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Abstract 

The linear dependence on temperature (γT) of the heat capacity at low temperatures (T < 15 K) is 

traditionally attributed to conduction electrons in metals; however, many insulators also exhibit a 

linear dependence that has been attributed to a variety of other physical properties. The property 

most commonly used to justify the presence of this linear dependence is lattice vacancies, but a 

correlation between these two properties has never been shown. We have devised a theory that 

justifies a linear heat capacity as a result of lattice vacancies, and we provide measured values 

and data from the literature to support our arguments. We postulate that many small Schottky 

anomalies are produced by a puckering of the lattice around these vacancies, and variations in 

the lattice caused by position or proximity to some form of structure result in a distribution of 

Schottky anomalies with different energies. We present a mathematical model to describe these 

anomalies and their distribution based on literature data that ultimately results in a linear heat 

capacity. From these calculations, a quantitative relationship between the linear term and the 

concentration of lattice vacancies is identified, and we verify these calculations using values of γ 

and vacancy concentrations for several materials. We have compiled many values of γ and 

vacancy concentrations from the literature which show several significant trends that provide 

further evidence for our theory. 

 

Keywords: heat capacity, low temperature, linear term, lattice vacancies, Schottky defects, 

insulators 
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I. INTRODUCTION 

A. Linear Heat Capacity at Low Temperatures 

Traditionally, the linear dependence on temperature of the low temperature (T < 15 K) 

heat capacity has been associated with conduction electrons in metals [1, 2], but a linear term, γT, 

has been found in many non-metallic materials as well [3-5]. The linear dependence of these 

materials has been an area of great interest and has resulted in a number of theories having broad 

and often inconsistent origins.  

In metals, the linear dependence arises from electrons that populate energy levels above 

the Fermi level at any finite temperature [1, 2]. High temperature ceramic superconductors have 

been found to show a linear dependence in the heat capacity. This could easily be misinterpreted 

as arising from conduction electrons similar to those in metals, but because the conductivity 

arises from Cooper pairs [6], which behave as bosons rather than fermions, new theories were 

needed to explain the linear dependence.  

Many theories suggested the linear dependence was intrinsic to superconductivity [4, 7-

10], while others have attributed the linear term to a tunneling-system related to oxygen [11], 

impurity phases such as BaCuO2 in YBa2Cu3O7 (YBCO) [12], or twin boundaries and oxygen 

vacancies [13-15]. The arguments of those against an intrinsic linear term are that linear terms 

are inconsistent from sample to sample and depend strongly on sample quality [4, 10]; 

furthermore, some superconductors that become insulators at certain stiochiometries retain a 

similar linear term in the heat capacity even as insulators [16, 17].  

Several studies have attempted to identify the origins of the linear terms in insulating 

materials resulting in theories as diverse as the samples. Table I lists the linear terms of several 

insulating materials as determined from a combination of adiabatic [18-25], semi-adiabatic pulse 
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[19-23, 26-30], isothermal [21, 26], and relaxation calorimetry methods [5, 18, 21, 27, 31-43], 

and Fig. 1 graphically shows a sampling of these linear terms relative to each other. The linear 

term in BaCuO2 has been attributed to magnetic degrees of freedom [23] but has also been 

disregarded simply because it is an insulator [44]. Nanocrystalline magnetite (Fe3O4) and 

hematite (Fe2O3) have linear terms that have been attributed to superparamagnetism [19, 31]. 

The linear terms in several vanadium bronzes have been attributed to singlet bipolarons [24]. In 

several insulating layered oxides, the linear terms are attributed to a localized density of states 

associated with lattice vacancies [5]. Many investigations of  insulators with linear terms adopt 

some form of this latter explanation since lattice vacancies are inherent to all materials to some 

degree; however, the only derivation of a linear heat capacity from lattice vacancies treats the 

vacancies the same as a free-electron gas where vacancies “move practically freely through a 

crystal”, which is wholly unsupported in the original manuscript [45]. 

