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We realize a device allowing for tunable and switchable coupling between two frequency-degenerate
superconducting resonators mediated by an artificial atom. For the latter, we utilize a persistent
current flux qubit. We characterize the tunable and switchable coupling in frequency and time
domain and find that the coupling between the relevant modes can be varied in a controlled way.
Specifically, the coupling can be tuned by adjusting the flux through the qubit loop or by controlling
the qubit population via a microwave drive. Our measurements allow us to find parameter regimes
for optimal coupler performance and quantify the tunability range.

PACS numbers: 03.67.Lx, 85.25.Am, 85.25.Cp

I. INTRODUCTION

Circuit quantum electrodynamics (QED)1 has become a
well-established platform for the investigation of light-
matter interaction,2 quantum information processing
and, recently, quantum simulation.3–5 One of the most
important advantages in using superconducting circuits
for these purposes is the large coupling strength between
the main building blocks, namely superconducting
quantum bits and microwave resonators. Noticeably, the
coupling strength remains considerable even for second-
order mechanisms. However, to realize quantum gates
and quantum information and simulation protocols,
the coupling between the individual circuit elements
needs to be tunable in situ. This can be realized in at
least two ways. One way is to decouple two circuits
by detuning them in frequency, for example by using
the frequency tunability of superconducting qubits.
With this technique, systems with up to five qubits
and up to five microwave resonators were studied,5–7

entangled quantum states were created8–10 and quantum
teleportation11 and quantum computing protocols were
demonstrated.12–14 Alternatively, the coupling between
two circuit QED building blocks can be mediated by ad-
ditional coupling circuits. Examples for coupling circuits
include single Josephson junctions,15–17 SQUIDs18–23 or
qubits24–26 which were used to realize tunable coupling
between qubits, resonators and transmission lines.
Furthermore, new types of qubits were introduced fea-
turing intrinsic tunability of the coupling to microwave
resonators.27–30 In this work, we report on tunable and

switchable coupling between two frequency-degenerate
superconducting transmission line resonators mediated
in a second-order process by a superconducting flux
qubit.31,32 Our setup is in a way dual to the usage of a
resonator as quantum bus between two qubits.33,34 One
particular property of our scheme is that the coupling
between the two resonators can either be tuned via the
magnetic flux applied to the qubit loop or switched by
varying the qubit population via a microwave drive. We
perform time domain measurements to find the parame-
ter regimes for optimal sample performance. We point
out that tunable coupling between frequency-degenerate
resonators is of particular importance in the light of
recent proposals on quantum simulations of many-body
physics.3,4,35–38 All these proposals and experiments
would obviously profit from a well-controlled tunable
resonator-resonator coupling such as the one presented
in this work.

II. SAMPLE AND MEASUREMENT SETUP

Our sample comprises two coplanar stripline res-
onators, A and B, with fundamental mode frequencies
ωR/2π=4.896GHz and a superconducting flux qubit as
artificial atom as shown in Figs. 1(a)-(c). The resonators
are fabricated in Nb technology on a thermally oxidized
Si substrate. The linewidths of the fundamental modes
of both resonators for the qubit being far detuned were
determined as γA/2π=2.3MHz and γB/2π=0.5MHz.
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The detuning between the two resonators is found
to be small and is therefore neglected. An artificial
atom is coupled galvanically to the signal lines of both
resonators at the position of the current antinodes
of their fundamental modes, cf. Figs. 1(c)-(e). In our
case, this artificial atom is a flux qubit consisting
of a superconducting Al loop with three Josephson
junctions where one of the junctions is smaller by a
factor α≃ 0.7. For the qubit we determine an energy gap
∆/h=3.55GHz and a persistent current Ip =458 nA.
The coupling between the qubit and each resonator is
g/2π=96.7MHz. The qubit parameters determined by
two-tone spectroscopy can be quantitatively described
by taking into account the galvanic coupling of the qubit
to the resonators in our setup, see appendix.

