p1,2 = m1α ∓
√

−2m1|µ|+m1α2 are
the inner and outer radii of the annular Fermi surface,
see Fig. 3 b. Integrating over k, we arrive at

Π0
33(0,Ω) = −m1

2π

[

2p0
m1α

+
Ω

4m1α2
L′(Ω)

]

, (41)

where L′(Ω) is the same as L(Ω) in Eq. (19) but with
p+ → p1 and p− → p2. Intersubband transitions that
give rise to the function L′(Ω) are shown by the hatched
region in Fig. 3 b. Since L(Ω) and L′(Ω) are qualitatively
the same, the structure of the poles and of the continua
is the same as for µ > 0.
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D. Manifestations of the collective modes in the

observable quantities

In this section, we discuss the relation between the
collective modes and observable quantities. Due to de-
coupling of the 0 − 2 and 1 − 3 sectors, the 11- and 33
chiral-spin modes in the dipole approximation can only
be excited magnetically and can be seen in the spin sus-
ceptibility measurements or using the mode confinement
proposal of Ref. 33. (At the next, quadrupole, order,
the 11 and 33 modes couple to the electric field as well.)
The coupling between the charge (00) and the in-plane,
transverse chiral-spin mode (22) occurs already at dipole
order,32 and we will focus on this channel. In this sec-
tion, we study only the theoretical aspects of the relation
between the collective modes and various observables,
hence the parameters chosen for the plots do not nec-
essarily correspond to any real system. Our predictions
for specific materials are given in Sec. V.

1. Probing the modes at q = 0

It was shown in Ref. 32 that the part of the opti-
cal conductivity arising from the intersubband transi-
tions is proportional to the in-plane spin susceptibility at
q = 0. This suggests a possibility to observe the chiral-
spin mode at q = 0 directly in the optical conductivity,
measured either via absorption or reflectivity. For com-
pleteness, we show how the result of Ref. 32 is reproduced
within our approach.
Recall that the velocity operator in the presence of

SOC [Eq. (27)] contains an off-diagonal part proportional
to α. In the non-interacting case, the corresponding off-
diagonal contribution to the current-current correlation
function, Koff , is directly proportional to the 22 compo-
nent of the spin susceptibility at q = 0:

Koff(Ω) = e2α2

∫

kdk

2π

∫

dθ

2π

∫

dω

2π
Tr
[

σ̂2Ĝωσ̂2Ĝω+Ω

]

= e2α2Π0
22(0,Ω). (42)

Within our RPA+ladder formalism, taking into account
the electron-electron interaction amounts to calculating
vertex corrections to the conductivity. This changes Koff

to KU
off , where

KU
off(Ω) = e2

∫

K

Tr
[

v̂1ĜK β̂ĜK+Q

]

,

β̂ = v̂1 − U

∫

P

Ĝ(P )β̂Ĝ(P +Q), (43)

and v̂1 is defined in Eq. (27). We represent β̂ as β̂ = Naσ̂a

with a ∈ 0, 1, 2, 3. Substituting this form into Eq. (43),
multiplying by σ̂0 and taking trace, we find: N1,3 = 0,
N0 = k1/m1, and N2 = α

1+U
2 Π0

22

. This results in

KU
off(Ω) = e2α2 Π0

22(0,Ω)

1 + U
2 Π

0
22(0,Ω)

. (44)

Thus the 22 mode at q = 0 (the “chiral-spin resonance”
in the terminology of Ref. 32) shows up as a pole in the
conductivity. The real part of the total conductivity

σ(Ω) = i
e2

Ω

[

n2D

m1
− m1α

2

2π
+ α2 Π0

22(0,Ω)

1 + U
2 Π

0
22(0,Ω)

]

(45)

is shown in Fig. 11, were again we added a small 1/τ to
mimic the effect of disorder. The new feature, compared
to the non-interacting case (Fig. 5), is a sharp peak be-
low the Rashba continuum. In 2D systems, Reσ(Ω) is
measured via absorption.
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0.4
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σ(

Ω
)/

e2 22 Mode

Drude peak

FIG. 11: The real part of the conductivity of an interacting
2D electron system with Rashba SOC. A sharp peak is due
to the 22 chiral-spin mode at q = 0. Here, α = 0.25

√

2µ/m1

and u = 0.2.

The optical conductivity can be also measured via re-
flectivity. The reflectance of a single 2D sheet is related
to its conductivity via

R =

∣

∣

∣

∣

2πσ(Ω)

c+ 2πσ(Ω)

∣

∣

∣

∣

2

, (46)

where c is the speed of light. The reflectance is plotted
in Fig. 12 for the non-interacting case (left panel) and in
the presence of the interactions (right panel).

2. Probing the modes at finite q

The dispersion of the 22 mode can be accessed via
measuring the nonuniform conductivity, i.e., σ(q,Ω) with
q 6= 0. There is a well-developed technique of measuring
σ(q,Ω) via absorption of the incident power by a 2DEG
with a grating structure imposed on it.16 The absorbed
power is proportional to (1/2)E2

0Reσeff, where E0 is the
the amplitude of the incident electric field,

σeff(q,Ω) =
σ11(q,Ω)

1 + 2πiq
Ωǫeff

σ11(q,Ω)
(47)

2π/q is the grating period and ǫeff = [ǫ2 + ǫ1 coth(qd)] /2
is the effective dielectric constant of a structure
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FIG. 12: Left: Reflectance of a single 2D layer of non-interacting electron gas with Rashba SOC (solid) and without SOC
(dashed). The two features at Ω = Ω− and Ω = Ω+ are due to the logarithmic singularities at the boundaries of the Rashba
continuum. Right: The same but with the electron-electron interaction taken into account. The 22 mode shows up as a strong
peak in the reflectance. Since the 22 mode is close to the lower boundary of the Rashba continuum, the logarithmic feature at
Ω+ is washed out by the peak at Ω22. Here, α = 0.25

√

2µ/m1 and u = 0.2.

vacuum/insulator1/insulator2 with ǫ1,2 being the dielec-
tric constants of insulator1/2, correspondingly, and d be-
ing the thickness of insulator1. Both E and q are in
the x1-direction. A well-established feature is a peak in
σeff corresponding to the 2D plasmon.16 SOC modifies
the plasmon dispersion; more importantly, however, it
brings in a qualitatively new effect: a dispersing chiral-
spin mode. Therefore, one should expect to see two
peaks: one from the plasmon and another one from the
chiral-spin mode.
Our goal now is to find σ11(q,Ω) given by

σ11(q,Ω) =
i

Ω
KU

11(q,Ω). (48)

We notice that, in contrast to the q = 0 case, KU
11(q,Ω)

at finite q is not simply related to the 22 component of
the spin susceptibility. This is already evident for the
non-interacting case, when

K11(q,Ω) = e2
∫

K

Tr
[

v̂1(q)ĜK v̂1(−q)ĜK+Q

]

(49)

with

v̂1(q) ≡
k1 + q/2

m
σ̂0 − ασ̂2. (50)

Carrying out the trace, we find

K11(q,Ω)

e2
=

∫

K

(

k21 − q2

4

m2

1

2
T00 − 2α

k1
m

1

2
T02
)

+α2Π0
22(q,Ω), (51)

where T00 and T02 are given by Eqs. (A2a) and (A2c),
correspondingly. The last term in Eq. (51) is proportional
to the spin susceptibility while the first two terms vanish

at q = 0 because in this case
∫

ω
T00 = 0 and

∫

ω
T02 = 0.

These terms is an extra contribution which distinguishes
between K11 and Π22 at finite q.
The current-current correlation function for interact-

ing electrons is evaluated in Appendix E. The final re-
sult is that the the dispersion of the mode probed by the
conductivity at finite q is different from the dispersion
probed by the spin susceptibility: the difference is in a
q-dependent term that scales as u2q2 at small q. At ar-
bitrary q, K11(q,Ω) needs to be computed numerically.
The full result for σeff in shown in Fig. 13, where for
simplicity we set ǫeff = 1. In addition to the plasmon
peak at lower energies, there is also a (much weaker dis-
persing) peak at higher energies from the 22 chiral-spin
mode. As larger q, the 22 modes merges with the Rashba
continuum. For the parameters chosen for Fig. 13, this
happens at q ≈ 0.32

√
2m1µ, which is why the there is no

22-peak at q = 0.32
√
2m1µ in this figure.

