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By using renormalization-group (RG) methods, we study a non-mean-field model of a spin glass
built on a hierarchical lattice, the hierarchical Edwards-Anderson model in a magnetic field. We
investigate the spin-glass transition in a field by studying the existence of a stable critical RG fixed
point (FP) with perturbation theory. In the parameter region where the model has a mean-field
behavior—corresponding to d ≥ 4 for a d-dimensional Ising model—we find a stable FP correspond-
ing to a spin-glass transition in a field. In the non-mean-field parameter region the FP above is
unstable, and we determined exactly all other FPs: to our knowledge, this is the first time that all
perturbative FPs for the full set of RG equations of a spin glass in a field has been characterized in
the non-mean-field region. We find that all FPs in the non-mean-field region have a nonzero imagi-
nary part: this constitutes, to the best of our knowledge, the first demonstration for a spin glass in a
field that there is no perturbative FP corresponding to a spin-glass transition in the non-mean-field
region. Finally, we discuss the possible interpretations of this result, such as the absence of a phase
transition in a field, or the existence of a transition associated with a non-perturbative FP.

PACS numbers: 75.10.Nr,64.60.ae

I. INTRODUCTION

Studying the existence of a phase transition in non-
mean-field spin glasses in a magnetic field has been at-
tracting growing interest in the last few decades. Indeed,
establishing the existence or the absence of such transi-
tion could shed light on a fundamental problem: under-
standing the structure of the low-temperature phase of
spin glasses. Namely, the occurrence of a transition in a
field would indicate that the energy landscape of a spin
glass has a complex structure involving an exponentially
large number of states1, while the absence of this tran-
sition would hint the existence of only two low-lying en-
ergy basins, which are reminiscent of the ground states of
Ising ferromagnets2. Despite decades of intense research,
the occurrence of a phase transition for non-mean-field
spin glasses in a magnetic field is still under debate: In-
deed, experimental studies on disordered magnetic ma-
terials provided evidence both in favor3 and against4 a
transition. In addition, numerical simulations for Ising
spin glasses with short and long-range interactions are
affected by long equilibration times and strong finite-size
effects, preventing these numerical approaches from giv-
ing a definite answer on the existence of a transition in a
field5–9.

On a conceptual level, one of the main reasons why
non-mean-field models of spin glasses have proved hard
to solve is that the complex structure of the low-lying
energy states prevents from using the renormalization-
group (RG) coarse-graining methods widely used for ho-
mogeneous systems such as Ising ferromagnets10. In this
regard, the RG transformation for ferromagnetic spin sys-
tems takes a strikingly simple form when applied to mod-
els built on a hierarchical lattice11. To study non-mean-
field spin glasses with RG methods, it is thus natural to
consider a spin-glass model where spin interactions are

disposed in a hierarchical way. This model is known as
the hierarchical Edwards-Anderson model12, and it has
been raising interest in recent years because it provides a
natural implementation of the RG transformation, allow-
ing for a novel RG characterization of the critical prop-
erties of a non-mean-field spin glass13–16.

In this paper, we study the existence of a phase transi-
tion for the hierarchical Edwards-Anderson model with
an external magnetic field (HEAM). The hierarchical
structure of spin-spin interactions for the HEAM implies
an exact RG equation for the replicated partition function
with fixed overlap which is identical to the RG equation
for the hierarchical Edwards-Anderson model12. In per-
turbation theory, this RG equation takes a particularly
involved form: indeed, the presence of the external field
implies that the replicated partition function is given by
a combination of twelve overlap monomials17, resulting
into a complex perturbative structure. To carry out such
an involved perturbative expansion, we developed a sym-
bolic manipulation tool which allowed us for deriving the
RG recurrence equations to lowest order in perturbation
theory. We then investigated the existence of a phase
transition in a field by studying the fixed points (FPs) of
these RG equations. The FP equations are a system of
polynomial equations of the third degree which may have,
in principle, a large number of solutions. In the param-
eter region where the HEAM has a mean-field behavior
we find a stable FP corresponding to the existence of a
spin-glass transition. In the non-mean-field region the
above fixed point is unstable, and all other solutions to
the FP equations need to be studied to establish the exis-
tence of a stable FP. In this regard, to our knowledge the
full set of perturbative FPs in the non-mean-field region
of a spin glass in a field has never been fully character-
ized: in particular, two previous RG studies addressed
this problem for short-range spin glasses in a field. Pi-
mentel et al. found a set of unstable FPs17, but these
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FIG. 1. Hierarchical Edwards-Anderson model in a magnetic
field with k = 3. Dots represents spins S1, . . . , S8 from left to
right, arcs represent interactions between spins below them,
and magnetic fields are not shown. The red path starts from
the two circled spins S1, S3 and it goes from the bottom to
the top of the hierarchical tree until a common arc between
the two spins is found: since this requires ascending two hier-
archical levels, the hierarchical distance between S1 and S3 is
d13 = 2.

