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The theory of current transport in a narrow superconducting strip is revisited taking the effect of
thermal fluctuations into account. The value of voltage drop across the sample is found as a function
of temperature (close to the transition temperature, T − Tc � Tc) and bias current J < Jc ( Jc
is the critical current calculated in the framework of the BCS approximation, neglecting thermal
fluctuations). It is shown that careful analysis of vortices crossing the strip results in considerable
increase of the activation energy.
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I. INTRODUCTION

The fundamental property of currents flowing dissipa-
tionless through superconducting components is the un-
derlying principle for the operation of numerous nano-
electronic devices. One component of particular inter-
est is a narrow superconducting strip (NSS), in which
thermal and quantum fluctuations can result in a resis-
tive state of the system. Understanding the role of such
fluctuations is a problem of great importance. Various
models have been proposed to explain the appearance of
non-zero resistances in NSSs and its temperature depen-
dence in the region of low temperatures (for a review see
Refs.1,2).

The role of thermal fluctuations responsible for en-
ergy dissipation, when currents flow through a one-
dimensional superconductor was considered for the first
time in the paper by Langer and Ambegaokar3 almost
fifty years ago. The publication of this paper has strongly
influenced all subsequent studies in this field, becom-
ing part of multiple monographs and handbooks on
superconductivity4–6.

It is necessary to mention that a “one-dimensional su-
perconductor” is de facto often a narrow strip with fi-
nite width L, much less than the Ginzburg-Landau co-
herence length ξGL (T ) =

√
πD/16Tτ (τ = 1 − T/Tc is

the reduced temperature and D is the electron diffusion
coefficient7 ). The energy dissipation in this system is
related to phase-slip processes, i.e., the process of vor-
tices/flux quanta crossing the strip. It is clear, that such
events cannot be realized in the framework of a purely
one-dimensional model. Indeed, the solution found in
Ref.3 shows that even when the current density flowing
through the one-dimensional superconductor reaches its
critical value Jc, the minimal value of the order param-

eter is (2/3)
1/2

∆BCS, while in order to perform a phase
slip event it should become zero at least in one point.

In this work we will resolve the mentioned paradox, de-

scribing the true mechanism of phase-slip events in NSS
and determining the corresponding value of the activa-
tion energy. We will demonstrate that the saddle point
solution of the Ginzburg-Landau (GL) equation for the

order parameter ∆̃ in presence of a fixed current J, pos-
sessing at least one vortex, exists only for weak enough
currents J < Jc1 = η (L/ξGL) Jc, (Jc is the critical cur-
rent of the strip, and η = 0.0312 is a small number which
will be found below). Under the expression “saddle point

solution” ∆̃ (x, y, J, r1, ..ri, .) we understand the solution
of the GL equation, which depends not only on the coor-
dinates x, y, and current J , but also on some set of pa-
rameters {ri} satisfying the extremal conditions for the
GL functional Fs:

∂

∂ri
Fs
[
∆̃ (x, y, J, r1, ..ri) , J

]
= 0. (1)

In the case under consideration, when one or several vor-
tices penetrate the system through its edge, those pa-
rameters can be chosen as the vortex center coordinates
(zeros of the order parameter function).

When the current J exceeds the value Jc1 the saddle
point solutions (1) leading to phase-slip events cease to
exist and the scenario described above does not hold any-
more. In that case another mechanism comes into play.
In order to explain this, let us recall that the minimum
of the GL free energy is reached for the ground state,
corresponding to a solution with spatially independent
modulus |∆gs (x, y) | = ∆0. When J < Jc1 the saddle
point solutions of the GL equations, including vortices,
exist with energies higher than the one of the ground
state. The transition from the ground-state to the saddle
point solution can be imagined as the motion of the or-
der parameter “vector” in Hilbert space, accompanied by
the motion of the “points”{ri} in the finite-dimensional
space of those parameters.

As we already said, in the case of “strong currents”
Jc1 < J < Jc the saddle point solutions of the GL equa-
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tions, possessing vortices, do not exist anymore. In this
interval the minimal activation energy is reached at some
function ∆v (x, y, J, r1) corresponding to the state with
a single vortex. We choose such a gauge (i.e. the form of
vector potential A) where the phase of the order param-
eter is determined by the vortex position only and the
boundary conditions at the strip edges. The modulus
of ∆v (x, y, J, r1) is an even function of the longitudinal
coordinate y in that case.