IV. COLLECTIVE MODES IN A

THREE-DIMENSIONAL RASHBA SYSTEM

In this section, we address the collective modes in a 3D
Rashba system. At the non-interacting level, our model
is the Hamiltonian in Eq. (1a) with finite k3. The 3D
Fermi surface is of the toroidal shape. Its projection onto
the x1x2 plane is the same two circles as in a 2D system
(cf. Fig. 14, top), while the x1x3 projections are two
overlapping ellipses (cf. Fig. 14, bottom). It is convenient
to define the following dimensionless parameters

s1 =
m1α

p0
; s2 =

√
2m1µ

p0
. (52)

The general formalism for studying the collective
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FIG. 13: Left: The real part of the effective conductivity σeff(q,Ω) [Eq. 47] for a 2D Rashba system with electron-electron
interactions. The Coulomb interaction gives rise a plasmon peak at lower energies while the short-range part of the interaction
gives rises to a chiral-spin peak at higher energies. The wavenumber q is measured in units of

√
2m1µ, α = 0.25

√

2µ/m1, and
the dimensionless coupling constant of the short-range interaction u = 0.2. Right: The same as on the left but on a log scale.

FIG. 14: Left: Fermi surface of a 2D electron system with Rashba spin-orbit coupling for µ > 0. Right: A cut along k2 = 0
plane of the 3D Fermi surface corresponding to the spectrum (see 2), which is isotropic in the x − y plane. µ > 0. The 3D

Fermi surface is obtained by rotating the 2D contours about the k3 axis. Here, α = 0.25
√

2µ/m1 and m3/m1 = 2.

modes is the same in 2D (Sec. II); an important differ-
ence, however, is k3 integration which will lead to quali-
tative differences between the 2D and 3D cases.

A. Charge sector: plasmons

Since the 3D system is anisotropic (the x3 direction is
different from any direction in the x1x2 plane ), we would
expect the in-plane and out-of-plane responses to be dif-
ferent. Indeed, the system does support an anisotropic
plasmon mode whose frequency, given by the equation
1 − V (q)Π0

00 = 0, depends on the direction of q. Al-
though the exact solution for generic q is a quite involved,
one can readily work out the cases of the out-of-plane
(q = qx̂1) and in-plane (q · x̂3 = 0) plasmons.

1. Out-of-plane plasmon (q = qx̂3)

In this case, the calculation is quite simple because
angular integration is rendered trivial. According to
Eq. (11), Π0

00 is given by an integral of T00 [Eq. (A2a)].
Because q is out of plane, cos(θk − θk+q) = 1, and thus
one needs to evaluate only the convolution

∫

g+g++g−g−.
Expanding T00 to order q23 and integrating overK, we ob-
tain

Π0
00(q,Ω) =

q2

Ω2

p30
π2

√
m1m3

(

1

3
s32 +

1

2
s21s2 +

1

2
s1 sin

−1 s1

)

,

(53)

where q = q3 and s1,2 are defined in Eq. (52). [As a check,
one can show that if α = 0 andm1 = m3 = m, then p0 →
pF =

√
2mµ and we reproduce the isotropic 3D limit:

Π0
00 = (p3F /3π

2)q2/mΩ2 = nq2/mΩ2.] The prefactor in
Eq. (53) is related to the total number density. Indeed, a
rather straightforward calculation shows that the number
density for the spectrum (2) is given by
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n3D = m3
p30

π2
√
m1m3

(

1

3
s32 +

1

2
s21s2 +

1

2
s1 sin

−1 s1

)

,

(54)

and thus Eq. (53) can be re-written as

Π0
00(q,Ω) =

n3D

m3

q2

Ω2
. (55)

Consequently, the plasmon frequency at q = 0 is Ω2 =
4πn3De2/m3, which is the same as in the absence of SOC.

2. In-plane plasmon (q · x̂3 = 0)

This case is more involved because of angular integra-
tion. In the limit of small q‖ ≡

√

q21 + q22 , one can expand

the angular factors in Eq. (A2a) as:

1 + cos(θk − θk+q) ≈ 2−
q2‖
2k2‖

sin2 θ,

1− cos(θk − θk+q) ≈
q2‖
2k2‖

sin2 θ. (56)

After some algebra, we obtain

Π0
00(q,Ω) =

q2

Ω2

m3

m1

p30
π2√m1m3

(

1

3
s32 +

1

4
s21s2 +

1

4
s1 sin

−1 s1 +
m1Ω

16p20
[L1(Ω) + L2(Ω)]

)

, (57)

where q = q|| and

L1(Ω) =

∫ s2

0

dk ln







(

Ω
2αp0

+ s1 + iδ
)2

− 1 + k2

(

Ω
2αp0

− s1 + iδ
)2

− 1 + k2






,

L2(Ω) =

∫ 1

s2

dk ln







(

Ω
2αp0

+
√
1− k2 + iδ

)2

− s21
(

Ω
2αp0

−
√
1− k2 + iδ

)2

− s21






.

(58)

The integrals in the expressions above can be performed
analytically but the final results are not very insightful,

and we refrain from presenting them. As a consistency
check, one can verify that in the limit Ω ≫ 2αp0, when
SOC becomes irrelevant, Eq. (57) reproduces correctly
the α = 0 result, i.e.,

Π0
00(q,Ω ≫ 2αp0) =

q2

Ω2

n3D

m1
. (59)

[Indeed, in this limit L1(Ω) → p2
0

16m1Ω

(

1
2s

2
1s2
)

and L2 →
p2
0

16m1Ω

(

− 1
4s

2
1s2 +

1
4s1 sin

−1 s1
)

, which, with the help of

Eq. (54) for the number density, yields Eq. (59).]
Substituting Π0

00 from Eq. (57) into 1 − V (q)Π0
00 = 0,

we re-write the plasmon equation as

Ω2 =
4πe2

m1
ñ(m3, α,Ω),

with ñ(m3, α,Ω) =
m3p

3
0

π2√m1m3

(

1

3
s32 +

1

4
s21s2 +

1

4
s1 sin

−1 s1 +
m1Ω

16p20
[L1(Ω) + L2(Ω)]

)

, (60)

where the function ñ(m3, α,Ω) reduces to n3D in the
limit Ω ≫ 2αp0. An important feature of the current
case, as compared to the case without SOC, is that ñ has
an imaginary part (due to imaginary parts of L1 and L2)
and thus the plasmon can be Landau-damped by particle-

hole excitations within the Rashba continuum. On its
turn, the Rashba continuum in the 3D case is different
from that in 2D: along the frequency axis, the 3D contin-
uum starts right at Ω = 0 and goes up to frequency Ω−
(see Fig. 15). Therefore, if the plasma frequency happens
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to lie below Ω−, the plasmon is damped even at q = 0.
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FIG. 15: The Rashba continuum–the region where ImΠ0
33

(and other ImΠ0
ij ’s) is non-zero–in 2D (dashed) and 3D

(solid). In 2D, the continuum is bounded above and below
by Ω− and Ω+, correspondingly. In 3D, the upper limit is
at Ω− while the lower limit extends all the way to Ω = 0
with a cusp at Ω+. The plots have been normalized to their
respective maximum values for the sake of comparison. Here
α = 0.25

√

2µ/m1 and m3 = 2m1.

The boundaries of the Rashba continuum in 3D can
be found analytically. To this end, we note that the
imaginary part comes from the off-diagonal convolution
of the Greens functions,

∫

g+g−+g−g+, rather than from
the angular factors. The same convolution occurs in Π0

00

and Π0
33 [cf. Eqs. (A2a) and (A2p)]. It is more conve-

nient then to determine the continuum boundaries from
ImΠ0

33, which is finite at q = 0, than from ImΠ0
00, which

vanishes at q = 0 and hence needs to be expanded to
order q2. The expression for Π0

33 at q = 0 reduces to

Π0
33(0,Ω) =

∫

K

(g+g− + g−g+) (61)

=

∫

d3k

(2π)3

[

nF (ε+)− nF (ε
−)

iΩ+ 2αk‖
+ α → −α

]

.

For Ω > 0, the imaginary part of Eq. (61) is given by

ImΠ0
33(0,Ω) = − 1

2π

∫

√
2m3µ

0

dk3

∫ p̃
−

p̃+

k‖dk‖δ
(

Ω− 2αk‖
)

,

(62)

where

p̃±(k3) =

√

2m1

(

µ− k23
2m3

)

+m2
1α

2 ∓m1α. (63)

In 2D, when the k3 integral is absent and p̃±(k3 = 0) =
p±, ImΠ0

33(0,Ω) 6= 0 is non-zero only for 2αp+ < Ω <
2αp−. In 3D, the spectral weight is further integrated

over k3:

ImΠ0
33(0,Ω) = − 1

2π

Ω

(2α)2

∫

√
2m3µ

0

dk3 Θ

(

Ω

2α
− p̃+

)

× Θ

(

p̃− − Ω

2α

)

.

(64)

Since p̃+(k3 =
√
2m3µ) = 0 and p̃−(k3 = 0) = p−, the

integral is non-zero for all frequencies in the interval 0 <
Ω < 2αp−. For Ω ≪ 2αp0, ImΠ0

00(0,Ω) ∝ |Ω|Ω. The
profiles of ImΠ0

33 as a function of Ω in 2D and 3D are
shown in Fig. 15.