were not shown to coincide with the full set of solutions
of the FP equations18: as a consequence, the possibility
that other stable FPs could exist remained open. Other
RG approaches considered only certain linear combina-
tions of the overlap matrix—the ‘replicon’ modes—thus
retaining only a subset of the twelve monomials in the
replicated partition function19,20: this approach resulted
into a reduced set of FP equations which were found to
have no stable FP. By using the Gröbner-basis method for
systems of polynomial equations21, here we determined
exactly all perturbative FPs of the full set of RG equa-
tions in the non-mean-field region of the HEAM, and we
show that all FPs have a nonzero imaginary part. To
our knowledge, this result constitutes the first demon-
stration that there is no perturbative FP corresponding
to a spin-glass transition in the non-mean-field region of
a spin glass in a magnetic field.

The paper is organized as follows: In Section II we in-
troduce the HEAM, in Section IIA we consider the RG
equations and discuss their perturbative solution, in Sec-
tion II B we derive the qualitative structure of the critical
FP, which is then determined explicitly in Section II C.
Finally, Section III is devoted to the discussion and inter-
pretation of the results, as well as to an outlook of future
studies.

II. RESULTS

The HEAM is a system of 2k Ising spins ~S ≡
S1, . . . , S2k , Si = ±1, whose Hamiltonian Hk[~S] is given
by the recursive equation12

Hk[~S] = H1
k−1[

~S1] +H2
k−1[

~S2]−
1

2kσ

2k
∑

i<j=1

JijSiSj , (1)

where ~S1 ≡ S1, . . . , S2k−1 and ~S2 ≡ S2k−1+1, . . . , S2k de-
note the spins in the left and right half of the lattice
respectively, 1/2 < σ < 1 is a parameter which de-
termines how fast spin-spin interactions decrease with

distance22, {Jij} are independent and identically dis-
tributed (IID) Gaussian random variables with zero mean
and unit variance, and the single-spin Hamiltonian on site
i is H0[Si] = hiSi, where {hi} are IID Gaussian random
variables with zero mean. Given two spins Si, Sj, let us
consider the number of levels that we need to ascend in
the hierarchical tree starting from the bottom in order to
find a root common to Si and Sj , see Fig. 1: we denote
this number by the hierarchical distance dij . The recur-
sive structure of the Hamiltonian (1) then implies that
the interaction strength between spins Si, Sj depends
on i, j through their hierarchical distance rather than
through their Euclidean distance: indeed, Eq. (1) can

be rewritten as Hk[~S] = −∑2k

i<j=1 KijSiSj +
∑2k

i=1 hiSi,

where {Kij} are IID Gaussian random variables, and Kij

has zero mean and variance
(
∑k−dij

l=0 2−2σl
)

2−2σdij .

To relate the HEAM to other spin-glass models with
different disorder distributions such as short23 and long-
range24 Ising spin glasses, two considerations are in or-
der. First, a precise correspondence between short-range
spin models in d dimensions and one-dimensional long-
range models is still subject of research8,25. Second, the
universality of physical observables with respect to the
form of the bond distribution in Ising spin glasses is also
a subject of ongoing debate26–29. Despite the consid-
erations above, a hierarchical Edwards-Anderson model
with a given value of σ has some features in common
with a short-range Ising spin glass on a hypercubic d-
dimensional lattice13. In particular, the parameter region
1/2 < σ ≤ 2/3 where the hierarchical Edwards-Anderson
model has a mean-field behavior is analog to d ≥ 6 for a
short-range Ising spin glass, i.e. it is characterized by van-
ishing order-parameter fluctuations. Similarly, the non-
mean-field region 2/3 < σ < 1 corresponds to d < 6 for an
Ising spin glass, and it is characterized by a non-Gaussian
RG FP associated with nonzero order-parameter fluctu-
ations.

A. Renormalization-group equations

The hierarchical structure of the interactions in the
HEAM shown in Fig. 1 implies an exact RG equation
which can be derived with the replica method13: we intro-
duce an integer n, the n×n matrix Qab, with Qab = Qba

and Qaa = 0, and the replicated partition function with
fixed overlap

Zk[Q] ≡ E





∑

{~Sa}

e−β
∑n

a=1 Hk[~S
a]

n
∏

a<b=1

δ(Qab−qab)



, (2)

where in Eq. (2) E[ ] denotes the expectation with respect
to all random variables, β = 1/T is the inverse temper-

ature, {~Sa} are n replicas of the spin configuration ~S,
and

qab ≡
1

2k

2k
∑

i=1

Sa
i S

b
i (3)
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is the overlap1 between replicas a and b. As we will
show in what follows, the replicated partition function
(2) is a useful quantity because, in principle, its n → 0
limit incorporates all thermodynamical properties of the
system1. Let us introduce