In glasses, the linear dependence on the low temperature heat capacity has been attributed 

to particles trapped in defect sites that create a particle-in-a-box system [46, 47], but a more 

common theory is based on a system of tunneling states [3, 48, 49]. This theory assumes that 

there are two equilibrium orientations that atoms or groups of atoms can have. The two energy 

minima associated with each of these orientations are separated by an energy barrier that must be 

overcome by phonon-assisted tunneling in order for the atoms to shift from one orientation to the 

other. The separation in energy between the two minima is different for every group of atoms 

because of local strains and the local configuration of the atoms around the group. Each of these 

two-level systems (TLS) for which the tunneling barrier is not too large results in a Schottky 

anomaly in the low temperature heat capacity [1] 
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ௌ௖௛ܥ  ൌ ݊ௌ௖௛ሺߠሻ݇ ൬ܶߠ൰ଶ ݁ఏ ்ൗቀ1 ൅ ݁ఏ ்ൗ ቁଶ 
(1)

where θ is the energy separation of the two states with units of K (θ = ΔE/k), nSch(θ) is the moles 

of anomalies per mole of material for a given separation θ, and k is the Boltzmann constant. 

Because the number and energies of these tunneling systems is random, the distribution nSch(θ) 

can be assumed to be a constant value n(0), which makes the sum of all Schottky anomalies 

approximated by the integral [3] 

௟௜௡ሺܶሻܥ  ൌ න ݊ௌ௖௛ሺߠሻ݇ ൬ܶߠ൰ଶ ݁ఏ ்ൗቀ1 ൅ ݁ఏ ்ൗ ቁଶ ஶߠ݀
଴ ൎ ଶ6ߨ ݇ଶ݊ሺ0ሻܶ 

(2)

where n(0) is the number of contributing TLSs per mole of sample per unit energy. As seen in 

eqn. 2 the heat capacity contribution from these TLSs is linear with temperature.  

The original manuscript by Anderson, Halperin, and Varma outlining this theory provides 

no support for the use of a TLS believed to produce a Schottky anomaly or justification for a 

random distribution of energies produced by the TLSs. Several others have recognized this and 

have attempted to provide evidence for these properties while others have modified the model to 

make the TLS and distribution more meaningful [11, 24, 50, 51]. A major flaw in this theory is 

this lack of understanding the source and distribution of the TLSs. 

To understand the distribution one must first understand the heat capacity that is 

produced by it. The linear heat capacity in metals exists up to high temperatures (O(1000 K)) but 

is generally undetectable due to the much larger contribution from phonons at temperatures any 

higher than about 15 K; however, the linear term in insulating materials does not extend up to 

high temperatures, and the extent to which the linear term is nonzero/non-negligible has been 

investigated by several groups. Anderson et al claimed that the linear term of glasses must exist 
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up to about 10 K before vanishing [3]. Investigations of BaCuO2 have shown that this 

contribution to the heat capacity remains linear until about 30 K where it begins to decrease until 

becoming negligible around 40 to 50 K [23, 44]. Others investigating the heat capacity of 

Fe2P2O7 claim that the linear term begins to decrease between 15 – 20 K [34]. McWhan’s study 

of several doped Al2O3 compounds shows linearity until about 25 K above which the slope (γ) 

quickly decreases to zero [51]. Data of TiO2 from Sandin show an excess heat capacity that 

increases approximately linearly until about 15 K then quickly drops to zero by about 20 K [52]. 

Therefore, we will consider the shape of this excess heat capacity to be linear up to about 15 K at 

which point, it decreases until becoming negligible around 50 K. 

The broad range of insulating materials that have a linear heat capacity and the relatively 

similar cutoff temperature of these linear terms suggests that there exists a common underlying 

factor in all of these materials that produces the linear dependence in the low temperature heat 

capacity. 