A graphic solution of Eq. (60) is shown in Fig. 16.
The solid and dashed-dotted lines depict the real and
imaginary parts of the RHS, correspondingly. In agree-
ment with the argument given in the preceding para-
graph, the imaginary part is non-zero in the interval of
frequencies 0 ≤ Ω ≤ Ω−. The root of the equation is
shown by the dot. We chose the material parameters ap-
propriate for BiTeI: α = 4.0 eV×Å,48,49m1 = 0.1 me,

49

m3 = 1.0 me,
50, and the backround dielectric constant

ǫ∞ ≈ 20.51 Note that in the case of a semiconductor with
the background dielectric constant ǫ∞, one needs to re-
place e2 in Eq. (60) by e2/ǫ∞ to obtain the “screened
plasma frequency”; the plasma frequencies in Figs. 16
and 17 are the screened ones. In the top panel of Fig. 16,
µ = ER (which is the right order of magnitude for a typ-
ical BiTeI sample). The plasmon lies within the Rashba
continuum and is hence Landau-damped even at q = 0.
In the bottom panel, we show a hypothetical case of
µ = 500ER, when the plasmon is above the continuum.

Figure 17 shows the plasma frequency and the up-
per edge of the Rashba continuum, Ω−, as functions of
the chemical potential, µ; all frequencies in units of the
Rashba energy, ER = m1α

2/2; the rest of the material
parameters is the same as in Fig. 16 and corresponds to
BiTeI. In regard to real materials, we note that ER ≈ 140
meV while µ varies substantially from sample to sample.
The highest value of µ reported in the literature is 66
meV (above the Dirac point)48 which is more than twice
smaller than ER. Therefore, BiTeI (and other materials
from this family) appear to be squarely in the regime of
damped plasmons. For our choice of the material param-
eters, undamped plasmons exist only when µ & 330ER,
which implies an unrealistically high doping level.

Although we looked at the limiting case of the in- and
out-of-plane plasmons, in reality, there is just one plas-
mon branch with anisotropic dispersion. This is funda-
mentally different from the 2D case, where there are two
distinct plasmon branches. Furthermore, as long as q

has an in-plane component, the plasmon is modified by
Rashba SOC and, if the number density of carriers is suf-
ficiently small, it may be damped by particle-hole exci-
tations with the Rashba continuum. We emphasize that
Landau damping of plasmons at q = 0 is a unique feature
of a 3D Rashba system.
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FIG. 16: Graphic solution of Eq. (60) for a 3D plasmon at
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is for µ = 500ER. Other material parameters are chosen for
BTeI, as specified in the main text.
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B. Optical conductivity and the sum rule

As in the 2D case, intersubband transitions give rise to
a non-zero real part of the optical conductivity even in
the absence of scattering. In 2D, the Rashba continuum
occupies an interval of frequencies Ω+ < Ω < Ω− and,
consequently, Reσ(Ω) 6= 0 within the “box” bounded
by these frequencies; outside this box Reσ(Ω) = 0 in
the absence of scattering (see Fig. 5). In 3D, the
Rashba continuum occupies the interval 0 < Ω < Ω−
and Reσ(Ω) 6= 0 within this range; thus the gap between
the Drude δ-function peak at Ω = 0 and Ω− is filled (see
Fig. 18). The frequency Ω+ in 3D marks a pronounced
feature in Reσ(Ω) 6= 0 but not the lower edge of ab-
sorption, as it does in 2D. The overall shape of Reσ(Ω)
in Fig. 19 agrees qualitatively with the optical data on
BiTeI.50,52

Following the standard procedure, one can relate σ(Ω)
to an experimentally observable reflectance spectrum,
R(Ω). The resulting R, along with real and imaginary
parts of the dielectric function, ǫ(Ω), are shown in Fig. 19.
The top panel corresponds to the case when the plasmon
is damped by the Rashba continuum (µ = ER), while the
bottom one to the case when the plasmon is above the
Rashba continuum (µ = 500ER). Note a weak feature in
R(Ω) below the plasma edge for Ω < Ω− in the second
case. The material parameters are the same as chosen
for Fig. 16. For comparison, we also show the reflectance
of a system without SOC (the curve labeled R0).
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FIG. 18: The real part of the conductivity of a 3D system with
Rashba SOC for µ = ER. To simulate the effect of disorder,
the levels were broadened by 1/τ = 0.01µ. This plot is to be
contrasted to the 2D case in Fig. 5.

We see from Eq. (53) that the Drude weight (∼ Ω2

q2 Π
0
00)

is affected by SOC. Indeed, the Drude weight is propor-
tional to ñ(m3, α,Ω = 0) which, in general, does not coin-
cide with the actual number density, n3D. Just as in 2D,
this indicates a spectral weight redistribution between
the Drude and Rashba-continuum parts of the conduc-
tivity. To check if the sum rule is satisfied, we calculate
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frequency.

the in-plane conductivity of a 3D system using the Kubo
formula [Eq. (29)]. On adding the diamagnetic term, we
find

σ(Ω) =
iK(Ω)

Ω
,

K(Ω) =
e2

m1

[

n3D −
√

m3

m1

p30
π2

(

1

4
s21s2 +

1

4
s1 sin

−1 s1

)

+

√

m3

m1

p30
π2

m1Ω

16p20
(L1(Ω) + L2(Ω))

]

. (65)

The frequency-independent term in ReK represents the
Drude weight reduced by intersubband transitions. Just
as in 2D, the loss of the spectral weight at Ω = 0 is com-
pensated by the contribution from the Rashba continuum
at finite frequencies. Indeed, it can easily be checked that

the integral
∫ Ω

−

0

dΩ Im [L1(Ω) + L2(Ω)] =
2πp20
m1

(

s21s2 + s1 sin
−1 s1

)

(66)
gives exactly the weight missing from the Drude term.

C. Spin-chiral modes in three dimensions

The situation with the chiral-spin modes in 3D differs
qualitatively from that in 2D. First, the chiral-spin modes
in 3D occur only if the strength of the electron-electron
interaction exceeds a threshold value–this is in contrast
to the 2D case, where the modes occur even for an in-
finitesimally weak interaction. Second, even the modes
do occur, they lie within the Rashba continuum and are
thus Landau-damped by intersubband particle-hole exci-
tations. Generically, the width of a mode is comparable
to its frequency and thus one can expect to see only broad
resonances rather than well-defined excitations.
We begin the analysis of the 3D case with the limit

of weak SOC and consider the modes only at q = 0.
In this case, the off-diagonal components of the spin-
charge susceptibility tensor vanish and the three chiral-
spin modes decouple. The masses of the modes are de-
termined from the equation 1 + (U/2)Π0

ii(0,Ω) = 0 with
i = 1, 2, 3. Noticing also that Π0

11(0,Ω) = Π0
22(0,Ω) =

(1/2)Π0
33(0,Ω), we focus on the 33 mode. The fre-

quency of the mode at q = 0 is given by the equation
1 + (U/2)ReΠ0

33(0,Ω) = 0 with

ReΠ0
33(0,Ω) =

1

π2
P
∫

√
2m3µ

0

dk3

∫ p̃
−

p̃+

dk||

×
2αk2||

Ω2 − (2αk||)2
, (67)

where p̃± are defined in Eq. (63) and P
∫

denotes the
Cauchy principal value of an integral. For weak SOC, mo-
menta p̃+ and p̃− are close to each other and thus k|| un-

der the integral can be replaced by
√

2m1 (µ− k23/2m3).
After some re-arrangements, Eq. (68) is reduced to

ReΠ0
33(0,Ω) = −ν

(

1− Ω2

Ω2
0

P
∫ 1

0

dx

x2 − 1 + (Ω/Ω0)
2

)

,

(68)

where ν = m1
√
2m3µ/2π

2 is the density of states at the
Fermi level (per one spin projection), x ≡ k3/

√
2m3µ,

and Ω0 = 2α
√
2m1µ in the limit of small α. Solving the

integral, we obtain

ReΠ0
33(0,Ω) = −2νP

(

Ω

Ω0

)

P (y) = 1 +











y2

2
√

1−y2
ln

1+
√

1−y2

1−
√

1−y2
, for 0 < y < 1;

− y2√
y2−1

arctan 1√
y2−1

, for y > 1.
(69)



20

Notice that P (0) = 1, P (y → 1−) = 2, and P (y → 1+) =
−∞. A plot of ReΠ0

33(0,Ω) is shown in Fig. 20.
In a dimensionless form, the equation for the mass of

the mode reads

2

u
= P

(

Ω

Ω0

)

, (70)

where u ≡ Uν. At u > 0, the solution is possible only
for Ω < Ω0, where P is positive. In contrast to the 2D
case, however, the LHS of the equation is finite within
this interval and thus there are no solutions at weak cou-
pling (u ≪ 1). For the 33 mode, a solution exists if
1/2 < u < 1. Notice that u = 1 corresponds to a ferro-
magnetic (Stoner) instability, at least in the mean-field
approximation. For the 11 and 22 modes, one simply has
to replace u → u/2; consequently, the minimum value
of u moves up to u = 1. Within this approximation,
therefore, there are no 11 and 22 collective mode in the
paramagnetic phase. Still, the mean-field criterion for
ferromagnetism may not be accurate. Assuming for a
moment that all the modes do occur already in the para-
magnetic phase, we proceed with estimating their damp-
ing. Since the mode frequency is below Ω0, it is within

the Rashba continuum and thus damped by particle-hole
excitations. The imaginary part of Π0

33 has already been
evaluated in Sec. IVA2 [see Eqs. (61-64)]. In the small-α
limit, we find

ImΠ0
33(0,Ω) = −2ν

Ω|Ω|
Ω2

0

(71)

for Ω ≪ Ω0. Extrapolating this formula with an order-of-
magnitude accuracy to the region Ω ∼ Ω0 and recalling
that u ∼ 1, we conclude that the width of the mode is on
the order of Ω0 and thus comparable to the frequency of
the mode itself. Therefore, the mode is actually a rather
broad resonance.