C ≡ 22(1−σ) (4)

and the rescaled overlap distribution

Zk[Q] ≡ Zk[C
−k/2Q]. (5)

By using Eqs. (1), (2), it can be shown12,13 that Zk

satisfies the following recursive equation

Zk+1[Q] = exp

(

β2

4
Tr[Q2]

)∫

[dP ]Zk

[

Q + P

C1/2

]

Zk

[

Q− P

C1/2

]

, (6)

I1[Q] I2p[Q] I3p[Q]
∑n

a,b=1
Qab

∑n
a,b=1

Q2

ab

∑n
a,b,c=1

QabQbcQca
∑n

a,b,c=1
QabQac

∑n
a,b=1

Q3

ab
∑n

a,b,c,d=1
QabQcd

∑n
a,b,c=1

Q2

abQac
∑n

a,b,c,d=1
Q2

abQcd
∑n

a,b,c,d=1
QabQacQbd

∑n
a,b,c,d=1

QabQacQad
∑n

a,b,c,d,e=1
QabQacQde

∑n
a,b,c,d,e,f=1

QabQcdQef

TABLE I. Monomials contributing to the overlap probability
distribution of the hierarchical Edwards-Anderson model in a
field to order Q3. The monomials of order one, two and three
are listed in the rows of the first, second and third column
respectively, from top to bottom in increasing order of the
index p.

where
∫

[dP ] ≡
∫ ∏

a<b dPab, and in what follows we will
omit Q-independent proportionality factors multiplying
Zk.

Being a functional recursive equation, Eq. (6) is hard
to solve with exact methods: still, an analytical solu-
tion can be worked out in perturbation theory. We write

Zk[Q] as a combination of monomials in Q, each mono-
mial being multiplied by a numerical coefficient which
depends on k: then, Eq. (6) implies a set of algebraic re-
cursive equations for these coefficients, and we will show
that these equations can be studied analytically in per-
turbation theory. Neglecting monomials of order larger
than Q3, the most general form of Zk[Q] is given by30

Zk[Q] =

exp

[

−
(

sk I
1[Q] +

1

2

3
∑

p=1

rpk I
2
p[Q] +

1

6

8
∑

p=1

wp
k I

3
p[Q]

)]

, (7)

where the monomials I1[Q], {I2p[Q]}, {I3p[Q]} are listed in
Table I. In Eq. (7), Zk is given by a combination of twelve
monomials: given that these are all the monomials of de-
gree three or less that are consistent with the symmetries
of the pairwise-interaction model (1) in the presence of
a magnetic field30, Eq. (7) constitutes the most general
form of the third-order expansion of Zk. In the limit
of zero magnetic field additional symmetries appear, and
the set of admissible monomials is reduced24 to I21[Q] and
I31[Q].

Plugging Eq. (7) into the RG equation (6), we obtain

Zk+1[Q] = exp

(

β2

4
Tr[Q2]− 2 sk

C1/2
I1[Q]− 1

2

3
∑

p=1

2 rpk
C

I2p[Q]− 1

6

8
∑

p=1

2wp
k

C3/2
I3p[Q]

)

× (8)

×
∫

[dP ] exp

(

− 1

2

∑

a<b,c<d

PabMab,cd[Q]Pcd

)

,

where Mab,cd is a n(n− 1)/2× n(n− 1)/2 matrix given by

Mab,cd[Q] = Fab,cd + Gab,cd[Q], (9)

and

Fab,cd =
4 r1k
C

(δacδbd + δbcδad) +
2 r2k
C

(δac + δbc + δad + δbd) +
8 r3k
C

, (10)

Gab,cd[Q] =
1

6

{

12w1
k

C3/2
(δadQbc + δbdQac + δacQbd + δbcQad) +

24w2
k

C3/2
(δacδbd + δbcδad)Qcd + (11)
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+
4w3

k

C3/2

[

(δacδbd + δbcδad)

n
∑

e=1

(Qce +Qde) + (δac + δbc + δad + δbd)Qcd +

+δacQbc + δbcQac + δadQbd + δbdQad

]

+
8w4

k

C3/2

[

(δacδbd + δbcδad) I
1[Q] + 2 (Qab +Qcd)

]

+

+
4w5

k

C3/2

[

n
∑

e=1

(δacQde + δbcQde + δadQce + δbdQce + δacQbe + δbcQae + δadQbe + δbdQae) +

+Qac +Qbc +Qad +Qbd

]

+
12w6

k

C3/2

n
∑

e=1

(δacQce + δbcQce + δadQde + δbdQde) +

+
4w7

k

C3/2

[

(δac + δbc + δad + δbd) I
1[Q] + 2

n
∑

e=1

(Qae +Qbe +Qce +Qde)

]

+
48w8

k

C3/2
I1[Q]

}

.