B. Lattice Vacancies 

 Lattice vacancies appear in all materials to some degree. At thermal equilibrium the 

concentration of vacancies can be estimated using the Boltzmann factor (for nvac ≪ N) [2]:  

 ݊௩௔௖ ܰ⁄ ؆ exp ሺെܧ௩ ݇ܶ⁄ ሻ (3)

where nvac/N is the ratio of the number of lattice vacancies nvac to the number of atoms N, Ev is 

the energy required to remove an atom from the lattice site inside the crystal and place it on the 

surface, k is Boltzmann’s constant, and T is the temperature of the crystal or the temperature at 

which the crystal was calcined if it was suddenly cooled (thereby freezing in vacancies). For a 

typical Ev (about 1 eV) and calcination temperature (about 1000 K), eqn. 3 yields a concentration 

of lattice vacancies on the order of 10-5 moles of vacancies per mole of atoms. 
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Lattice vacancies are generally determined using redox titrations or thermogravimetric 

analysis (TGA) [53-59], but for nanomaterials and materials with very few vacancies, less 

conventional methods are required such as EXAFS [60, 61], XANES [61], other X-ray 

techniques [53, 61], Raman spectroscopy [60, 61], high resolution TEM [61], EELS [62], XEDS 

[63], STEM [64], neutron diffraction [53, 59], and a plethora of esoteric techniques [65-73]. 

Each of these methods is limited by experimental error, resolution, or applicability that constrain 

what samples can be tested and the amount of useful information that can be obtained (hence the 

large number of specialized techniques). The detection limit for most of these techniques is 

around parts per thousand or nvac/N ≈ 10-3, making these techniques only suitable for highly 

nonstoichiometric samples. Table II lists lattice vacancy concentrations of a wide range of 

materials as measured from these techniques [57-62, 64-74]. 

When a lattice vacancy is present in a crystal, the atomic structure around the vacancy 

takes on one of two possible conformations: dimer or puckered [74-77]. Each of these 

conformations has an energy minimum separated by an energy barrier. These two energy levels 

would result in a Schottky anomaly in the low temperature heat capacity (eqn. 1) with an energy 

separation θ equal to the difference between the two levels. Surface configurations, which are 

somewhat similar to vacancies due to their similar coordinations and strain, have been shown to 

have similar two-level systems that produce Schottky anomalies [78-81].  

The energies of the dimer and puckered configurations of amorphous SiO2 have been 

investigated by Boero et al using first principles calculations approximating the two levels to be 

separated by an energy difference of about 0.25 eV [75]. Skuja reviewed several articles on 

spectroscopic methods used to investigate energies associated with vacancies and showed that a 

spectrum of energy levels up to 0.1 eV arises from vacancies in a typical solid  [82]. Rigid unit 
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modes of SiO4 tetrahedra have two-level systems similar to lattice vacancies and have a range of 

possible energies up to around 500 GHz or about 2 meV [83]. Di Valentin et al investigated 

tunneling related to rotations of surface atoms and found tunneling barriers between about 10 and 

20 meV [79]. Gryaznov et al discovered lattice vacancy energy levels with energies around 20 

meV different from the lattice [84]. Smith investigated librational frequencies covering the range 

of 30 peV to 33.5 meV [80]. Strong librational frequencies around oxygen vacancies in 

perovskites have been found to have energies of about 90 – 120 cm-1 (11 – 15 meV), and a broad 

spectrum of peaks below 90 cm-1 have been attributed to thermally induced disorder, which 

essentially consists of lattice vacancies as eqn. 3 shows [85]. From all these investigations, we 

conclude that energies associated with lattice vacancies have a broad distribution of possible 

states, likely caused by differences in the lattice surrounding each vacancy, and have an average 

maximum of about 20 meV.  

From the information presented above, it can be seen that a single lattice vacancy results 

in a two-level system that is capable of producing a Schottky anomaly in the low temperature 

heat capacity. Multiple vacancies have a random distribution of energy differences that would 

yield a distribution of Schottky anomalies. The cutoff of the energies from the TLSs would also 

produce a cutoff (albeit gradual) in the sum of the Schottky anomalies produced from the 

vacancies. We will show how the energies associated with TLSs are responsible for the linear 

term and its cutoff temperature and matches what has been observed experimentally. 

II. THEORY and CORRELATIONS  

A. Distributions 

We first consider the distribution of energies associated with the TLSs from vacancies 

that determine nSch(θ) in eqn. 2. The distribution nSch(θ) used for eqn. 2 assumes that nSch is a 
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single value for all values of θ up to infinity, but we will examine several other possible and 

more meaningful distributions that correspond to the experimental data outlined above and that 

could produce a linear (or pseudo-linear) heat capacity with an appropriate ending temperature. 