Thus far, we have considered the case of weak SOC,
which is not relevant to 3D materials with giant Rashba
splitting. However, relaxing the assumption of weak SOC
does not change qualitatively the conclusions obtained
above: the modes occur only if the interaction is above a
threshold value and are damped; the quantitative change
is the the threshold value for u gets larger as α increases.
For arbitrary α, we find

Π0
33(0,Ω) = −√

m1m3
p0
2π2

1

s21

(

s21s2 + s1 sin
−1 s1 −

m1Ω

4p20
[L1(Ω) + L2(Ω)]

)

, (72)

where p0 is given in Eq. (16), s1,2 are defined in Eq. (52),
L1,2(Ω) are given in Eq. (58), and, as before, Π0

11(0,Ω) =
Π0

22(0,Ω) = (1/2)Π0
33(0,Ω). The behavior of ReΠ

0
33(0,Ω)

for a range of α is shown in Fig. 20. For very small α
(left panel), −ReΠ0

33 reaches a maximum value of 4, in
agreement with Eq. (69). As α increases, the maximum
value of −ReΠ0

33 decreases and, consequently, the thresh-
old value of u (defined now as u = U

√
m1m3p0/2π

2)
increases too: umin = 0.52, 0.71, 1.18 from the left to
right, correspondingly. For stronger SOC, therefore, a
stronger interaction is needed to see the resonances in
the susceptibility.
As before, the masses of the modes are given by 1 +

U
2 Π

0
ii(0,Ω) = 0 with i = 1, 2, 3. For arbitrary α, Eq. (70)

for the mass of the 33 mode is replaced by

2

u
= s2 +

sin−1 s1
s1

− Ω

4m1α2
[L1(Ω) + L2(Ω)] . (73)

This equation is solved graphically in the left panel of
Fig. 21 for u = 0.8. In contrast to the weak-SOC case,
there are now two solutions of 1 + (U/2)ReΠ0

ii(0,Ω) = 0
both of which are, however, damped by the continuum.
The right panel of Fig. 21 depicts Imχ33(0,Ω) for various
values of u. For u above the threshold value, Imχ33(0,Ω)
exhibits a peak whose width (relative to its center) can
be shown to be equal to uπ(1 − s1)s2/4s1. The peak

becomes more prominent for stronger electron-electron
interactions.
As in 2D, the inter-subband part of the in-plane optical

conductivity, σ11(Ω), is related to the 22 component of
the spin susceptibility. Subtracting the Drude peak, we
obtain for the remainder

∆σ22(Ω) =
ie2α2

Ω
ΠU

22(0,Ω). (74)

The real part of ∆σ22(Ω) is plotted in Fig. 22 for mate-
rial parameters corresponding to BiTeI and 1/τ = 0.01µ.
The broad feature just below Ω+ is due to a damped
chiral-spin mode. Comparing Fig. 22 with the experi-
mental data,50,52 we see that the observed conductivity
resembles more the theoretical prediction for small u, in
which case the chiral-spin collective modes do not exist.

V. PROSPECTS FOR EXPERIMENTAL

OBSERVATION OF THE CHIRAL-SPIN MODES

IN 2D

In the section, we discuss conditions under which the
chiral-spin modes can be observed in semiconductor het-
erostructures via optical probes, which include absorp-
tion spectroscopy, both without53 and with a grating
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structure,54 inelastic light scattering,23,55 and ultrafast
pump-and-probe techniques.56 We focus here on detect-

ing the in-plane transverse (22) chiral-spin mode. The
out-of-plane transverse (33) mode can be detected using
the technique suggested in Ref. 33. A detailed discussion
of experimental conditions for observing the 22 mode at
q = 0 is given in Ref. 32. For completeness, we first re-
visit the q = 0 case and extend the analysis by including
the Dresselhaus mechanism of SOC, and then discuss the
q 6= 0 case.

Since disorder smears out the chiral-spin modes via
the Dyakonov-Perel mechanism, the candidate material
must have as little disorder as possible. Various effects
arising from SOC were studied in 2D electron gases in
high-mobility GaAs/AlGaAs and InGaAs/InAlAs quan-
tum wells, and in what follows we limit our discussion to
these two systems.

Rashba SOC is characterized by two energy scales: the
spin-orbit splitting ∆ = 2αkF and the Rashba energy
ER = m∗α2/2~2. (In the section, we restore ~ and mea-
sure α in units of energy×length.) Since α/~ is much
smaller than the Fermi velocity in both systems, it is
permissible to use the value of kF in the absence of SOC.
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For future reference,

kF
[

µm−1
]

= 0.80× 102
√

n [1011cm−2], (75a)

µ[meV] =
~
2k2F
2m1

= 0.2
me

m1
n
[

1011cm−2
]

, (75b)

where me is the free electron mass.
The strength of SOC relative to disorder may be char-

acterized by three “quality factors” (two of which are
related to each other)

Q1 ≡ ∆τtr/~, (76a)

Q2 ≡ ERτtr/~, (76b)

Q3 ≡ 16Q2
2, (76c)

where τtr is the transport mean free time. [Strictly speak-
ing, the width of the chiral-spin resonance is determined
by two characteristic times: τ (1) ≡ τtr and τ (2), where
1/τ (l) = nivF

∫

dφ [1− cos(lφ)] dΣ/dφ, ni is the impurity
number density and dΣ/dφ is the differential scattering
cross-section of a single impurity.32 We neglect this detail
here.]
The Q1-factor characterizes the sharpness of the chiral-

spin resonance. The condition Q1 ≫ 1 coincides with
the requirement for the Dyakonov-Perel mechanism to
be in the ballistic regime and is readily achieved in high-
mobility systems. The Q2-factor determines whether the
Rashba continuum can be detected in an optical mea-
surement because the width of the continuum is given by
8ER. Also, Q2 defines the height of the peak in the op-
tical conductivity at the chiral-spin resonance frequency
Ω0

σpeak =
e2

h
Q2. (77)

Finally, the ratio of σpeak to the Drude conductivity
at the resonance frequency Ω0 determines the contrast
of the peak against the Drude background. Setting
Ω0 = ∆ for an estimate, one obtains σD ≡ Reσ(Ω0) ≈
(e2/h)µ/∆2τtr; thus

σpeak

σD
= Q3. (78)

Since ER ≪ ∆ for weak SOC, both Q2 and Q3 are much
smaller than Q1. If Q3 ≪ 1, the resonance is masked by
the Drude tail.
In conventional units, Q1, Q2, and Q3 can be written

as

Q1 = 1.4α[meV× Å]
√

n[1011cm−2]

(

m1

me

)

µ

[

cm2

V · s

]

×10−5, (79a)

Q2 = 6.5

(

m1

me
α[meV × Å]

)2

µ

[

cm2

V · s

]

× 10−8,

(79b)

Q3 = 6.8

(

m1

me
α[meV × Å]

)4(

µ

[

cm2

V · s

]

× 10−7

)2

.