The effective Hamiltonian for the qubit coupled to the
fundamental modes of the two resonators is31,32

Ĥeff = ~
ωQ

2
σ̂z + ~ (ωR + gdynσ̂z)

(

â†â+ b̂†b̂
)

+ ~ (gAB + gdynσ̂z)
(

â†b̂+ âb̂†
)

.
(1)

Here, ωQ =
√
ǫ2 +∆2/~ is the qubit transition fre-

quency with the energy bias ǫ(Φext)= 2Ip(Φext − Φ0/2),
Φ0 is the flux quantum, and Φext is the external
magnetic flux threading the qubit loop. At the flux
degeneracy point δΦext=Φext−Φ0/2=0, one finds
~ωQ(Φ0/2)=∆. Furthermore, we denote the anni-
hilation (creation) operators for the two resonators

A and B as â and b̂ (â† and b̂†), respectively. The
coupling between the two resonators is mediated by
two mechanisms. In addition to the geometric coupling
gAB/2π=8.4MHz between the two resonators there
is the flux-dependent second-order dynamic coupling

gdyn〈σ̂z〉≡ (g sin θ)2[(ωQ −ωR)
−1 +(ωQ +ωR)

−1]〈σ̂z〉.
As a consequence, the total resonator-resonator coupling

gres ≡ gAB + gdyn〈σ̂z〉

can be tuned via Φext since both the mixing an-
gle tan θ=∆/ǫ and the qubit transition frequency ωQ

are flux dependent. We gain further insight by con-
sidering the normal modes of the coupled resonators

ĉ± = 1√
2

(

â± b̂
)

and ĉ†±= 1√
2

(

â† ± b̂†
)

, which allow us

to rewrite the Hamiltonian of Eq. (1) to

Ĥeff = ~
ωQ

2
σ̂z + ~ωR(ĉ

†
+ĉ+ + ĉ†−ĉ−)

+ ~gAB(ĉ
†
+ĉ+ − ĉ†−ĉ−) + 2~gdyn σ̂zĉ

†
+ĉ+ (2)

The modes ĉ− and ĉ+ correspond to in-phase and
out-of-phase oscillating currents in the two resonators,
respectively. As only the out-of-phase oscillating mode
generates a magnetic field at the position of the qubit,
only this mode couples to the qubit.

For our measurements, we mount the sample inside a
gold-plated copper box to the base temperature stage

dyn
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FIG. 1. (color online) (a) False-color image of the sample.
Nb ground planes are shown in blue and feed lines in or-
ange. The resonator signal lines reside along the ground plane
edges. (b) Coupling capacitor defining the resonators. (c)
Resonator coupling area with signal lines (green) and flux
qubit (red). Light/dark green stripes highlight Nb-Al overlap
areas. (d) Flux qubit galvanically coupled to both resonators.
(e) Al/AlOx/Al Josephson junction fabricated using shadow
evaporation. (f) Working principle of the coupler and mea-
surement setup.

of a dilution refrigerator. The sample temperature is
stabilized at 45mK. As shown in Fig. 1(f), one port of
each resonator is connected to a highly attenuated in-
put line while the respective second port is connected to
an output line featuring cryogenic and room tempera-
ture amplifiers. In this way, we can measure the trans-
mission through the individual resonators (referred to
as a ‘through’-measurement) but also the transmission
from the input of one resonator to the output of the sec-
ond resonator (‘cross’-measurement). A superconducting
solenoid is mounted on top of the sample package in order
to apply magnetic flux to the qubit loop.

III. RESULTS

In this section, we investigate two ways of controlling the
coupling between the two resonators: first, via the exter-
nal magnetic field and, second, via the qubit population.
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FIG. 2. (color online) (a) Transmission through one resonator depending on the applied magnetic flux with the qubit in ground
state. (b) ‘Cross’ measurement, qubit in ground state. (c) ‘Through’ measurement, qubit driven with strong excitation signal.
(d) ‘Through’ measurement, transmission at the frequency of the lower mode at 4.888GHz [dashed lines in (a) and (c)] with
qubit in ground state (blue line) and saturated qubit (red line). Dashed black lines: Switch setting conditions. (e) Same
as (d) for the ‘cross’ measurement. (f) Magnitude of the total coupling between the resonators extracted from a ‘through’
measurement near the switch setting condition. Black: qubit in ground state. Red: saturated qubit. Inset:Measurement with
increased flux resolution around switch setting condition.