All of the following distributions have been tailored so that nSch(θ) is negligible by about 150 K 

(or 13 meV). These distributions use θ with units of K rather than meV to be applicable to the 

Schottky heat capacity as given in eqn. 1. We note here that 1 meV = 11.6 K. 

Figure 2 shows several hypothetical distributions of nSch(θ). A simple Gaussian 

distribution with θmax centered at 30 K and a standard deviation of 40 K is shown in Fig. 2(a). In 

this distribution, nSch at θ = 30 K corresponds to the average energy produced by vacancies that is 

more probable than the others perhaps due to the homogeneous nature inside the bulk of the 

material. The other energies arise because of the vacancies’ proximity to grain boundaries, other 

vacancies, or the surface, which are generally less common than a homogeneous environment. 

This type of distribution might be suitable for large grain, crystalline materials. 

A left skewed Gaussian that has an average θ = 85 K is shown in Fig. 2(b). The average 

here would again represent the vacancies in a homogeneous environment likely within the bulk 

of the material, but the skew would arise from a large concentration of vacancies near some 

similar inhomogeneous structure such as the surface. This distribution would likely apply to 

nanomaterials with a high surface to bulk ratio or materials with a high degree of disorder such 

as amorphous solids. 

Figure 2(c) shows the sum of two Gaussian distributions that are centered at 5 K and 75 

K with standard deviations of 28 K. These Gaussians would be similar to the one discussed for 

Fig. 2(a), but here we suppose the low energy Gaussian arises from vacancies near or on the 

surface where there is less strain, and the high energy Gaussian arises from the vacancies in the 
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bulk of the material. This distribution may be more meaningful than the others because the center 

position, height, and width of each Gaussian can be varied as long as the sum has the same 

general shape. This allows for a different distribution for every sample that has a linear heat 

capacity and could therefore apply to any type of material.  

A step distribution with a cutoff of θ = 150 K (based on the experimental data outlined 

above) is shown in Fig. 2(d). This distribution is very similar to the constant value distribution 

used in eqn. 2 and assumes that the energies associated with the lattice vacancies are completely 

random and only exist below a particular energy, treating vacancies on the surface, in the bulk, 

and near defects or grain boundaries the same. The only variable factor in this distribution is the 

cutoff energy, which Anderson et al postulated to be related to the glass transition temperature 

on the order of 1000 K. Although this distribution simplifies calculations, it is unlikely that 

vacancies’ energies will be completely random because bulk and surface energetics are so 

different [86], and a meaningful distribution must not ignore surface energies since many of the 

materials with linear terms are nanoparticles (see Table I). 

B. Resultant Heat Capacity 

When these distributions are used in eqn. 2, the resultant heat capacity as determined by 

numerical integration is approximately linear up to about 15 K and then gradually drops towards 

zero. Figure 3 shows the heat capacity curves (as C/T versus T in which a linear heat capacity 

will appear as a constant) that result from the distributions of Fig. 2. The Gaussian distribution 

yields a heat capacity that deviates the most from linearity (up to about 15 %) as can be seen in 

Fig. 3(a). The heat capacity derived from the skewed Gaussian distribution, seen in Fig. 3(b), 

results in a heat capacity with less than a 5 % deviation from linearity below 15 K. The 

distribution created by summing two Gaussian results in a heat capacity that deviates from 
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linearity by less than 0.8 % (see Fig. 3(c)), and the step distribution results in a heat capacity that 

deviates from linearity by about 0.05 % below 10 K but increases to 0.3 % by 15 K (see Fig. 

3(d)).  For temperatures much less than the cutoff temperature, the step distribution produces the 

same linear heat capacity result of eqn. 2. All of these distributions resemble the energies 

typically produced from lattice vacancies and result in a heat capacity function that resembles 

what has been observed in many insulating materials, but the sum of two Gaussian distributions 

appears to be the most meaningful and has a high degree of linearity. 