(79c)

The highest reported value of α for a GaAs/AlGaAs
heterostructure is α = 5 meV× Å (Ref. 58). Using m1 =
0.067me, n = 10 × 1011cm−2, and µ = 107 cm2/V · s,
which is available in the best samples,59 we obtain Q1 =
148.0, Q2 = 0.07, and Q3 = 0.09. Although a large value
of Q1 guarantees that the peak in Reσ is sharp, small
values of Q2 and Q3 make the amplitude of the peak to
be very small. Also, the Rashba continuum is smeared
out. The total conductivity (the sum of the Drude and
resonance parts) for parameters specified above shows
no discernible features associated either with the chiral-
spin resonance or with the Rashba continuum. The peak
becomes visible on subtracting the Drude tail; however,
it is likely that this procedure will not be accurate enough
when applied to real data.
It needs to be pointed out that a typical GaAs/AlGaAs

quantum well has both Rashba and (linear) Dresselhaus
types of SOC with comparable coupling constants. For
example, α = 5 meV × Å and β = 4 meV × Å (Ref. 58)
or, according to a different study,60 α = 1.5 meV×Å and
β = −1.4 meV×Å. Without repeating all the derivations
of the previous sections with Dresselhaus SOC taken ac-
count, we consider the (relevant) case when both α and
β are small (compared to the Fermi velocity). For a
(001) quantum well with both Rashba and Dresselhaus
couplings, the energy spectrum of spin-split subbands is
given by

ε±
k
=

~
2k2

2m1
± k
√

α2 + β2 + 2αβ sin(2θk). (80)

An optical measurement probes direct transitions be-
tween the subbands. The width of the region of allowed
transitions–the intersubband part of the particle-hole
continuum–depends on α and β. At β = 0 and to linear
order in α, this region reduces to a point: Ω = 2|α|kF . If
both α and β are present, the width of the region is deter-
mined by the maximum and minimal values of the energy
splitting ∆(k) = ε+k − ε−k = 2k

√

α2 + β2 + 2αβ sin(2θk),
evaluated at k = kF . This gives for the width of the
particle-hole continuum

2kF
∣

∣|α| − |β|
∣

∣ ≤ ~Ω ≤ 2kF (|α|+ |β|) . (81)

The lower boundary of the continuum is always smaller
compared to the case when only one of the two mecha-
nisms is present. Since the chiral-spin modes are located
below the continuum, their frequencies will also be re-
duced correspondingly. We thus see that a competition
between the Rashba and Dresselhaus mechanisms is quite
detrimental for chiral-spin waves. As the chiral-spin res-
onance is practically invisible in the optical conductivity
for parameters relevant for a GaAs/AlGaAs heterostruc-
ture even if only the Rashba mechanism is taken into
account, we conclude that this system is not an optimal
material for the purpose of observing chiral-spin waves,
at least at q = 0. At finite q, one can maximize the com-
bined effect of the Rashba and Dresselhaus couplings by
choosing q along the direction in which the energy split-
ting is maximal (θ = ±π/4 for the same and opposite
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signs of α and β, correspondingly). We defer a detailed
analysis of this situation to another occasion.

In InGaAs/InAlAs quantum wells, SOC is much
stronger, e.g., α = 100 meV × Å at n = 16 × 1011 cm−2

(Ref. 5), which helps to compensate for smaller mobil-
ities typical for these structures; the highest mobilities
reported for InGaAs/InAlAs samples are in the range
µ = (2 − 5) × 105 cm2/V · s (Refs. 61 and 62). Also,
SOC in these structures is predominantly of the Rashba
type,5,63 which alleviates the problem with a competi-
tion between the Rashba and Dresselhaus mechanisms.
Choosing α = 100 meV × Å, µ = 2 × 105 cm2/V · s,
n = 16 × 1011 cm−2, and m1 = 0.042me, we obtain
Q1 = 47.0, Q2 = 0.23, and Q3 = 0.84. Notice that
µ = 83 meV at this value of n. Both the Rashba con-
tinuum for non-interacting electrons and the chiral-spin
resonance for interacting once are now visible in the to-
tal optical conductivity (Fig. 23, top); on subtracting
the Drude tail, the peak becomes very much pronounced
(Fig. 23, bottom). The only free parameter in this esti-
mate is the value of the dimensionless coupling constant
for short-range interaction, which we chose as u = 0.5.
In this case, the frequency of the 22 mode is ≈ 0.066µ.

The chiral-spin mode can also be detected by measur-
ing reflectivity rather than absorption. The disadvantage
of this method in 2D is that the reflectance is propor-
tional to the absolute value of the conductivity rather
than to its real part [at least as long as |σ(Ω)| ≪ c,
cf. Eq. (46)]; therefore a large imaginary part of Drude
tail also serves as a background for the resonance. The
reflectance spectrum for parameters corresponding to a
InGaAs/AlGaAs is plotted in Fig. 25. The resonance
feature in bare reflectance (inset) is quite faint but be-
comes quite pronounced on subtracting the reflectance of
a quantum well without SOC (main panel).

We now turn to probing the dispersion relations of
the chiral-spin modes. A conventional way to measure
the dispersion of a collective mode in 2D is via impos-
ing a grating structure, as discussed in Sec. III D. If
the thickness of the insulating layer, d ≫ 1/q, then ǫeff,
in Eq. (47) for the effective conductivity is reduced to
ǫeff = (ǫ1 + ǫ2)/2 = 12 [from Ref. 64]. Using this, we cal-
culate the effective conductivity for a GaAsIn/InGaAs
quantum well for the same set of material parameters as
used in calculating Reσ(Ω) in the bottom panel, except
for n = 1012cm−1. This is shown in the bottom panel
of Fig. 23. For clarity, the corresponding quantity with-
out SOC was subtracted. The evolution of the peak with
q follows the dispersion of the in-plane transverse (22)
mode.

Recent advances in inelastic light spectroscopy made it
possible to observe spin-plasmon collective modes–as de-
fined in Sec. I– in GaAs/AlGaAs23 and CdMnTe24 quan-
tum wells with sub-meV resolution. This method also
allows to measure dispersion relations directly, without
grating, as the scattering wavenumber, q, is controlled
by the wavenumber of the exciting light (typically, in
the near-infrared range) and by the scattering geometry.
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FIG. 23: Top: Real part of the optical conductivity for
parameters corresponding to an InGaAs/AlGaAs quantum
well. Solid: interacting electrons with u = 0.5. Dashed:
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References 23 and 24 probed the spin-plasmon disper-
sion at q on the scale of few µm−1, which is exactly the
range of q used in bottom panel of Fig. 23. For reasons
explained earlier in this section, the prospects of observ-
ing a chiral-spin mode in a GaAs/AlGaAs heterorstruc-
ture are not very promising. However, we believe that it
can be observed in a high- quality InGaAs/AlGaAs het-
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FIG. 25: Main panel: The reflectance of an interacting 2D
electron gas (u = 0.5) minus the same quantity in the ab-
sence of SOC. Inset: a zoom of the bare reflectance around
the resonance. Material parameters correspond to an In-
GaAs/AlGaAs quantum well are the same as indicated in the
caption to Fig. 23.

erostructrure, and inelastic light spectroscopy employed
in Refs. 23 and 24 appears to be well suited for this pur-
pose.

VI. CONCLUSIONS

We have studied collective modes in 2D and 3D
systems with a linear Rasbha-type SOC of arbitrary
strength. For the 3D case, we assumed that the Rashba
coupling is in the xy (or 12, in our notations) plane.
Using a perturbative technique which combines an RPA
sum for a long-range (Coulomb) and ladder sum for a
short-range (screened) interaction, we find the collectives
modes as poles of susceptibilities. Loosely speaking, the
charge susceptibility, obtained by re-summing the RPA
series, yields the charge collective modes while the three
components of the spin susceptibility, obtained by re-
summing the ladder series, yields three collective modes
in the those in the spin channel. More precisely, the
charge susceptibility is coupled to the 22 susceptibility
while the 11 susceptibility is coupled to the 33 suscep-
tibility. Intermode couplings are proportional to q and
do not affect the masses of the modes but do affect their
dispersions.
Our specific results for the 2D case are as follows. The

system supports two plasmon modes: one is the usual
√
q

plasmon that splits off the charge continuum at q = 0.
The other one is an intersubband plasmon that splits off
the upper edge of the Rashba continuum but remains
exponentially close to it. This closeness is due to loga-
rithmic singularity in the real part of the charge suscep-
tibility at the edges of the Rashba continuum. Thermal
smearing and disorder can make it hard to detect this
mode experimentally. We have shown that the Drude
weight is reduced due to the SOC (this is not unique to
Rashba systems but any two or more band system that

mixes the bands will show such a reduction). This lost
weight is exactly recovered at finite frequencies in agree-
ment with the sum rule.

In the spin sector, we have shown that there are three
chiral-spin modes. With the direction of q chosen as
the x1 axis, these are a longitudinal mode with mag-
netization along the x1 axis and two transverse modes
with magnetizations along the x2 and x3 axes. We refer
to these modes as to 11, 22 and 33 modes, correspond-
ingly, as they occur primarily as poles in corresponding
components of the spin susceptibility. The 11 and 22
modes are degenerate at q = 0 but disperse differently
(as was also found in Refs. 33 and 34) and run quickly
into the Rashba continuum. The 33 mode is more “ro-
bust”: disperses all the way down to Ω = 0. The 33
mode does not “see” the charge continuum despite its
coupling to the 11 mode. We have shown that the chiral-
spin modes, first predicted in Refs. 32 and 33 for the case
of weak SOC, exist also for arbitrary SOC, and even if
only the lowest spin subband is occupied. In the weak-
SOC limit, our results for the frequencies of the modes
coincide with those obtained within the FL theory.32,33

However, we have also identified another regime, in which
SOC is stronger than the electron-electron interaction.
In the this regime, the modes are exponentially close to
the boundary of the Rashba continuum at weak electron-
electron coupling but move away from this boundary at
stronger interaction. Absorption by the 22 mode both at
q = 0 and finite q (in the presence of diffraction grating)
should by detectable experimentally.