Note that in Eq. (9) we split the matrix M into a
Q-independent term F and a Q-dependent term G , the
latter being proportional to the coefficients {wp

k}: indeed,
in what follows we will make the assumption that the co-
efficients {wp

k} in Eq. (7) can be treated in perturbation
theory, and the form (9) will be convenient for solving the
RG equation (8) with an expansion in powers of {wp

k}. To
set up this expansion, let us first compute the inverse of
F . This can be sought as a combination of the terms
that appear in Eq. (10):

F
−1
ab,cd =

c1 (δacδbd + δbcδad) + c2 (δac + δbc + δad + δbd) + c3,(12)

and the coefficients c1, c2, c3 can be determined by solving
the equation

∑

c<d Fab,cdF
−1
cd,ef = δaeδbf . The result is

c1 =
C

4r1k
, (13)

c2 = − Cr2k
4r1k (2r

1
k + (n− 2)r2k)

, (14)

c3 =
C((r2k)

2−2 r1kr3k + n r2kr
3
k)

2 r1k (2 r
1
k+(n−2)r2k) (r1k+(n− 1) (r2k+n r3k))

. (15)

The matrix F−1 can now be used to compute the second
factor in Eq. (8):

∫

[dP ] exp

(

− 1

2

∑

a<b,c<d

PabMab,cd[Q]Pcd

)

=

α
√

det(M [Q])
=

α exp

(

−1

2
Tr log

(

1 + F
−1 · G [Q]

)

)

=

α exp

(

− 1

2
Tr

[

F
−1 · G [Q]− 1

2

(

F
−1 · G [Q]

)2
+

+
1

3

(

F
−1 · G [Q]

)3
+O(Q4)

])

, (16)

where in Eq. (16) α denotes a Q-independent factor, and
in the third line the symbol ‘1’ in the logarithm denotes
the n(n− 1)/2× n(n− 1)/2 identity matrix.

Given the complex form (11) of the matrix G , the cal-
culation of the matrix products and traces in Eq. (16)
is involved: for example, if we denote by a ‘term’ in
Eqs. (10), (11) the sum of multiple addends related
to each other by the permutation a ↔ b, c ↔ d—
such as δac + δbc + δad + δbd—then a direct evaluation
of Tr[(F−1G )3] involves the computation of (3× 14)3 =
74, 088 matrix traces. To handle this computation, we
developed a symbolic manipulation program31 which al-
lowed for computing explicitly the right-hand side (RHS)
of Eq. (16): Sums over replica indexes are computed in
a symbolic way, and the result depends explicitly on the
number of replicas n, allowing for a straightforward an-
alytic continuation1 for n → 0. Importantly, the result
of this calculation shows that the RHS of Eq. (16) is
a linear combination of the monomials listed in Table I.
This implies that both Zk+1[Q] and Zk[Q] are given by
a linear combination of the same monomials, hence the
RG equation (6) can be solved consistently in perturba-
tion theory. In particular, Eqs. (7), (8), (16) imply a set
of recursive equations which relate sk+1, {rpk+1}, {w

p
k+1}

to sk, {rpk}, {w
p
k}: the n → 0 limit of these equations is

given by Eqs. (S1)-(S12) in Section S1 of the Supplemen-
tal Material. In addition, in Section S2 we discuss how
to write the RG coefficients sk, {rpk}, {w

p
k} in terms of

the interaction-decay exponent, the temperature and the
magnetic-field strength in to study, for example, how the
RG flow or the FP domains of attraction are related to
the physical parameters of the model.

B. Structure of the critical fixed point

We will now study the existence of a FP associated with
a spin-glass transition and determine its general features.
To do so, we consider the spin-glass susceptibility8,9

χSG ≡ 1

2k

2k
∑

i,j=1

E
[

(〈SiSj〉 − 〈Si〉〈Sj〉)2
]

, (17)
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where 〈 〉 denotes the Boltzmann average with Hamilto-
nian (1). The susceptibility (17) can be rewritten as32

χSG = 2k E[〈q212〉 − 2〈q12q13〉+ 〈q12q34〉], (18)

where in what follows the average 〈 〉 of a function of
multiple replicas denotes the average over all replicas1,
where each replica has an independent Boltzmann mea-
sure given by the Hamiltonian (1). By using Eq. (S20),
the overlap averages in the RHS of Eq. (18) can be rewrit-
ten as follows:

E[〈q212〉] = C−k lim
n→0

Q2
12, (19)

E[〈q12q13〉] = C−k lim
n→0

Q12Q13, (20)

E[〈q12q34〉] = C−k lim
n→0

Q12Q34. (21)

where denotes the average with respect to Zk[Q]. Ne-
glecting O(w) terms and using Eqs. (7), (10), we obtain