The distributions discussed above are just a few of the possible distributions that result in 

a linear heat capacity similar to what has been reported in the literature [3, 23, 34, 44, 51, 52]. 

The actual distributions likely vary from the distributions presented here, but these distributions 

demonstrate the general shape that nSch(θ) must have. Low temperature heat capacity data can 

have an uncertainty of about 2 %, and fits can have an uncertainty on the order of 1 %; therefore, 

the nonlinearity of these derived heat capacities would likely be buried in the error of the data or 

fit. These results show that lattice vacancies do indeed produce a linear (or pseudo-linear) 

contribution to the low temperature heat capacity. 

C. Quantification of Vacancies from γ 

Because each Schottky anomaly is a result of a lattice vacancy, the sum of all Schottky 

anomalies will give a measure of the total number of vacancies nvac in a given sample. Finding 

nvac is simply done by integrating the distribution nSch(θ) over all θ. The height or normalization 

of the distribution will be manifest in the slope or linear term γ of the resultant heat capacity. We 

have calculated linear terms from typical vacancy concentrations of nvac =  10-5 to 1 vacancies 

per formula unit (see Table II). Each distribution (see Fig. 2) was normalized to these values, and 

the linear term was determined by averaging the resultant heat capacity divided by temperature 
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(C/T) from 0.5-15 K. These values were then used to determine constants of proportionality for 

each distribution by fitting to a line with zero intercept. The proportionalities are in the form γcalc 

= c × nvac, and values of c were found to be 157, 151, 115, and 91 mJ⋅mol-1⋅K-2 for the Gaussian, 

skewed Gaussian, two-Gaussian, and step distributions, respectively. These calculations have an 

estimated uncertainty of about 6 % based on the heat capacity data, the fit, and the distribution’s 

linearity, but with better data and fits an uncertainty of about 2% would be reasonable.  

D. Comparison to Experimental Data  

To test the results of this model against actual data, we have measured the linear terms 

and vacancy concentrations of Co3O4, Co3O4 (n), CoO (n), Fe3O4 (n), CuO (n), and Al2O3 (n) 

which are part of separate, ongoing projects in our laboratory. The samples were found to have 

no chemical or phase impurities, and all characterization and thermodynamic data will be 

reported elsewhere.  

The low temperature heat capacities of Fe3O4 (n), CoO (n), and Al2O3 (n) and the 

experimental details have been published previously [19, 20, 41]. The other samples’ heat 

capacities were measured on a Quantum Design Physical Properties Measurement System 

(PPMS) from 1.8 – 300 K following the method of Shi et al [87]. Approximately 30 mg of each 

sample were mixed with copper stips (Alpha Aesar mass fraction purity 0.9995) to provide better 

thermal contact and put into copper cups that were pressed into pellets. Addenda measurements 

were performed that measured the heat capacity of the calorimeter and the grease used to attach 

the sample. After each addenda measurement, the sample was attached to the PPMS puck, and 

the heat capacity was measured. The system automatically corrects for the heat capacities of the 

calorimeter and grease, and the heat capacity of the copper was corrected for using data from 

Stevens and Boerio-Goates [88]. Data measured on the PPMS using this method have an 



13 
 

estimated uncertainty of ± 0.02·Cp° for 2 < T/K < 10 and ± 0.01·Cp° for 10 < T/K < 300 [87]. The 

data below 10 K were fit to a theoretical function of the form 

ሺܶሻܥ  ൌ ෍ ௜ܶ௜ܤ ൅ ௜ୀଷ,ହ,଻ܶߛ  (4)

where the summation term represents the contribution from lattice vibrations, and the linear term 

is related to lattice vacancies. The fits having the same number of lattice terms but no linear 

contribution resulted in %RMS values of 7.16, 18.1, and 13.2 for Co3O4, Co3O4 (n), and CuO 

(n), respectively, whereas the fits including the linear term resulted in %RMS values of 0.82, 

1.80, and 1.18. The values of γ obtained from the fits were 2.138, 14.111, and 0.489 mJ⋅mol-1⋅K-2 

for Co3O4, Co3O4 (n), and CuO (n), respectively (see Table I), and the approximated uncertainty 

in these values is 2.5 % based on the heat capacity data and the fitting error. 