In order to determine the order parameter in the state
with vortices and subsequently to calculated the corre-
sponding value of free energy, we will use the variational
principle with respect to several free parameters in the
following. One of them is the distance r1 from the edge
of the strip to the center of a vortex (i.e. the coordinates
of the vortex center are x1 = −L/2 + r1 and y1 = 0, see
Fig. 1). We will look for the maximum value rext1 for
which the conditional extremum of the free energy func-
tional (i.e. the extremum at given value of the parameter
r1) still exists. If the vortex penetrates further into the
system, i.e., for r1 > rext1 , such extremum ceases to exist.
Let us recall that the order parameter of the current-

FIG. 1. Distribution of the current flowing in the strip in
presence of a vortex located in distance r1 from the edge of
the strip.

biased one-dimensional superconducting channel, which
corresponds to the saddle point solution of the GL equa-
tion does not have zeros at all3. When we consider a
strip with finite width instead of such a channel a lat-
eral penetration of a vortex is possible. This allows to
suppress the modulus of the order parameter to zero at
some point allowing a phase-slip event at this location.
It is clear that such a deformation of the order param-
eter on a small scale requires some excess energy. The
system partially compensates this energy loss by means
of a deformation of the order parameter distribution in

relatively large distances from the vortex along the strip
with respect to corresponding one-dimensional solution3.
This deformation is accounted for by means of the varia-
tional parameter y0. We derive the equations which allow
to determine the value of the parameter y0 maximizing
r1 (i.e. rext1 ) below. It is essential that the value of such
penetration depth rext1 itself does not appear explicitly in
the expression for the free energy of the system with the
intruded vortex, which is again accounted for by means
of y0. It becomes of the order of L for weak enough cur-
rents and of the order of the effective coherence length
ξGL(J) (see Eq. (25)) for the strong currents (see Fig.
2).

II. GENERALITIES

In order to calculate the value of the activation energy
δF for the current-biased NSS we start with the free en-
ergy functional Fs including both GL and the current-
field interaction terms (see Ref.7):

Fs = ν

∫
d3r

[
−τ |∆ (r) |2 +

πD
8T
|∂−∆ (r) |2 (2)

+
7ζ (3)

16π2T 2
|∆ (r) |4

]
+

1

c

∫
d3r

(
A (r)− c

2e
∇ϕ
)
· j∞.

Here ∆ (r) is the order parameter, A (r) is vector-
potential, ν = mpF /

(
2π2
)

is the density of states (pF
is the electron Fermi momentum), ∂− = ∂/∂r−2ieA/c,
ζ (x) is the Riemann zeta-function, j∞ = J/S, S is the
cross-section of the stripe, c is the speed of light, ϕ is
the phase of the order parameter. We use the system of
units where kB = 1 and ~ = 1.This functional allows to
write down the equations both for order parameter and
vector-potential coordinate dependencies.
Close to zero current value. Let us start with the sim-

plest case of zero current, j∞ = 0. In this case an infinite
number of saddle point solutions exist. If the saddle point
solution has only one zero corresponding to a single vor-
tex state, symmetry considerations show that the center
of this vortex is located at the central line of the strip
(see Fig. 3). Choosing the latter as the center of coor-
dinates one can find that the phase and modulus of the
order parameter are determined as:[

∂ϕ (x, y)

∂r

]2
=
π2

L2

1

sin2 (πx/L) + sinh2 (πy/L)
, (3)

|∆(x, y, y0)| = π∆0

L cosh πy
L

1√
(∂ϕ/∂r)

2
tanh

√
y2 + y20
2ξGL

,

(4)
where L is the width of the strip and y0 is the free param-
eter discussed at the end of the introduction (see also Fig.
2). The phase of the order parameter ϕ is the solution
of the two dimensional Laplace equation ∆ϕ = 0 with
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boundary conditions ∂ϕ/∂x|x=±L/2 = 0. The expression

(4), obtained by means of the variational procedure, coin-
cides with the corresponding solution of the GL equation
in the limit |y| � L.

FIG. 2. Distribution of the modulus of the order parameter
in the strip with flowing current disturbed in the presence of
a vortex: a) transversal distribution at y = 0; b) longitudinal
distribution at x = 0.