A. Tuning the coupling via the external field

To determine the relevant sample parameters and to
characterize the coupler properties, we first measure
the transmission through the resonators with a vec-
tor network analyzer as a function of the applied
magnetic flux Φext. Fig. 2(a) shows the results of a
‘through’-measurement whereas Fig. 2(b) represents a
‘cross’-measurement. For both measurements, the input
signal is applied to the same port and the qubit remains
in the ground state. The input power is chosen such that
the population of both resonators is approximately one
photon on average. We observe two modes as expected
for coupled resonators, where the splitting far away from
the qubit degeneracy point is 2gAB. If the flux is tuned
towards the degeneracy point, the frequency of the lower
mode stays constant while the frequency of the upper
mode is shifted to lower frequencies as expected from
Eq. (2).

In this way, the flux can be tuned such that the fre-
quency of the upper mode matches the frequency of the
lower mode. We refer to these points as the switch setting

conditions where the geometric coupling is fully compen-
sated by the dynamical coupling. Consequently, the two
resonators are expected to be decoupled from each other
if the switch setting condition is fulfilled. In order to
find the minimum value of the coupling for our device,

we fit the mode spectrum shown in Fig. 2(a) using input-
output theory39,40 and analyze the coupling depending
on the magnetic flux. Results are shown in Fig. 2(f). At
the switch setting condition, the coupling is reduced to
|gres,min/2π|. 1.5MHz. Here, our analysis is limited by
the decay rates of the resonators. Compared to the cou-
pling far off the degeneracy point, the coupling at the
switch setting condition is reduced by a factor of at least
5.5.

B. Tuning the coupling via the qubit population

So far, we have investigated how to tune the coupling
via the magnetic flux applied to the qubit loop. Next,
we show that the coupling is also controlled by the
qubit population as expected from Eq. (2). To this
end, we record the resonator transmission while driv-
ing the qubit with a strong excitation signal applied
through the input port of the other resonator. This
results in equal probabilities to find the qubit in the
ground and excited state, yielding 〈σ̂z〉=Tr [ρMσ̂z] = 0
where ρM = 1

2
(|g〉 〈g|+ |e〉 〈e|). As expected from Eq. (1)

we observe that the coupling between the two resonators
is then given by gAB independently of the applied flux,
see Fig. 2(c) and Fig. 2(f). To analyze the interplay of
flux- and qubit state dependence in more detail, we show
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the transmission at the frequency of the lower mode at
ω/2π=4.888GHz in Fig. 2(d) and Fig. 2(e). For the
qubit in the ground state, we observe increased trans-
mission for the ‘through’-measurement at the switch set-
ting conditions compared to flux values not matching a
switch setting condition or compared to the qubit be-
ing driven. This is in agreement with our expectation
that, when turning off the coupling, the signal incident
on one resonator cannot cross over to the other one. Con-
sistently, we observe reduced transmission at the switch
setting condition in the ‘cross’ measurement shown in
Fig. 2(e). Two dips are visible in the through transmis-
sion [Fig. 2(d)], when the qubit is in the ground state.
They originate from the differences in the linewidths and
also from a possible small detuning between the two res-
onators. The resonant structure close to the frequency
of the out-of-phase mode [cf. Fig. 2(a) and Fig. 2(b)], is
suppressed by approx. 15 dB and not relevant for the dis-
cussion presented here.
Next, we conduct time domain experiments making the
switchable coupling directly observable. To this end,
we set the flux bias corresponding to the switch setting
condition and apply a microwave probe pulse (length
τres =30µs) to one of the resonators at the frequency
ωres/2π=4.888GHz of the lower (ĉ−) mode. In addi-
tion, a 10µs long microwave driving pulse switches the
coupling between the resonators on for a period of 10µs
as shown in Fig. 3(a). The output signals of both res-
onators are detected in a time-resolved way using FPGA-
enhanced A/D-converters. Typical pairs of time traces
are shown in Fig. 3(b-d). After switching on the qubit
drive, the output signal level of the resonator where the
probe pulse is applied decreases, whereas it increases for
the other resonator. This result represents a direct ex-
perimental evidence for the expected switching behaviour
because it implies that the transfer of energy from one
into another resonator can be controlled via the qubit.
However, for an ideal coupler, one would expect that at
the switch setting condition the output signal level for
the ‘cross’-measurement is zero when the qubit is in the
ground state, even if the probe pulse is on. Nevertheless,
in our case a finite output power can be observed. We
attribute this to the complex mode structure of our par-
ticular device, cf. Fig. 2(a), Fig. 2(b) and the appendix.