The vacancy concentrations of Co3O4, Co3O4 (n), CoO (n), and Fe3O4 (n) were measured 

using a thermogravimetric reduction technique. Approximately 20 mg of each sample were 

placed in Pt crucibles which were inserted into a Mettler Toledo TGA/DSC 1 equipped with an 

automated GC 200 gas controller. To remove any surface-bound water the samples were heated 

to 400 °C in He and cooled back to room temperature. The reduction gas was 10 % H2 in He 

with a flow rate of 100 mL·min-1, and the samples were heated at a rate of 3 °C·min-1 to 900 °C. 

Reduction occurred abruptly at about 300 °C for the cobalt oxides and at about 400 for the iron 

oxide and resulted in mass losses of 26.5310 %, 25.9726 %, 18.50 %, and 28.50 % 

corresponding to stoichiometries of Co3O3.9905, Co3O3.8770 (n), CoO0.8361 (n), and Fe2.8750O4 (n) 

respectively, yielding vacancy concentrations of nvac = 0.0095, 0.1230, 0.1639, and 0.1250. The 

approximated uncertainty of these values is 15 %. 

The vacancy concentration of CuO (n) was determined by performing Rietveld 

refinement on powder X-ray diffraction (XRD) data collected at 100 K. CuO powder was packed 
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into a polyimide capillary with an inner diameter of 0.012 mm, and XRD data were collected in 

transmission mode using a MACH3 four circle single crystal diffractometer coupled to a Bruker 

Apex II CCD detector with a Bruker-Nonius FR591 rotating anode X-ray source producing Cu 

Kα radiation (λ = 1.5418 Å). Data were collected between 2° – 133° 2θ by performing a series of 

8 overlapping phi 360 scans. The Bruker XRD2 program was used to merge the images and 

integrate the intensity of the diffraction rings. Rietveld refinement was performed using the 

PANalytical Highscore Plus software. The details of the analysis will be published elsewhere, 

but from the refinement, copper atoms were found to be slightly deficient yielding Cu0.9891O or 

nvac = 0.0109 having an approximate uncertainty of 10 %. 

The vacancy concentration of Al2O3 (n) was determined using eqn. 3 and the value of Ev 

(0.18 eV) from ref. [89]. Although the Al2O3 (n) samples used to determine γ were calcined at 

973 K, we can assume that T ≈ 300 K because the samples were cooled slowly to room 

temperature after calcination but were cooled quickly from room temperature to perform heat 

capacity measurements [41]. Using these values in eqn. 3 and accounting for the five atoms per 

formula unit gives an nvac of 0.0047 moles of vacancies per mole of Al2O3 (n). The estimated 

uncertainty of nvac determined using this method is 50 %. 

All these values of γ and nvac are plotted in Fig. 4 along with the proportionalities derived 

herein. The plot shows how γ increases as nvac increases. The error bars represent the 

uncertainties discussed above for each value of nvac, and the uncertainty in γ of 2.5 % is smaller 

than the size of the symbols. The deviations of the ratio of the actual values of γ and nvac (c = 

γ/nvac) from our calculations are 40 % (using the Gaussian distribution) for Al2O3, 30 % (using 

the Gaussian distribution) for Co3O4, 100 % (using the step distribution) for CuO (n), 6.3 % 
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(using 2-Gaussian distributions) for Co3O4 (n), 230 % (using the step distribution) for Fe3O4 (n), 

150 % (using the step distribution) for CoO (n).  

The experimental values of γ and nvac differ from our theoretical values by at most a 

factor of two or three and as little as a few percent. When all the uncertainties are taken into 

account, these calculations show qualitative agreement as well as quantitative agreement 

providing further evidence that the linear term of insulating materials does indeed stem from 

lattice vacancies. As further evidence supporting our claims, we note that the differences 

between the measured and calculated values of γ from nvac are similar despite the method used to 

determine nvac. 