Substitution of Eqs. (3) and (4) to Eq. (2) gives the
value of the activation energy versus y0 :

δF (1) (y0)=4ν∆2
0τSξGL

{
2

3
− πy0

8ξGL
+

L

4πξGL

[
8π2 (y0/L)

2
+ 4ζ (2)− 1

6
+
π2y20
2L2

I0

(πy0
L

)]}
, (5)

with

I0 (α) =

∫ ∞
0

dx

cosh2 x

1

x2 + α2
.

The details of derivation of Eq. (5) are given in Appendix
A.

Minimization of Eq. (5) over y0 gives the value y0 =
0.47L/π; the corresponding value for the one-vortex con-
figuration activation energy is

δF (1) = 4ν∆2
0τSξGL

(
2

3
+ 0.058

L

ξGL

)
. (6)

An analogous consideration of the two vortices configu-
ration gives for δF (2) an answer similar to Eq. (6) with
the second term in brackets being twice smaller (see Ap-
pendix A). Further increase of the number of zeros in
the order parameter results in the decrease of the second
term in δF (n) by the factor n with respect to δF (1). In
the limit n→∞ the latter reaches the value

δF (∞) = 8ν∆2
0τSξGL/3 (7)

first obtained in Ref.3 in the frameworks of the one-
dimensional model.

The flow of any finite current through the strip re-
sults in the finiteness of the number of the saddle point
solutions. This number rapidly decreases with the cur-
rent growth and already at so small current as Jc1 =
η (L/ξGL) Jc the only saddle point solution with one vor-

FIG. 3. Positions of the zeros of the saddle point solutions
with one (a), two (b), etc, vortices. Here by means of {+,−}
are denoted the vorticities (phase factor changes by ±2π for
anticlock/clockwise circulation of the order parameter zeros).

tex remains. At higher currents the saddle point solu-
tions do not exist more, the critical points appear instead
of them.

One can see that at zero current, the solution of the GL
equation found in Ref.3 actually is the limiting one for
the multiple-vortex solutions obtained above. As a result



4

we can state that the point J = 0 is a singular point in
the current dependence of the activation energy. There-
fore the dependence of δF (∞)(J), obtained in Ref.3 for
small currents as the linear, in fact turns out to be sub-
stantially more complicated. It is worth to mention that
the multiplicity of saddle point solutions in the domain
of weak currents results in an increase of the possibilities
of the phase-slip events, i.e., to a noticeable increase of
the pre-exponential factor.

III. “WEAK” CURRENTS

Now we consider the most simple one-vortex state in
the region of weak currents J ≤ Jc1. The vortex, corre-

sponding to the saddle point solution, now slightly shifts
with respect to the central axis of the strip. Denoting
the distance between the axis (x = 0) and vortex cen-
ter as δ ( δ = L/2 − r1), we look for the solution of the
Ginzburg-Landau equation in the form

|∆| = ∆0 (Γ)Z1/2

(√
y2 + y20

)
Φ (x, y, δ) , (8)

with the functions

Φ2 (x, y, δ) =
sinh2 (πy/L) + sin2 (πx/L) + sin2 (πδ/L)− 2 cosh (πy/L) sin (πx/L) sin (πδ/L)

cosh2 (πy/L)
(9)

and

Z (y,Γ) = 1− 3L − 2

L

[
cosh

(
y
√

3L − 2

2ξGL

)]−2
. (10)

Here Γ = J/Jc, while ∆0 (Γ) is the order parameter of
the homogeneous ground state of the NSS carrying on the
current J , i.e. the asymptotic form of our ∆ (x, y,Γ, y0,δ)
far from the vortex, at y → ±∞. The latter can be

related to the BCS value ∆00 (τ) =
[
8π2T 2τ/ (7ζ (3))

]1/2
of the order parameter in the absence of current by means
of the relation

∆2
0 (Γ) = ∆2

00L (Γ) . (11)

The choice of the two former multipliers in the anzatz
(8) is based on the Langer-Ambegaokar solution of the
GL equation for current biased one-dimensional channel
distorted by the vortex presence (and accounting for its
evenness in y). The latter multiplier (see Eq. (9)) ac-
counts for the appearing in the case under consideration

asymmetry of the order parameter dependence on the
transversal coordinate and in the case of δ = 0 it leads to
the coincidence of Eq. (8) and Eqs. (4)-(3). Substitution
of the anzatz (8), (9), and (10) to the GL equations gives
the explicit value for L (Γ) :