Zk[Q] =

exp



−



sk I
1[Q] +

C

4

∑

a<b,c<d

QabFab,cdQcd







 . (22)

By using Eq. (22) and standard Gaussian-integration
rules33, we have

Q2
12 =

(

4sk
C

)2

H
2 +

2

C
F

−1
12,12 (23)

=

(

4sk
C

)2

H
2 +

2

C
(c1 + 2c2 + c3),

Q12Q13 =

(

4sk
C

)2

H
2 +

2

C
F

−1
12,13 (24)

=

(

4sk
C

)2

H
2 +

2

C
(c2 + c3),

Q12Q34 =

(

4sk
C

)2

H
2 +

2

C
F

−1
12,34 (25)

=

(

4sk
C

)2

H
2 +

2

C
c3,

where in Eqs. (23)-(25) we set H ≡ ∑

a<b F
−1
12,ab and

we used Eq. (12). Putting together Eqs. (4), (13), (18),
(19)-(21), (23)-(25), we obtain the expression for the spin-
glass susceptibility as a function of r1k:

χSG =

(

2

C

)k+1

lim
n→0

c1 =

(

2

C

)k+1

lim
n→0

C

4r1k
. (26)

Since we are assuming that χSG diverges at the critical
point, if any, the coefficient r1k must have the following
behavior

r1k → r1∗ for k → ∞, T = Tc with r1∗ finite. (27)

Indeed, if Eq. (27) did not hold, then according to Eq.
(S2) r1k would diverge like r1k ∼ (2/C)k, and Eq. (26)

would imply that χSG is finite. We recall that the above
conclusion on the large-k behavior of r1k at the critical
point has been derived by neglecting the O(w) terms in
Eq. (7): given that our RG analysis is based on the work-
ing hypothesis that perturbation theory is well behaved,
retaining the O(w) contributions would result into a per-
turbative correction to r1∗, without changing the qualita-
tive behavior (27).

We have thus derived a first property of the critical
FP: at the critical temperature T = Tc, we have r1k → r1∗
for k → ∞, with r1∗ finite. Importantly, Eq. (S2) shows
that if T 6= Tc, then r1k diverges like r1k ∼ (2/C)k for large
k: setting T = Tc, the projection of the RG flow along
the direction associated with r1k is set to zero, and the
divergence of r1k is removed10.

The critical FP can now be completely characterized
as follows. According to Eqs. (S1), (S3), (S4), the
coefficients sk, r

2
k, r

3
k diverge for large k: we cannot re-

move these divergences like we did for the coefficient
r1k, because the only free parameter in the model—the
temperature—has already been fixed to eliminate the di-
vergence of r1k. Thus, the only possible FP for these coef-
ficients is sk = s∗ = ±∞, r2k = r2∗ = ±∞, r3k = r3∗ = ±∞.
Finally, given our perturbative working hypothesis, the
coefficients {wp

k} are assumed to be small, thus they must
converge to a finite FP wp

k = wp
∗ , p = 1, . . . , 8.

Given the above structure of the critical FP, the critical
values {c∗p} of the coefficients {cp} are finite despite the

fact that s∗, r
2
∗ and r3∗ are infinite:

c∗1 =
C

4r1∗
, (28)

c∗2 =
C

4(2− n)r1∗
, (29)

c∗3 =
C

2(2− 3n+ n2)r1∗
, (30)

where to obtain Eqs. (28)-(30) we used Eqs. (13)-(15)
and the condition r2∗ = ±∞, r3∗ = ±∞. Importantly,
the finiteness of {c∗p} ensures that the FP equations for

r1∗, {wp
∗} are well posed because they involve only finite

terms, see Eqs. (S2), (S5)-(S12).

C. Solution of the fixed-point equations

We will now determine explicitly the critical FP. First
of all, the RG Eqs. (S2), (S5)-(S12) possess a trivial FP

r1∗ =
β2

2(2/C − 1)
, w1

∗ = · · · = w8
∗ = 0. (31)

As shown in Appendix A, in the mean-field region 1/2 <
σ ≤ 2/3 this FP is stable, and it is thus associated with
the existence of a physical spin-glass transition in a mag-
netic field.

In non-mean-field region 2/3 < σ < 1 the FP (31) is
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unstable, see Appendix A, thus other FPs must be consid-
ered. To this end, we observe that the FP equations can
be simplified if σ lies in the neighborhood of the threshold
value σ = 2/3. To show this, we set

ǫ ≡ σ − 2/3, (32)

and we observe13 that for small ǫ the RG Eqs. (S2),
(S5)-(S12) are of the form wp

∗ǫ = O((wp
∗)

3), implying that
(wp

∗)
2 = O(ǫ). Hence, we set

wp
∗ = β3

(

log 2

(21/3 − 1)3

)1/2

ωp

√
ǫ, (33)

where {ωp} are coefficients of order unity34. Also, Eq.