To quantify the coupler performance, we define
the switching efficiency η≡ 1−noff

B /noff
A =1−Boff/Aoff .

Here and in the following, n
on/off
B and n

on/off
A denote

the resonator populations when the coupling is switched
on/off. Following input-output theory39, the ratio
noff
B /noff

A is equal to that of the quantities Boff and Aoff

indicated in Fig. 3(b). The switching efficiency η is most
intuitively understood by looking at its limiting cases.
For a perfect coupler (η=1), we find non

A =non
B when the

coupling is switched on and noff
A =n, noff

B =0 when the
coupling is switched off. Conversely, when the coupler is

not tunable at all (η=0), n
on/off
A =n

on/off
B regardless of

the coupler state. For intermediate values of η, a fraction
of (1− η)/(2− η) photons leaks into resonator B despite
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FIG. 3. (color online) (a) Pulse pattern for the time-domain
probe of the coupler. (b) Typical measured time traces of the
output signals of the two resonators. The qubit drive pulse
is strong enough to saturate the qubit. Blue: ‘through’ trans-
mission measurement. red: ‘cross’ transmission measurement.
The power levels are referred to the insides of the resonators,
i.e., they are scaled such that they are equal when the coupling
is ‘on’. This assumption is justified because gAB ≫ γA, γB.
(c) Same as (b) for intermediate qubit drive pulse power. (d)
Same as (b) for small drive pulse power. (e) Switching effi-
ciency η as a function of the mean resonator drive. (f) Total
resonator-resonator coupling as a function of the qubit drive
power (referenced to signal generator output) measured for
three different resonator populations. The points of the red
curve at −20 dBm, −24 dBm, −30 dBm are derived from the
data of (b), (c), (d), respectively.

the coupler being in the ’off’ state.

Next, we analyze η as a function of mean number of pho-
tons (calibrated via dispersive shift of the qubit; data
not shown) in the ĉ−-mode. The results are shown in
Fig. 3(e). For low photon numbers we find a switching
efficiency of η ≈ 0.62. Above approximately 1 photon, η
starts to decrease and vanishes for photon numbers ex-
ceeding 104. This behaviour is in agreement with the
disappearance of the Jaynes-Cummings-doublet due to a
quantum-to-classical transition observed in a transmon-
resonator system.41

Finally, we demonstrate that the resonator-resonator
coupling strength can also be controlled via the qubit
drive power, cf. Fig. 3(f). This scenario is of partic-
ular importance for the simulation of, e.g., the Bose-
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Hubbard-Hamiltonian where it is favorable to be able
to vary the coupling between adjacent resonators by an
easily controllable external parameter such as the qubit
drive power. For a given qubit drive pulse power and
mean resonator photon number, we find the correspond-
ing resonator-resonator coupling by comparing the out-
put powers of both resonators found in our measure-
ments with the output fields expected from input-output-
theory. For low resonator probe photon numbers and
weak qubit drive, the residual coupling between the res-
onators is determined as (0.62± 0.16)MHz, representing
a reduction of the coupling strength by one order of mag-
nitude as compared to the geometric coupling gAB. The
error bars in Fig. 3(f) account for small detunings be-
tween the resonator probe signal frequency and the fre-
quency of the lower switch mode ĉ−. For strong qubit
driving, the resonator-resonator coupling increases and
converges towards the geometric coupling gAB. We note
that for high qubit drive powers, the calculated coupling
rates are very sensitive to small uncertainties in the quan-
tities Aweak and Bweak [cf. Fig. 3(c) and Fig. 3(d)] since
the mean resonator population becomes independent of
the coupling rate gres as soon as gres ≫ γA, γB.