L (Γ) =
1

3
+

2

3
sin

[
π

6
+

2

3
arcsin

√
1− Γ2

]
. (12)

The quantity y0 ∼ L, hence for |y| � L the modulus
of the order parameter |∆| (see Eq. (8)) should obey
the exact GL equations with the corresponding boundary
conditions at x = ±L/2. The function Φ is related to the
order parameter phase ϕ which satisfies the equation

(
∂ϕ (x, y)

∂r

)2

=
(π
L

)2 cos2 πδL
cosh2

(
πy
L

)
Φ2 (x, y, δ)

. (13)

Substitution of the Eqs. (8), (9), and (13) into Eq. (2)
leads to the expression for free energy

δFδ (y0) = 4ν∆2
0τSξGL

{
2

3
− πy0

8ξGL
− 16πξGLΓ2

27L

(
π

4a
+

L

8y0
+ I1 (a)

)
+

L

4πξGL

[
4a2

3
+

2

3
ζ (2)− 1

6
+
a2

2
I0 (a)

]
+
πΓ

3

√
2

3
sin (πδ/L)− L

4πξGL

[
2a2

3
+

1

3
ζ (2) + a2I0 (a)

]
sin2 (πδ/L)

}
, (14)

where

a2 =
π2y20
L2

+
32π2Γ2

27L2
ξ2GL

and

I1 (a) =

∫ ∞
0

dx

coshx

1

x2 + 4a2
.
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The details of transition from Eq. (2) to Eq. (14) are
presented in the Appendix A.

Let us recall, that the quantities {y0, δ} still remain
indefinite: their values one can determine from the con-
ditions of the GL functional δFδ (y0) extremum:

∂δFδ (y0)

∂y0
= 0, (15)

∂δFδ (y0)

∂δ
= 0 (16)

In result of solution of Eq. (16) the value δ can be
presented as the function of Γ :

sin
πδ

L
=

(
2

3

)3/2
π2ξGLΓ

L [2a2/3 + ζ (2) /3 + a2I0 (a)]
. (17)

What concerns the value y0 it is determined by Eqs. (15)
and (17). Corresponding equation is very cumbersome
and we do not present it here. Important, that it has the
solution only in the very narrow currents interval

Γ2 ≤ Γ2
c1 = 0.009

L2

ξ2GL

.

Finally, the value of the free energy δFδ in the critical
point J = Jc1 is

δFδ (τ, Jc1) =4ν∆2
0 (Γ) τSξGL

(
2

3
+ 0.054

L

ξGL

)
. (18)

Comparing the Eqs. (18) and (6) one can see that
the state with J = Jc1, when the only saddle point
solution with one vortex remains, energetically differs
from that one with J = 0 by very small quantity

0.004
(

L
ξGL

)
4ν∆2

0 (Γ) τSξGL.

IV. “STRONG” CURRENTS

Let us pass to discussion of the mechanism of energy
dissipation in the wide range of currents Jc1 � J < Jc,
when the GL equations do not have more any saddle
point solution. Let us suppose that through the edge
of the strip penetrates a single vortex and assume that
its center is located at some small distance r1(r1 � L)
from the edge, i.e. the vortex center coordinates are:
(−L/2 + r1, 0). Our goal is to obtain the maximal pos-
sible value of the “penetration length” r1 at which the
requirement of existence of the conditional extremum of
the functional (2) is still satisfied. In order to do this we
look for the phase and the modulus of the order parame-
ter in the form containing three free parameters: r1, y0, γ(

∂ϕ (x, y, r1)

∂r

)2

=
(π
L

)2 sin2 πr1
L

cosh4
(
πy
2L

) [Q(x, y)]
−1
, (19)

and

|∆ (x, y, r1, y0, γ)|=∆0 (Γ)
ln
[
1+ γL2

r21
Q1/2(x, y)

]
ln
(

2γL2

r21
+ 1
) Z

1
2 (Γ,y+y0)