In 3D, the results are qualitatively different. In the
charge sector, there is only one (anisotropic) plasmon
mode. If q if out of the plane, the plasmon dispersion is
independent of the SOC. If q is in the plane, the plasmon
may or may not be damped depending on the ratio of the
SOC energy scale to the chemical potential. For parame-
ters characteristic of giant Rashba semiconductors of the
BiTeI family, the plasmon is damped (even at q = 0),
which is a unique feature of 3D system with SOC. This is
a consequence of the fact that the Rashba continuum ex-
tends all the way to zero frequency, in contrast to the 2D
case, when the continuum occupies a finite interval of fre-
quencies. Another consequence of the extended contin-
uum is that the chiral-spin collective modes are Landau-
damped. Some features of the 3D system are similar to
2D, e.g., there is a loss of the Drude weight which is
recovered at higher frequencies. Although the conduc-
tivity spectrum is different in 2D and 3D, the kinks in
the spectrum of a 3D system are at the same energies as
in 2D.

We have made quantitative estimates regarding the
possibility of the 22 mode to be observed in optical mea-
surements in 2D. Our conclusion is that a high-mobility
InGaAs/AlGaAs quantum well is an ideal candidate ma-
terial for this purpose. Recent realization of synthetic
SOC in system of cold 40K and 6Li atoms65,66 can also
serve as an interesting platform to test some of our re-
sults.
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Appendix A: Explicit forms of Tij

The matrix elements for the intra/interband transi-
tions Frs

ij , defined by Eq. (11), are explicitly given by

Frs
00 = 1+ rs cos(θk − θk+q) (A1a)

Frs
01 = r sin θk + s sin θk+q (A1b)

Frs
02 = − (r cos θk + s cos θk+q) (A1c)

Frs
03 = irs sin(θk − θk+q) (A1d)

Frs
10 = F01 (A1e)

Frs
11 = 1− rs cos(θk + θk+q) (A1f)

Frs
12 = −rs sin(θk + θk+q) (A1g)

Frs
13 = −i (r cos θk − s cos θk+q) (A1h)

Frs
20 = F02 (A1i)

Frs
21 = F12 (A1j)

Frs
22 = 1+ rs cos(θk + θk+q) (A1k)

Frs
23 = −i (r sin θk − s sin θk+q) (A1l)

Frs
30 = −F03 (A1m)

Frs
31 = −F13 (A1n)

Frs
32 = −F23 (A1o)

Frs
33 = 1− rs cos(θk − θk+q), (A1p)

where r, s = ±1 are the chiralities of the Rashba sub-
bands. The integrands Tij of the expressions (11) for
polarization bubbles are then given by



26

T00 = (g+g+ + g−g−) {1 + cos(θk − θk+q)} + (g+g− + g−g+) {1− cos(θk − θk+q)} (A2a)

T01 = (g+g+ − g−g−) {sin θk + sin θk+q}+ (g+g− − g−g+) {sin θk − sin θk+q} (A2b)

T02 = − (g+g+ − g−g−) {cos θk + cos θk+q} − (g+g− − g−g+) {cos θk − cos θk+q} (A2c)

T03 = i (g+g+ + g−g− − g+g− − g−g+) sin(θk − θk+q) (A2d)

T10 = T01 (A2e)

T11 = (g+g+ + g−g−) {1− cos(θk + θk+q)} + (g+g− + g−g+) {1 + cos(θk + θk+q)} (A2f)

T12 = − (g+g+ + g−g− − g+g− − g−g+) sin(θk + θk+q) (A2g)

T13 = −i (g+g+ − g−g−) {cos θk − cos θk+q} − i (g+g− − g−g+) {cos θk + cos θk+q} (A2h)

T20 = T02 (A2i)

T21 = T12 (A2j)

T22 = (g+g+ + g−g−) {1 + cos(θk + θk+q)} + (g+g− + g−g+) {1− cos(θk + θk+q)} (A2k)

T23 = −i (g+g+ − g−g−) {sin θk − sin θk+q} − i (g+g− − g−g+) {sin θk + sin θk+q} (A2l)

T30 = −T03 (A2m)

T31 = −T13 (A2n)

T32 = −T23 (A2o)

T33 = (g+g+ + g−g−) {1− cos(θk − θk+q)} + (g+g− + g−g+) {1 + cos(θk − θk+q)} (A2p)

Terms that contain sin θk and sin θk+q vanish upon angular integration and, as a result, only six out of sixteen Π0
ij

survive.
The charge spin susceptibility was explicitly evaluated in Ref. 29 in terms of the elliptic functions. As our primary

goal is obtain numerical results for the dispersions of the various modes, we will evaluate the integrals over the
frequency and angle analytically but perform the last integration–over the magnitude over the momentum–numerically.
In what follows, we demonstrate these steps explicitly for an example of Π0

00.
Carrying the frequency summation in any Π0

ij , one arrives at the combination

nF (ε
r
k)− nF (ε

s
k+q)

iΩ+ εrk − εsk+q

. (A3)

Focusing on the T = 0 case, we re-group the terms with Fermi functions together and split the resulting expression

for Π0
00(q,Ω) into two terms as Π0

00(q,Ω) = Π
(+)
00 +Π

(−)
00 , where

Π+
00 = −

∫

kdkdθk
(2π)2

Θ(µ− ε+k )
∑

±
(±)

(

A± − kq
m1

cos θk

)

± α|k ± q| cos(θk − θk±q)
[

A± − kq
m1

cos θk

]2

− α2|k± q|2

= ∓
∫

kdk

2π
Θ(µ− ε+k )

1

z±2 − z±1

[

A± ± αk − (1− m1α
p )z±1

√

(z±1 )
2 −

(

kq
m1

)2
sgnRe(z±1 )−

A± ± αk − (1− m1α
p )z±2

√

(z±2 )2 −
(

kq
m1

)2
sgnRe(z±2 )

]

, (A4)

where A± = Ω̄± αk ∓ q2

2m1
, Ω̄ = Ω + iδ, and

z+1,2 = A+ −m1α
2 ± α

√

k̄2 + 2m1Ω̄,

z−1,2 = A− −m1α
2 ± α

√

k̄2 − 2m1Ω̄, (A5)

with k̄ = k + mα. In deriving Eq. (A5), we used an identity |k ± q| cos(θk − θk±q) = k ± q cos θk. The second
part of polarization bubble is related to the one calculated above via Π−

00(α) = Π+
00(−α). After straightforward

transformations, one obtains for the polarization bubble

Π0
00 = m

4π

∫ p0

mα
z+dk̄√
k̄2+2mΩ̄

[

sgnRe(z+1 )

√

(2mαz++
√
2mΩ̄)2−q2z2

+

z2
+

√
2mΩ̄z2

+−q2
− sgnRe(z+2 )

√
(
√
2mΩ̄z+−2mα)2−q2√

2mΩ̄−q2z2
+

]

+m
4π

∫ p0

mα
z
−
dk̄√

k̄2−2mΩ̄

[

sgnRe(z−1 )

√
(z

−

√
2mΩ̄−2mα)2−q2√
2mΩ̄−q2z2

−

− sgnRe(z−2 )

√

(2mαz
−
−
√
2mΩ̄)2−q2z2

−

z2
−

√
2mΩ̄z2

−

−q2

]

+(α → −α), (A6)
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where z± = 1√
2mΩ̄

(

k̄ +
√

k̄2 ± 2mΩ̄
)

. It is important to keep δ finite when taking the limit of Ω → 0 in all components

of the polarization bubbles; otherwise, some contributions can be missed.29 The one-dimensional integral in Eq. (A6)
can be easily calculated numerically.
All other components of the polarization bubble can be obtained in the similar fashion. For example, for Π0

33 one

obtains Π0
33 = Π

(+)
33 +Π

(−)
33 , where

Π+
33 = −

∫

kdkdθk
(2π)2

Θ(µ− ε+
k
)
∑

±
(±)

A± − kq
m cos θk ∓ α|k± q| cos(θk − θk±q)
[

A± − kq
m cos θk

]2

− α2|k± q|2
,

Π−
33 = −

∫

kdkdθk
(2π)2

Θ(µ− ε−k )
∑

±
(∓)

B± − kq
m cos θk ∓ α|k ∓ q| cos(θk − φk∓q)
[

B± − kq
m cos θk

]2

− α2|k∓ q|2
(A7)

where B± = Ω̄± αp± q2

2m1
, and similarly for other components.