E. Trends in γ and nvac  

As a final note, we recognize several trends emphasizing our conclusions. All values of γ 

found in Table I lie between 0.01 mJ⋅mol-1⋅K-2 and 100 mJ⋅mol-1⋅K-2, and values of nvac in Table 

II lie between 10-5 and 1, which is the same range of values we would expect when applying our 

calculations to γ. Values of γ for nano phase TiO2, CoO, Co3O4, α-Fe2O3, CuO, SnO2, and ZnO 

are all larger than the bulk phase values of γ.  Values of nvac from Table II also increase as 

particle size decreases for CeO2 and Fe3O4. The Co doped ZnO and Al doped TiO2 systems have 

γ much greater than what would be expected for a simple CoO/ZnO or Al2O3/TiO2 mixture, and 

values of nvac for TiO2 are also larger when dopants are present. Mitchell has also shown that the 

concentration of defects increases with increasing dopant concentrations [72].  

III. CONCLUSION 

We have shown that the linear term, which is often necessary to fit the low temperature 

heat capacity data for nonmetallic materials, is related to the number of lattice vacancies. We 

have created several distributions of nSch(θ) that have similar energy cutoffs to experimental data 
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from the literature and are physically meaningful. The vacancy energies associated with these 

distributions are assumed to result in small Schottky anomalies due to a puckering of the lattice. 

These distributions have been shown to produce a linear heat capacity similar to what has been 

observed for these kinds of materials. We have measured values of γ and nvac of several samples 

and compared those to our theoretical values. These values show qualitative and quantitative 

agreement with our model, and linear terms and lattice vacancy concentrations have been shown 

to have many similar trends providing further evidence for our arguments. This manuscript 

provides meaningful evidence supporting the claim that the linear term in insulating materials 

results from lattice vacancies.  
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Table I. Linear terms from fits to the low temperature (T < 15 K) heat capacity data. Materials in 
the nanophase are represented by (n). Units of γ are mJ⋅mol-1⋅K-2.  
 
Sample γ Sample γ Sample γ 
CuO [18] 0.022 γ-Al2O3 (n) [41] 1.3542 Sr2TiSi2O8 [40] 0.0803 
CuO (n)*  0.489 γ-Al2O3 (n) [41] 1.3905 BaCuO2 [23] 10.6 
ZnO (n) [38] 0.103 γ-Al2O3 (n) [41] 1.22 BaCuO2 [23] 12.4 
Co/ZnO [38] 31.64 γ-Al2O3 (n) [41] 1.3912 BaCuO2.14 [23] 5.7 
Co/ZnO (n) [38] 21.635 SnO2 [37] 0.172 Li1.2Ti1.8O4 [16] 3.6 
GeCo2O4 [21] 0.33 SnO2 (n) [37] 0.401 Na0.25V2O5 [24] 11.3 
CoO [20] 0.4 HfO2 [39] 0.0793 Na0.28V2O5 [24] 9.42 
CoO [38] 0.1856 γ-FeOOH [27] 0.0927 Na0.33V2O5 [24] 9.85 
CoO (n) [20] 6.0 γ-FeOOH [27] 0.3526 Na0.40V2O5 [24] 5.73 
Co3O4* 2.138 β-FeOOH [27] 0.1449 K0.20V2O5 [24] 15.2 
Co3O4 (n)* 8.46 2-line FeOOH [32] 0.1551 Cu0.40V2O5 [24] 60.1 
Co3O4 (n)* 14.111 α-FeOOH [26] 0.23 Cu0.55V2O5 [24] 32.5 
TiO2 rut [22] 0.0993 α-Fe2O3 [33] 0.0362 Cu0.60V2O5 [24] 26.4 
TiO2 ana [22] 0.1099 α-Fe2O3 [33] 0.0224 Ag0.33V2O5 [24] 8.05 
TiO2 rut (n) [29] 0.508 α-Fe2O3 (n) [31] 1.0235 La1.98Ba0.02CuO4 [17] 0.5 
TiO2 rut (n) [29] 0.564 Fe3O4 (n) [19] 3.4619 La0.7Ca0.3MnO3 [25] 5.2 
TiO2 rut (n) [29] 0.4994 FePO4 [36] 13.211 La0.7Ba0.3MnO3 [25] 6.1 
TiO2 ana (n) [30] 0.5941 Fe3PO7 [35] 16.32 La0.7Sr0.3MnO3 [25] 6.0 
TiO2 ana (n) [30] 0.6564 Fe3(P2O7)2 [36] 26.613 Y0.7Sr0.3MnO3 [25] 8.1 
TiO2 ana (n) [30] 0.6877 Fe4(P2O7)3 [35] 73.69 α-D-xylose [43] 0.4902 
Ti0.78Al0.22O2 (n) [42] 0.8118 Fe2P2O7 [34] 83.61 Muskovite [5] 25.5 
Ti0.5Al0.5O2 (n) [42] 1.101 SiO2 [28] 0.066   
*linear terms and data to be published elsewhere. 
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Table II. Measured lattice vacancy concentrations for several materials. Values of nvac have been 
converted into moles of vacancy per mole of formula unit. 
 