(20)
The function

Q(x, y, r1) =
{

4 sinh2
(πy

2L

) [
cosh2 πy

2L
+ cos

πr1
L

sin
πx

L

]
+
[
sin

πx

L
+ cos

πr1
L

]2}[
cosh

(πy
2L

)]−4
,

(21)

is the result of direct calculation of the phase ϕ in the
one-vortex state of the strip (see Eq. (19)). The function
|∆ (x, y)| approaches to the solution of the GL equation
in the range |y| � L. Both Eqs. (19) and (20) satisfy
the boundary conditions for the order parameter and its
derivatives at the edge of the stripe and at infinity. What
concerns the variational parameter γ it can be found from
the condition

∂δF (r1, y0, γ)

∂γ
= 0. (22)

It determines the shape of the order parameter and, cor-
respondingly, the contribution to the free energy from
the domain close to the vortex |y| . L. Its introduction
allows to improve the variational approximation in this
region. Corresponding expression turns to be of the order
of 1 and does not appear explicitly in the final expression
for the free energy, it is why we do not present it here.

The current conservation law leads to the next expres-
sion for the essential part of the vector potential A

A(0)
y (y) =

A∞∆2
0 (Γ)

〈|∆ (x, y) |2〉x
, (23)

where 〈....〉x means the averaging over the transverse co-
ordinate. The value of the vector potential at infinity
A∞ is determined by the current density:

J

S
= −πνe

2D
T

∆2
0 (Γ)A∞. (24)

Replacing the expressions (19) , (20) , and (23) to the GL
functional (2) and calculating the integral one can find
the value of excess free energy δFs of the strip with the
penetrated vortex with respect to its the ground state
with the fixed current. The requirement of existence of
the conditional extremum determines the value y0 :

y0 (Γ) =
2ξGLYL√

3L − 2
, (25)

tanhYL (Γ) = 2

[
(1− L)

4− 3L+
√
L (16− 15L)

]1/2
.
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The main steps of this calculus are presented in the Ap-
pendix B. The obtained results allow us to write down the

expression for the activation energy in the whole region
of “strong currents” Jc1 � J < Jc :

δF (τ, J) = 4ν∆2
0 (Γ) τSξGL

√
(3L − 2)

{
1− tanhYL

6L
[4 + (3L − 2) tanhYL (1 + tanhYL)]

−
√

2 (1− L)

3L − 2

[
arctan

√
3L − 2

2 (1− L)
− arctan

(√
3L − 2

2 (1− L)
tanhYL

)]}
. (26)

It is seen that the difference between Eq. (26) and the ex-
pression for the activation energy of the one-dimensional
superconducting channel carrying current J (the main re-
sult of Ref.3) consists of the contribution occurring due
to the nonzero value of the parameter YL, i.e. due to
existence of the conditional extremum of the free energy
functional at the distance y0 6= 0. Let us stress that the
activation energy δF depends on the geometry of a sam-
ple, which here is assumed as a strip. The increase of the

energy barrier in the Arrenius law with respect to the
result of Ref.3 is related to the necessity of the vortex
penetration in a sample at the moment of the phase slip
event.

The expression for activation energy δF (LA) (τ, J) of
the one-dimensional superconducting channel found in
Ref.3 can be easily reproduced from Eq. (26) just putting
YL = 0 (what follows from Eq. (25)). One can compare
the result of our careful consideration of the vortex pen-
etration mechanisms (26) with the latter:

δF (τ, J)− δF (LA) (τ, J)

δF (LA) (τ, J)
=

[
3L−2
6L

tanhYL
cosh2 YL

− 2 tanhYL
3L +

√
2(1−L)
3L−2 arctan

(√
3L−2
2(1−L) tanhYL

)]
[

2
3L −

√
2(1−L)
3L−2 arctan

√
3L−2
2(1−L)

] . (27)

.