(33) and the recursive equation (S2) imply that the FP
for r1∗ reads

r1∗ =
β2

2(21/3 − 1)
+ ρ ǫ, (34)

where ρ is a coefficient of order unity. Note that the
mean-field FP (31) can be obtained from Eqs. (33), (34)
by setting ǫ = 0: hence, the FP (33), (34) can be regarded
as a perturbation of the mean-field FP.

We will now determine the critical FP, if any. To this
end, we use Eqs. (33), (34), (28)-(30), and we obtain31

that the FP condition for Eqs. (S2), (S5)-(S12) implies
the following set of polynomial equations for ρ, {ωp}

4(21/3 − 1)2ρ+ 21/3β2 log 2
(

−4ω2
1 + 16ω1ω2 − 11ω2

2 + 4
)

= 0, (35)

14ω3
1 − 36ω2

1ω2 + 18ω1ω
2
2 + ω3

2 + 6ω1 = 0, (36)

ω2

(

3 + 12ω2
1 − 30ω1ω2 + 17ω2

2

)

= 0, (37)

18ω3
1 − 4ω2

1(15ω2 + 2ω3) + 8ω1ω2(9ω2 + 4ω3)− 11ω2
2(3ω2 + 2ω3)− 6ω3 = 0, (38)

6ω3
1 + 8ω2

1(ω3 + 2ω4)− ω1ω2(15ω2 + 12ω3 + 64ω4) + ω2
2(12ω2 + 7ω3 + 44ω4) + 12ω4 = 0, (39)

18ω3
1 − 3ω2

1(27ω2 + 4ω3) + 6ω1

(

6ω2
2 − 3ω2ω3 − ω2

3

)

+ ω2

(

18ω2
2 + 24ω2ω3 + 7ω2

3

)

+ 18ω5 = 0, (40)

72ω3
1 − 243ω2

1ω2 + 18ω1

(

12ω2
2 + ω2ω3 + ω2

3

)

− 63ω3
2 − 18ω2

2ω3 − 15ω2ω
2
3 + 4ω3

3 − 54ω6 = 0, (41)

9ω3
1 + 3ω2

1(6ω2 + 7ω3 + 8ω4) + 3ω1

[

3ω2
2 + 4ω2(ω3 + 4ω4) + ω3(3ω3 + 16ω4)

]

− 36ω3
2 − 3ω2

2(11ω3+ (42)

+20ω4)− 2ω2ω3(5ω3 + 24ω4)− ω2
3(ω3 − 8ω4)− 36ω7 = 0,

63ω3
1 − 9ω2

1 [3ω2 − 5(ω3 + 4ω4)]− 9ω1(ω3 + 4ω4)(2ω2 − ω3 − 4ω4)− 36ω3
2 − 36ω2

2(ω3 + 2ω4)− 3ω2× (43)

×
(

5ω2
3 + 24ω3ω4 + 48ω2

4

)

− ω3

(

ω2
3 + 12ω3ω4 − 48ω2

4

)

− 216ω8 = 0.

The solution to the equations above can be determined
by solving Eqs. (36)-(43) for the ωs first, and then sub-
stituting the solution into Eq. (35) to obtain ρ. Being
a system of polynomial equations of the third degree, in
general Eqs. (36)-(43) have multiple solutions. To find all

solutions, we determined the Gröbner basis (GB) of the
system of polynomials (36)-(43): the GB is given by a set
of polynomials in the ωs, and the roots of Eqs. (36)-(43)
coincide with those of the GB21. Given that Eqs. (36)-
(43) have integer coefficients, their GB can be computed
exactly, and it reads

ω8

(

28ω2
8 + 3

) {

16
[

80
(

8656ω2
8 + 933

)

ω2
8 + 2367

]

ω2
8 + 3267

}

, (44)

ω7 − 3ω8, (45)

1877310171ω6 + 32100226170880ω7
8 + 2352496281600ω5

8 + 641548992ω3
8 + 8790294330ω8, (46)

625770057ω5 − 8ω8

(

28ω2
8 + 3

) (

71652290560ω4
8 − 2425923360ω2

8 + 261352389
)

, (47)

625770057ω4 + 8025056542720ω7
8 + 588124070400ω5

8 + 160387248ω3
8 + 1258918497ω8, (48)

625770057ω3 + 2ω8

(

8025056542720ω6
8 + 588124070400ω4

8 + 160387248ω2
8 + 1258918497

)

, (49)

1877310171ω2 − 16ω8

(

28ω2
8 + 3

) (

71652290560ω4
8 − 2425923360ω2

8 + 261352389
)

, (50)