Appendix B: Optical conductivity of a

non-interacting electron system with Rashba

spin-orbit coupling

The optical conductivity of non-interacting electrons
with Rashba SOC was calculated in Ref. using the Kubo
formula and in Ref. 68 using the quantum Boltzmann
equation. To keep our presentation self-contained, we
reproduce the results of these two approaches here and
show that resulting equation for the plasmon modes is
the same as obtained within our RPA approach in the
main text [Eq. (20)].

1. Quantum Boltzmann equation

The charge-density fluctuation in response to the elec-
tric field E, is obtained by combining the Poisson’s equa-
tion (−∇2φ = 4πρ), continuity equation (ρ̇+∇ · j = 0),
and Ohm’s law (j = σE). Plasmon modes are found at
the solutions of the equation (Ω + 4πiσ)ρ = 0 in 3D and
(Ω + 2πiqσ)ρ = 0 in 2D.
In this section, we use the quantum Boltzmann equa-

tion to find the optical conductivity σ(Ω). The distribu-
tion function is a 2× 2 matrix in the spin basis:

f̂0 +

(

f11 f12
f21 f22

)

≡ f̂0 + f̂ , (B1)

where f̂0 is the equilibrium distribution function given

by f̂0 = 1
2 + i

∫

dω
2π Ĝ = 1

2 (1+ η̂)nF (ε
+)+ 1

2 (1− η̂)nF (ε
−)

with η̂ = σ̂1 sin θ − σ̂2 cos θ with θ ≡ θp and f̂ is a non-

equilibrium part. In the absence of scattering, f̂ satisfies
the quantum Boltzmann equation with a spatially homo-
geneous E in the x−direction

∂f̂

∂t
+

i

2
∆
[

η̂, f̂
]

+ eE
∂f̂0
∂p1

= 0, (B2)

where ∆ ≡ 2αp. The analysis is simplified by switch-
ing to the chiral basis via a unitary transformation

M̂ †(. . . )M̂ , where M̂ is the matrix that diagonalizes the
Rashba Hamiltonian (1a):

M̂ =
1√
2

(

1 1
−ieiθ ieiθ

)

. (B3)

Using M̂ †η̂M̂ = σ̂3, we obtain for the components of
ˆ̃
f = M̂ †f̂ M̂

Ωf̃11 = iEeδ(ε+p )

(

p

m1
+ α

)

cos θ,

Ωf̃22 = iEeδ(ε−p )

(

p

m1
− α

)

cos θ,

(Ω−∆)f̃12 = −Ee
nF (ε

+
p )− nF (ε

−
p )

2p
sin θ,

(Ω +∆)f̃21 = Ee
nF (ε

+
p )− nF (ε

−
p )

2p
sin θ, (B4)

where ε±p are given by Eq. (2). The current density is
found as

j1 = e

∫

d2p

(2π)2
Tr

[(

p1
m1

− ασ̂2

)

f̂

]

= e

∫

d2q

(2π)2
Tr

[(

p1
m1

− αM †σ̂2M

)

ˆ̃f

]

(B5)

Noting that,

M †σ̂2M =

(

− cos θ i sin θ
−i sin θ cos θ

)

, (B6)

we evaluate the trace in Eq. (B5) as

Tr[. . . ] =

(

q1
m1

+ α cos θ

)

f̃11 +

(

q1
m1

− α cos θ

)

f̃22

+iα sin θ
(

f̃12 − f̃21

)

(B7)
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Using ˆ̃f from Eq. (B4), we find

Tr[. . . ] =
iEe

Ω
cos2 θ

[

δ(ε+p )

(

q

m1
+ α

)2

(B8)

+δ(ε−p )

(

q

m1
− α

)2
]

+
iEe

q
α sin2 θ[nF (ε

+
p )− nF (ε

−
p )]

∆

Ω−∆
.

Using δ(ε±p ) = m1

p0
δ(p ± m1α − p0) and noting that the

factor of nF (ε
+)−nF (ε

−) restricts integration to the in-
terval between p+ and p−, we obtain for the conductivity

σ(Ω) = ie2
(

p20
2πm1Ω

− L(Ω)

16π

)

, (B9)

where L(Ω) is given by Eq. (19).
Plasmon modes correspond to zeros of Ω + 2πiqσ(Ω)

which, on using Eq. (B9), leads to the same transcenden-
tal equation (20) as derived using the RPA in the main
text.

2. Evaluation of the Kubo formula for the

conductivity

Here, the evaluate the conductivity bubble in Eq. (26).
First, we evaluate the trace

Tr[. . . ] =
[

k21
m2

1

+
α2

2
(1 + cos 2θ) +

2k1α

m1
cos θ

]

(g+g+ + g−g−)

+
α2

2
(1− cos 2θ)(g+g− + g−g+) (B10)

keeping in mind that grgs ≡ gr(k, ω)gs(k+q, ω+Ω) and
that the conductivity is evaluated at q = 0. In this limit,
∫

dω
2π (g+g+ + g−g−) = 0. This leaves us with

K(Ω) = e2α2

∫

kdk

2π

∫

dθ

2π

∫

dω

2π
(g+g− + g−g+)

(B11)

The angular integral is trivial as the integrand does not
depend on the angle. The remaining integrals give

∫

kdk

2π

∫

dω

2π
(g+g− + g−g+) = −m1

2π

[

2 +
Ω

4m1α2
L(Ω)

]

.

(B12)
Substituting this result into K yields Eq. (28) of the main
text.

Appendix C: Expansion of Π0
00 up to fourth order in

q

In this Appendix, we present details of the calculation
leading to Eq. (25) of the main text. We may write Π00 as
a sum of contributions each pair of the Greens’ function
: Π++

00 + Π−−
00 + Π+−

00 + Π−+
00 . For q ≤ 2m1α, an exact

expression for Π0
00 reads

Π++
00 = −m1

2π2

∫ q

0

dy

∫ y

−y

dx

√

(2p+ + x)2 − q2

q2 − y2
(2p0 + x)y

−4m2
1Ω

2 + (2p0 + x)2y2
(C1)

We interested in expanding Eq. (C1) (and the analogous
expressions for other components of Π0

00) to order O(q4).
Notice that phase space of the integral in the x− y plane
is O(q2) by itself. This means we need to keep terms up
to O(q2) in the integrand. We make use of the following
expansions:

√

(2p+ + x)2 − q2 ≈ 2p+ + x− q2

4p2+
p0

1

−4m2
1Ω

2 + (2p0 + x)2y2
≈ − 1

4m2
1Ω

2

(

1 +
y2p20
m2

1Ω
2

)

(C2)

and arrive at the following result

Π++
00 =

m1

2π2

p0p+q
2

m2
1Ω

2

[

A− q2

8p2+
A+

q2

4p0p+
B +

q2p20
m2

1Ω
2
C

]

(C3)

where the numerical coefficients are: A ≡
∫ 1

0
dt
∫ t

−t
ds t√

1−t2
, B ≡

∫ 1

0
dt
∫ t

−t
ds s2t√

1−t2
, and

C ≡
∫ 1

0
dt
∫ t

−t
ds t3√

1−t2
. Since we are only inter-

ested in sorting our the order of terms with various
powers of Ω and q, we do not really need to evaluate
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the coefficients A, B, C (although this can performed
easily).
The component Π−−

00 is obtained by changing p+ to p−
in Π++

00 . Thus the sum Π++
00 +Π−−

00 may be written as

Π++
00 +Π−−

00 =
m1

2π

v2q2

Ω2

[

1 + c1
q2

p20
+ c2

v2q2

Ω2

]

, (C4)

where v = p0

m1
and ci’s are numerical coefficients which

can be determined but whose particular values are not
important.

Similarly, an exact form of Π+−
00 + Π−+

00 for q < 2m1α
is

Π+−
00 +Π−+

00 = −m1

2π2

∫ q

−q

dy

∫ 2p
−
+y

2p+−y

dx

√

q2 − y2

(x)2 − q2
(2p0 + x)y

−4m2
1Ω

2 + (2p0 + y)2x2
. (C5)

After a few more steps of expansion, the final form can
be written as

Π+−
00 +Π−+

00 =
m1

2π

[{

q2

m1Ω
+ d1

q4(m1α)
2

m3
1Ω

3

}

L(Ω)+

d2
q4(m1α)

2

p20

]

(C6)

with di’s being numerical coefficients. Since we need an
expression for Π0

00 at finite Ω ≈ Ω−, the only small quan-
tity Eqs. (C4) and (C6) is q. Adding up all the contribu-
tions, we obtain the result presented in Eq. (25).