For the currents larger than Jc1 but still much smaller
than Jc the saddle point solutions of GL equations con-
sidered in Ref.3 do not exist more. Nevertheless one can
see that the difference between the free energy of the
conditional extremum and that one calculated by Langer
and Ambegaokar (see Eq. (27)) turns to be propor-

tional only to (J/Jc)
2
, i.e. the result of Ref.3 remains

valid. The situation considerably changes when the cur-
rent approaches its critical value, J → Jc(Γ → 1). Here

tanhYL → 1/
√

3; cosh2 YL → 3/2; 1 + 2−1 cosh−2 YL −
L tanh2 YL/ [2 (1− L)] → 1; 3L − 2 → 23/2

√
1− Γ/

√
3,

and

δF (LA) (τ,Γ→ 1) =
4

15

√
2√
3
ντ∆2

00 (τ)SξGL

(
1− Γ2

)5/4
,

(28)
while

δF (τ,Γ→ 1) =
23/2

39/4
ντ∆2

00 (τ)SξGL

(
1− Γ2

)3/4
. (29)

The relative difference of the free energies Eq. (27) in

this case diverges:

δF (τ, J)− δF (LA) (τ, J)

δF (LA) (τ, J)

∣∣∣∣
J→Jc

=
5Jc

6
√
J2
c − J2

, (30)

i.e. the height of the barrier in Arrenius law turns out
to be parametrically larger than predicted in Ref.3. The
behavior of Eq. (27) as the function of Γ in the interval
[0, 0.9] is presented in Fig. 4.

V. PRE-EXPONENTIAL FACTOR

In order to obtain the exact value of the pre-
exponential factor Ω for phase slip events one should
have in possession the expression for the effective ac-
tion of superconducting strip containing vortices. In the
Ref.8 was proposed a general procedure which, in the
regime of thermal fluctuations, is reduced to solution of
the spectral problem for linear operator corresponding
to the action at its saddle point. The difficulty of the
problem under consideration consists in the fact that nor
microscopic action operator is known nor saddle point
(for currents Jc1 < J) exists. Nevertheless, the knowl-
edge of action would allow one to get the precise value
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of Ω at least for weak currents J < Jc1, while for strong
currents one could believe that change of the saddle point
to a singular point would not strongly effect on the value
of pre-exponential factor. In light of the above said the
evaluations of Ω in both papers3,9 seem doubtful: use of
the time-dependent GL equation below Tc as today is well
known cannot be justified, unless in gapless regime10.

The main contribution to the average time between
two subsequent phase-slip events is related to the exis-
tence of the “zero-mode” (see Ref.8,9). In the case under
consideration the size of the vortex is determined by the
transversal size L of the strip. The vortices which slip
on the distances larger than L can be considered as inde-
pendent. It is why the main factor determining the pre-
exponential one is the ratio of the transversal size L to
the strip length L: L/L. Another coefficient which forms
the pre-exponential factor is the characteristic “crossing
time” ∆tcross = L/vcross of the strip by the vortex, mov-
ing with the velocity12:

vcross =
cJ
√
τ

4SHc2σn
, (31)

where σn is the conductivity of the strip in its normal
phase. Finally, accounting for Arrenius factor, one finds
the characteristic time ∆t between two phase slipping
events

∆t =
L

L

(
L

vcross

)
exp

(
δF

kBT

)
. (32)

The average voltage V at the strip is related to the av-
erage time interval ∆t between the voltage jumps by the
Josephson relation11: V = π~/ (e∆t) . Corresponding re-
sistance of the strip is

R

R0
=

π~c
√
τ

4eHc2L2
exp

[
−δF (τ,Γ)

kBT

]
, (33)

FIG. 4. Excess activation energy related to the account for
the true mechanism of the vortices penetration in the strip as
the function of flowing current.

where R0 = L/ (σnS) is the normal resistance of the
strip. It is necessary to mention that the used above ap-
proximation of the independent phase slips is valid only
(according to Eq. (32) ) when δF & kBT.

VI. CONCLUSIONS

We have demonstrated that considering only the lon-
gitudinal spatial dependence of the order parameter in
narrow superconducting strips carrying finite current (see
Ref.3) is not sufficient to describe the properties of its re-
sistive state correctly. Taking the transversal coordinate
into account when calculating the saddle point solutions
of the GL equation turns out to be essential. Namely,
the value of activation energy in the Arrenius law for the
resistance of a narrow superconducting channel differs al-
ready for relatively weak currents from the value obtained
by simply using the difference of the free energy of such
a saddle point and the ground state energy. The mech-
anism for phase-slip events turns out to be much more
sophisticated then the one described in Ref.3.