IV. CONCLUSIONS

In conclusion, we present a device allowing to tune the
coupling between two coplanar stripline resonators via a
flux qubit coupled to both of them. We characterize the
individual constituents and the switching behaviour by
means of spectroscopy and perform a quantitative anal-
ysis of the coupler performance using a time domain ex-
periment. From the latter experiments, we find a cou-
pling range of 0.62MHz≤ gres/2π≤ 8.4MHz. This corre-
sponds to a maximum switching efficiency of 62%. Im-
proved designs are promising candidates for applications
in future quantum information processing setups where
our coupler can be used for the controlled transfer of exci-
tations between a fast bus resonator, to which additional
qubits can be coupled, and a long-lived storage resonator
serving as quantum memory. Furthermore, even with its
current performance, our coupler may become a key ele-
ment in quantum simulation architectures such as chains
or networks of superconducting nonlinear resonators for
the simulation of the Bose-Hubbard-Hamiltonian.3,4,35–38
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APPENDIX: FIT OF THE SPECTROSCOPY

DATA

To determine the switch parameters, we fit the effective
switch Hamiltonian to our spectroscopy data. However,
as shown in Fig. 4, there exists an additional mode û at
ω3/2π=4.5GHz which couples to the qubit and therefore
needs to be taken into account. To increase precision, we
also include the third harmonic of this mode (denoted by
v̂, located at ω4/2π=13.1GHz) and the third harmonic
of the ĉ+-mode, denoted by ŵ, at ω5/2π=14.3GHz. The
third harmonic mode frequencies were found using two-
tone spectroscopy,2 see Fig. 4. We note that we do not
consider the second harmonics since they exhibit current
nodes at the qubit position and therefore do not couple
to the qubit.

magnitude (dB)
-5 0 5 10 15

4

8

12

16

w
/

2
p

 (G
H

z)

-4-8 0 4 8
dFext (mF0)

third harmonic v

third harmonic w

quantum switch modes c+, c-

additional mode u

^

^

^

^

^

qubit

FIG. 4. (color online) Two-tone spectroscopy of the sample.
The switch modes ĉ+, ĉ− and an additional mode û at 4.5GHz
can be identified. At ω4/2π=13.1GHz and ω5/2π=14.3GHz
the third harmonics v̂ and ŵ of these modes are observed.

The Hamiltonian taking the switch modes and all addi-
tional modes into account then reads

Ĥeff =
ε

2
σ̂z +

∆

2
σ̂x

+ ~ω+ ĉ†+ĉ+ + ~ω− ĉ†−ĉ−

+ ~g
√
2 σ̂z(ĉ

†
+ + ĉ+)

+ ~ω3 û†û+ ~g3 σ̂z(û
† + û)

+ ~ω4 v̂†v̂ + ~g4 σ̂z(v̂
† + v̂)

+ ~ω5 ŵ†ŵ + ~g5 σ̂z(ŵ
† + ŵ). (3)

From the fit, we get the following set of parameters:
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∆/h = 3.55GHz

Ip = 458 nA

ω+/2π = 4.9044GHz

ω−/2π = 4.888GHz

ω3/2π = 4.5GHz

ω4/2π = 13.1GHz

ω5/2π = 14.3GHz

g/2π = 96.7MHz

g3/2π = 775MHz

g4/2π = g3/2π ·
√

ω4

ω3

= 1323MHz

g5/2π = g/2π ·
√
2 ·

√

ω5

ω+

= 233MHz

gAB = 8.4MHz

Instead of using g4 and g5 as independent fit parame-
ters, we calculate the coupling of the third harmonics
using the ratio of the resonant frequencies of the third
and fundamental modes. For g5, the factor of

√
2 arises

from the fact that the coupling strength of the c+-mode
is given by

√
2 · g. Fig. 5 shows the two switch modes

together with the fit. As can be seen, experimental data
and theory correspond very well.

∗ Alexander.Baust@wmi.badw-muenchen.de
† A.B. and E.H. contributed equally to this work.
‡ Rudolf.Gross@wmi.badw-muenchen.de
1 A. Wallraff, D. I. Schuster, A. Blais, L. Frunzio, R.-S.
Huang, J. Majer, S. Kumar, S. M. Girvin, and R. J.
Schoelkopf, Nature 431, 162 (2004).

2 T. Niemczyk, F. Deppe, H. Huebl, E. P. Menzel,
F. Hocke, M. J. Schwarz, J. J. Garcia-Ripoll, D. Zueco,
T. Hummer, E. Solano, A. Marx, and R. Gross,
Nat Phys 6, 772 (2010).

3 A. A. Houck, H. E. Tureci, and J. Koch,
Nat Phys 8, 292 (2012).

4 J. Raftery, D. Sadri, S. Schmidt, H. E. Türeci, and A. A.
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