Appendix D: Splitting of the 11 and 22 chiral-spin

modes at finite q

In-plane rotational invariance of the Rashba Hamilto-
nian (1a) ensures that the chiral-spin modes with in-plane
components of magnetization (11 and 22 modes) are de-
generate at q = 0. Once the direction of q in the plane is
chosen, e.g., as the x axis, the 11 and 22 modes become
longitudinal and transverse modes, correspondingly, and
degeneracy is lifted. The difference in the dispersions of
the 11 and 22 modes at finite q occurs naturally within
the FL theory 33 and is also evident in the numerical
results of Ref. 34. In this Appendix, we provide some de-
tails on how the lifting of degeneracy occurs within our
approach.
The q dependences of the various components of the

polarization tensor to order q2 are presented in Eq. (14).
Recall that the dispersions of the collective modes are
given by the roots of the equation Det(σ̂0 + U

2 Π̂
0) =

0. Making use of the fact that Π̂0 is block-diagonal, we
obtain the following set of equations

(

2

U
+Π0

00

)(

2

U
+Π0

22

)

−
[

Π0
02

]2
= 0,

(

2

U
+Π0

11

)(

2

U
+Π0

33

)

+
[

Π0
13

]2
= 0. (D1)

While we can substitute formulas from Eqs. (14) into
Eq. (D1) as they are, it suffices to denote the various

components of Π̂0 as Π0
00 = a0q

2; Π0
11 = −(b + a1q

2),
Π0

22 = −(b + a2q
2), Π0

33 = −2b + a3q
2, Π0

02 = cq, and
Π0

13 = dq. At q = 0, we get three solutions corresponding
to b = 2/U (two degenerate solutions) and b = 1/U (one
solution). The coefficient b is a function of Ω and thus
these there solutions give equations for the frequencies of
the three chiral modes at q = 0. To obtain the dispersions
of the modes to O(q2), we look for solutions in the form
Ω2

j = Ω2
j(0) + vjq

2 with j = 1, 2, 3. The exact analysis
is quite cumbersome and we refrain from presenting it
here as our goal only to see the splitting of the 11 and 22
modes. The above Ansatz for Ωj results in b → bj+λjq

2.
Substituting the last equation into Eq. (D1) and solving
for λi’s, we obtain

λ1 =
U

2
d2 + a1; λ2 = −U

2
c2 + a2; λ3 = −U

2
d2 +

a3
2
.

(D2)
Since a2,3 are coefficients of expansion in q of the bare
bubble, it is independent of U and makes λ1 and λ2 to
be different. This is indicative of the splitting between
the 11 and 22 modes. The full effect of this splitting is
presented in Fig. 9.

Appendix E: Conductivity of an interacting system

at finite q

The current-current correlation function is found as

KU
off(q,Ω) = e2

∫

K

Tr
[

v̂1(q)ĜK β̂(−q)ĜK+Q

]

,(E1)

where the vertex β(q) satisfies the finite-q version of
Eq. (E1)

β̂(q) = v̂1(q)− U

∫

P

Ĝ(P )β̂(q)Ĝ(P +Q) (E2)

with v1(q) defined in Eq. (50). Expanding β̂(q), as before,

over a complete set of Pauli matrices β̂ = Naσ̂a we find
that N1, N3 = 0, whereas N0 and N2 satisfy a system of
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integral equations

N0(k) =
k1 +

q
2

m1
− U

2

∫

P

1

2
T00N0(p)−

U

2
Π0

22N2,

N2 = −α− U

2

∫

P

1

2
T02N0(p)−

U

2
Π0

02N2, (E3)

where T ’s are defined in Appendix A. To solve this
system, we define two yet-to-be determined variables:
Q00 ≡

∫

P
1
2T00N0(p) and Q02 ≡

∫

P
1
2T02N0(p). The

quantities N0(k) and N2 are determined once Q00 and
Q02 are found. To find the latter, we multiply the equa-
tion on N0(k) by T00 and separately by T02, and integrate
over K. This leads to
(

1 +
U

2
Π0

00

)

Q00 =

∫

K

(

k1 +
q
2

m1

1

2
T00
)

− U

2
Π0

00Π
0
02N2,

Q02 =

∫

K

(

k1 +
q
2

m1

1

2
T02
)

− U

2
Q00Π

0
02 −

U

2
Π02Π

0
02N2.

(E4)

The integral equation is now reduced to an algebraic one

where only L0p ≡
∫

K

k1+
q

2

m1

1
2T0p need to be evaluated.

Notice that at the smallest q that L00(q) ∼ q3 because
T00 ∝ q2 provides and k1 integrates out to null; L02(q) ∼
q2. Solving the Eqs. (E4) for Q’s and them back into
Eq. (E3) to find N ’s, we obtain

N2 = −
(

1 +
U

2
Π0

22 −
(U2 Π

0
02)

2

1 + U
2 Π

0
00

)−1(

α+
U

2
L02 +

U
2 Π02

U
2 L00

1 + U
2 Π

0
00

)

,

N0(k) =
k1 +

q
2

m1
−

U
2 L00

1 + U
2 Π

0
00

−
U
2 Π

0
02

1 + U
2 Π

0
00

N2. (E5)

The pole in the spin susceptibility corresponds to 1 +
U
2 Π

0
22 = 0. Because N0 and N2 have their own

poles, the pole as seen in the conductivity at finite
q is shifted with respect to that in the spin suscepti-
bility and is determined from a + U

2 Π
0
22 = 0, where

a = 1−(U2 Π
0
02)

2(1 + U
2 Π

0
00)

−1. For small q, a−1 ∝ U2q2

because Π0
02 ∝ q.



31

1 D. Awschalom and N. Samarth, Physics 2, 50 (2009).
2 G. Dresselhaus, Phys. Rev. 100, 580 (1955).
3 Y. A. Bychkov and E. Rashba, J. Phys. C 17, 6039 (1984).
4 A. G. Aronov, Yu. B. Lyanda-Geller, and G. E. Pikus, Sov.
Phys. JETP 73, 537 (1991).

5 J. Nitta, T. Akazaki, H. Takayanagi, and T. Enoki, Phys.
Rev. Lett. 78, 1335 (1997).

6 S. LaShell, B. A. McDougall, and E. Jensen, Phys. Rev.
Lett. 77, 3419 (1996).

7 Yu. M. Koroteev, G. Bihlmayer, J. E. Gayone, E. V.
Chulkov, S. Blgel, P. M. Echenique, and Ph. Hofmann,
Phys. Rev. Lett. 93, 046403 (2004).

8 C. R. Ast, J. Henk, A. Ernst, L. Moreschini, M. C. Falub,
D. Pacil, P. Bruno, K. Kern, and M. Grioni, Phys. Rev.
Lett. 98,186807 (2007).

9 A. Varykhalov, D. Marchenko, M. R. Scholz, E. D. L.
Rienks, T. K. Kim, G. Bihlmayer, J. Snchez-Barriga, and
O. Rader, Phys. Rev. Lett. 108, 066804 (2012).

10 J. I-Azpiroz, A. Eiguren, E. Ya. Sherman, and A. Bergara
, Phys. Rev. Lett. 109, 156401 (2012).

11 K. Ishizaka, M. S. Bahramy, H. Murakawa, M. Sakano, T.
Shimojima, T. Sonobe, K. Koizumi, S. Shin, H. Miyahara,
A. Kimura, K. Miyamoto, T. Okuda, H. Namatame, M.
Taniguchi, R. Arita, N. Nagaosa, K. Kobayashi, Y. Mu-
rakami, R. Kumai, Y. Kaneko, Y. Onose and Y. Tokura,
Nature Materials 10, 521(2011).

12 S. V. Eremeev, I. A. Nechaev, Yu. M. Koroteev, P. M.
Echenique, and E. V. Chulkov, Phys. Rev. Lett. 108,
246802 (2012).

13 M. S. Bahramy, R. Arita, and N. Nagaosa Phys. Rev. B
84, 041202(R) (2011).

14 M. S. Bahramy, R. Arita and N. Nagaosa, Phys. Rev. B
84, 041202(R) (2011).

15 J. Park, E. Kampert, K-H. Jin, M. J. Eom, J. Ok, E. S.
Choi, F. Wolff-Fabris, K. D. Lee, N. Hur, J.-S Rhyee, Y.
J. Jo, S-H. Jhi and J. S. Kim, arXiv:1306.1747 (2013).

16 T. Ando, A. B. Fowler, and F. Stern, Rev. Mod. Phys. 54,
437 (1982).

17 E. M. Lifshitz and L. P. Pitaevski, Statistical Physics,
(Pergamon Press, 1980).

18 D. A. Dahl and L. J. Sham, Phys. Rev. B 16, 651(1977).
19 J. C. Ryan, Phys. Rev. B 43, 4499(1991).
20 G. Giuliani and G. Vignale, Quantum Theory of the

Electron Liquid (Cambridge University Press, Cambridge,
2005).

21 See Intersubband Transitions in Quantum Wells: Physics
and Device Applications I, edited by H. C. Liu and F. Ca-
passo, Semiconductors and Semimetals, v. 62 (Academic
Press, 1999) and references therein.

22 C. A. Ullrich and M. E. Flatté, Phys. Rev. B 66, 205305
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