625770057ω1 − 2ω8

(

8025056542720ω6
8 + 588124070400ω4

8 + 160387248ω2
8 + 2510458611

)

, (51)

where every line in Eqs. (44)-(51) corresponds to an element of the GB. The first GB element, Eq. (44),
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depends only on ω8, and its complete set of roots
can be determined exactly. Since the GBs (45)-(51)
are linear in ω1, . . . , ω7, to every solution for ω8 cor-
responds a unique value for ω1, . . . , ω7. As a conse-
quence, the GB method allows for extracting the full
set of exact solutions. The numerical root values for
ω8 read ω8 = 0, 0.159676 ± 0.167743 i,−0.159676 ±
0.167743 i, ±0.327327 i, ±0.320162 i. First, it is straight-
forward to show that the trivial root ω8 = 0 corresponds
to the FP

ρ = −β2 21/3 log 2

(21/3 − 1)2
, ω1 = · · · = ω8 = 0, (52)

and that this FP is unstable, thus it does not correspond
to a spin-glass transition, see Appendix B for details. Sec-
ond, all other roots for ω8 have a nonzero imaginary part.
This implies that, since the initial condition Z0[Q] of the
RG transformation (6) is real and since the RG trans-
formation maintains reality, none of the FPs in the non-
mean-field region σ = 2/3 + ǫ are physically accessible.

III. CONCLUSIONS

Establishing the existence of a phase transition in non-
mean-field spin glasses with an external magnetic field
is an open problem which has been attracting growing
interest in recent years3–9. Indeed, the occurrence of
such transition is believed to be related to the structure
of the low-temperature phase of spin glasses—a central
topic in statistical physics of disordered systems2. Among
non-mean-field models of spin glasses, the hierarchical
Edwards-Anderson model12 is the simplest non-mean-
field spin-glass system where the hierarchical structure11

of spin interactions allows for a natural implementation
of renormalization-group (RG) techniques: recent stud-
ies showed that these RG methods provide a novel way
of understanding the thermodynamical properties of the
model13,15,16,35.

In this paper, we studied the existence of a phase tran-
sition for the hierarchical Edwards-Anderson model with
an external magnetic field (HEAM): We used a RG ap-
proach based on the replica method13, and we analyzed in
perturbation theory the RG flow of the average replicated
partition function with fixed overlap. In this approach,
the replicated partition function is described by a set of
twelve parameters: given the complex algebraic structure
of the resulting RG theory, we developed a novel symbolic
computation method which allowed us for extracting the
RG equations to lowest order in perturbation theory.

In the absence of a magnetic field, the HEAM pos-
sesses a mean-field region 1/2 < σ ≤ 2/3 where order-
parameter fluctuations vanish, and a non-mean-field re-
gion 2/3 < σ < 1 characterized by nonzero order-
parameter fluctuations, where σ is a parameter tuning
the interaction decay with distance13. We investigated
the occurrence of a spin-glass transition in the HEAM by
studying the existence of a stable RG fixed point (FP) in
both these parameter regimes. In the mean-field region

we found a stable critical fixed point which corresponds
to a physical spin-glass transition. In the non-mean-field
region, we investigated the FPs contiguous to the mean-
field one with a perturbative expansion in ǫ = σ − 2/3.
The resulting FP equations are a system of polynomial
equations of the third degree which possess, in princi-
ple, multiple FP solutions. In this regard, two previ-
ous RG studies investigated the perturbative FPs in the
non-mean-field region of short-range spin-glass models in
a magnetic field. First, a set of unstable solutions to
the FP equations was found17, but these solutions were
not shown to be the complete set of roots of the FP
equations18. Second, the complete set of FPs has been
extracted in a reduced framework where only a subset
of the order-parameter modes is retained19,20. By us-
ing a Gröbner-basis method for systems of polynomial
equations21, here we computed exactly all FPs for the
full set of RG equations in the non-mean-field region of
the HEAM. Our analysis shows that that all FPs have a
nonzero imaginary part. Given that in the RG transfor-
mation the initial values of the coefficients are real, and
given that the RG transformation maintains reality, our
results constitute, to the best of our knowledge, the first
demonstration for a spin glass in a field that the there
exists no perturbative FP in the non-mean-field region.