Sample nvac Sample nvac 
C doped TiO2 [65] 1.12 × 10-3 CeO2 (5 nm) [60] 6.01 × 10-3 
C doped TiO2 [65] 0.0176 CeO2 (10 nm) [60] 2.4 × 10-3 
TiO2 as prepared [65] 9.41 × 10-4 CeO2 (10 nm) [66] 2.0 × 10-3 
TiO2 oxidized [65] 2.01 × 10-5 CeO2 (15 nm) [68] 2.4 × 10-4 
Fe doped TiO2 [61] 6.27 × 10-3 CeO2 (20 nm) [60] 1.2 × 10-4 
Cr doped SrTiO3 [67] 6.6 × 10-4 CeO2 (30 nm) [60] 2.4 × 10-5 
LaSrCoOx [64] 0.25 CeO2 (65 nm) [60] 1.2 × 10-5 
Sr2MgMoO(6-δ) [58] 0.05 Fe3O4 [73] 4.9 × 10-3 
Ba0.5Sr0.5Co0.8Fe0.2O(3-δ) [59] 0.661 Fe3O4 (10 nm) [70] 0.036 
Ba0.5Sr0.5Co0.8Fe0.2O(3-δ) [59] 0.807 Fe3O4 (n)* 0.1250 
Ce0.9Gd0.1O1.95 [69] 0.13 CuO [71] 6.2 × 10-4 
La0.67Ca0.33MnO(3-y) [62] 0.065 CuO [57] 9.8 × 10-4 
MgO·3.5Al2O3 [72] 0.072 CuO (n)* 0.0109 
Co3O4* 9.5 × 10-3 Cu2O [57] 7.3 × 10-4 
Co3O4 (n)* 0.1230 SiO2 [74] ~ 3 × 10-4 
CoO (n)* 0.1639 Al2O3 (n)* 4.7 × 10-3 
*this study 
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Figure Legends 

 
FIG. 1. Selected linear terms, γ, from fits to the low temperature (T < 15 K) heat capacity data of 
insulating materials. Hollow symbols represent the nanophase of the material; solid represents 
bulk. (color online) 
 
FIG. 2. Various possible distributions of energy gaps, nSch(θ), for the Schottky heat capacity 
arising from lattice vacancies. a) Gaussian distribution. b) Skewed Gaussian distribution. c) Two 
Gaussian distributions summed. d) Step distribution. See text for more details. 
 
FIG. 3. Heat capacities generated by summing Schottky distributions that have nSch and θ values 
corresponding to the distributions: a) Gaussian, b) skewed Gaussian, c) sum of two Gaussians, 
and d) step (as seen in Fig. 2). Plots are of C/T; therefore, a linear heat capacity will be a constant 
in these plots. 
 
FIG. 4. γ vs nvac of several samples. From left to right: Al2O3 (n), Co3O4, CuO (n), Co3O4 (n), 
Fe3O4 (n), and CoO (n). Also shown are the lines derived from the four distributions of Schottky 
anomalies with the slopes (units of mJ⋅mol-1⋅K-2) shown in parenthesis in the legend. 
 
  



27 
 

 

Figure 1. 

  



28 
 

 

Figure 2a. 
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Figure 2b. 
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Figure 2c. 
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Figure 2d. 
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