To interpret the absence of a perturbative FP in
the non-mean-field region, several scenarios can be
considered19. First, the absence of a perturbative FP
may imply that there is no spin-glass transition in the
non-mean-field region8,20. In this regard, we recall that
the addition of a random magnetic field in the ferromag-
netic Ising model increases the lower critical dimension
from d = 1 in the zero-field case to d = 2 in a finite field36:
along these lines, the inclusion of a random field in the
hierarchical Edwards-Anderson model may decrease the
value of σ corresponding8 to the lower critical dimension
from σ = 1 in zero field to σ = 2/3 in a finite field, thus
providing a possible explanation for the absence of a tran-
sition for 2/3 < σ < 1 in the HEAM. A second possibility
is that a FP in a field for σ = 2/3+ ǫ exists, but this FP
may not be contiguous to the mean-field one, thus it may
not be found with the perturbative approach used here:
this hypothesis is in line with the fact that perturba-
tive approaches are generally not well understood in spin
glasses13,15,37. A third possibility is that there is a phase
transition in a field, but this transition is not associated
with a FP within the replica RG method. As a future di-
rection, the last two possibilities may be investigated with
recent real-space RG approaches developed for the hier-
archical Edwards-Anderson model15,16 which do not rely
on perturbation theory, nor they make use of the replica
formalism. Non-perturbative effects could be also studied
with Monte Carlo (MC) simulations. In this regard, re-
cent MC studies focused on four-dimensional short-range
spin glasses7 and one-dimensional long-range spin glasses
which correspond to short-range models9 with d = 4.
These works hinted at the existence of a transition in
a magnetic field in the non-mean-field region, a picture
which is at variance with the perturbative results pro-
vided here for the HEAM. Non-perturbative effects could
be pinned down directly for the HEAM by means of a
systematic comparison between the perturbative RG pre-
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dictions provided here and MC simulations38: indeed, the
RG flow of the replicated partition function Zk → Zk+1

could be directly investigated numerically by comput-
ing the moments of the overlap distribution for differ-
ent system sizes 2k. If the numerics provided evidence
for a transition in the non-mean-field region, one could
then probe directly the nature of the FP corresponding
to such transition by characterizing numerically its crit-
ical exponent10 ν. If the MC estimate of ν was found
to be close to the classical value13 νcl = 1/(2σ − 1) for
σ & 2/3, then the spin-glass transition resulting from
the numerics could be associated with a FP which is a
perturbation of the mean-field one. Conversely, a strong
discrepancy between the MC estimate of ν and νcl for
σ & 2/3 would hint at the existence of a non-perturbative
FP lying outside the domain of attraction of the mean-
field FP. Finally, a further natural way to examine non-
perturbative effects consists in studying the behavior of
the ǫ-expansion to large orders13: to this end, the sym-
bolic computation method introduced in this paper may
be helpful in setting up a fully automated large-order ǫ-
expansion, which may be useful for understanding the
limits of perturbation theory in spin glasses.
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Appendix A: Stability of the trivial fixed point (31)
in the mean-field region

To study the stability of the FP (31), we set ~xk =
(x1

k, . . . , x
9
k) ≡ (rk, w

1
k, · · · , w8

k) and we linearize the
transformation ~xk → ~xk+1 implied by Eqs. (S2), (S5)-
(S12) in the neighborhood of the FP x∗ = (r1∗ , 0, . . . , 0):
the FP is stable if the matrix

Mij ≡
∂xi

k+1

∂xj
k

∣

∣

∣

∣

∣

~x∗

, (A1)

has not more than one eigenvalue larger than one10.
By using Eqs. (S2), (S5)-(S12), (A1) it is straight-
forward to obtain the eigenvalues of M, which read
λ1 = 2/C, λ2 = · · · = λ9 = 2/C3/2. It follows that in
the mean-field region 1/2 < σ ≤ 2/3 only λ1 is larger
than one, and the trivial FP (31) is stable. In the
non-mean-field region λ2, · · · , λ9 are all larger than one,
and the FP (31) is unstable.

Appendix B: Instability of the trivial fixed point (52)

We will show that the FP (52) is unstable by proceed-
ing along the lines of Appendix A: since we want to study
the RG flow in the neighborhood of a FP of the form (33),
(34), we set

r1k =
β2

2(21/3 − 1)
+ ρk ǫ, (B1)

wp
k = β3

(

log 2

(21/3 − 1)3

)1/2

ωp k

√
ǫ. (B2)

We then introduce the vector ~yk = (y1k, . . . , y
9
k) ≡

(ρk, ω1 k, . . . , ω8 k) and the RG transformation ~yk → ~yk+1

implied by Eqs. (S2), (S5)-(S12), (B1), (B2). Then, we
consider the FP ~y∗ = (ρ, ω1, · · · , ω8), where ρ, ω1, · · · , ω8

are given by Eq. (52): this FP is stable if the matrix

Nij ≡
∂yik+1

∂yjk

∣

∣

∣

∣

∣

~y∗

, (B3)

has not more than one eigenvalue larger than one. By
using Eqs. (S2), (S5)-(S12), (B1), (B2), (B3) we obtain
the eigenvalues of N , which read λ1 = 21/3, λ2 = · · · =
λ9 = 1+3 ǫ log 2: given that in the non-mean-field region
ǫ > 0, the FP (52) is unstable.
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