Already at weak currents (J < Jc1) a sequence of the
saddle points appears, which is characterized by the num-
ber n of zeros of the order parameter along the trans-
verse coordinate. The energy of such state equals to that
one found by Langer and Ambegaokar3 only in the limit
n → ∞, when the system carries no current. One could
say that the state of the strip in the current-free case
is singular. The number n of saddle points rapidly de-
creases with the growth of the current. It reaches n = 1
when the current has the value Jc1 = 0.0312 (L/ξ) Jc: at
this point only a stationary state remains.

When J > Jc1, stationary solutions of the GL equa-
tions with fixed current and a vortex in the strip do not
exist. Instead one needs to look for a critical point, cor-
responding to the existence of a specific conditional ex-
tremum of the GL functional. These conditions are: the
current, J , is fixed and the distance between the vortex
center and the strip edge is maximal. The energy of such
a state turns out to be larger than the activation energy
δF (LA) (τ, J) obtained in Ref.3. The normalized differ-
ence (30) increases with growth of the current and when
the latter approaches to the critical value Jc the former
diverges (see Fig. 4).

Experimentally, the discrepancy between the theoreti-
cal prediction of Ref.3 and the mechanism proposed here
can be detected by analyzing the current dependence
of the resistance close to Jc. The predicted dependence
of logR(I) with exponent 5/4 in Ref.3, should trans-
form into a weaker one with exponent 3/4 in the region
J → Jc. Some experimental papers indicated an unex-
pected decrease of the resistance in the regime of strong
currents (see Ref.4,13,14). This long standing enigma can
potentially be resoled by the above analysis. A recent
numerical study narrow superconducting channels using
the time-dependent GL equation in the strong current
regime also indicated that the critical exponent of the



8

activation energy is of the order of 0.7 for the widths
L ∼ ξGL (see Ref.15).
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Appendix A

In the process of derivation of Eq. (5) we used the
following integrals:

1

L

∫ L/2

−L/2

dx

sin2 πx
L +sinh2 πy

L

=
2

sinh
(
2πy
L

) , (A1)

1

L

∫ L/2

−L/2

sin2 (πx/L) dx

sin2 πx
L +sinh2 πy

L

=
exp

(−πy
L

)
cosh πy

L

, (A2)

1

L

∫ L/2

−L/2

sin2 (πx/L) dx[
sin2 πx

L +sinh2 πy
L

]2 =
1

sinh
(
2πy
L

)
cosh2

(
πy
L

) ,
1

L

∫ L/2

−L/2

sin4 (πx/L) dx[
sin2 πx

L +sinh2 πy
L

]3 =
3

8

1

sinh
(
πy
L

)
cosh5

(
πy
L

) ,
for y > 0.

Using these relations in the Eqs . (3) and (4) one finds

〈
∂|∆ (x, y) |2

∂r

〉
x

= ∆2
0

( π2L)2 tanh2

√
y2 + y20
2ξGL

1− exp (−4πy/L)

sinh 2πy
L cosh2 πy

L

+
y2

8 (y2 + y20)

1 + tanh2 (πy/L)

ξ2GL cosh4
√
y2+y20
2ξGL

+
( π

2L

)2
tanh2

(√
y2 + y20
2ξGL

)
tanh2 (πy/L)

sinh (2πy/L) cosh2 (πy/L)
[3 + 4 exp (−2πy/L) + exp (−4πy/L)]

+
π

2ξGLL

y√
y2 + y20

tanh

(√
y2 + y20
2ξGL

)
tanh (πy/L)

cosh2 (πy/L) cosh2
[√

y2 + y20/ (2ξGL)
]
 ,

for y > 0. Here we introduced the symbol of averaging
over the transverse coordinate:

〈(...)〉x =
1

L

∫ L/2

−L/2
dx (...) .

Next we present the explicit integrals of the type (A1)
and (A2) over y :∫ ∞

0

(
y2+y20

)
tanh2 πy

L

sinh 2πy
L cosh2 πy

L

[
3+4 exp

(
−2πy

L

)
+exp

(
−4πy

L

)]
dy

=
2L

π

[
y20

(
5

3
− 2 ln 2

)
+

(
L

π

)2(
5

6
ζ (2)− 5

4
ζ (3)

)
− 1

3

]
.

∫ ∞
0

dy

cosh4
√
y2+y20
2ξGL

y2

y2 + y20
=

4

3
ξGL −

π

2
y0,

y0 � ξGL.
In the two vortex state with zero current, instead of

Eqs . (3) and (4) one finds[
∂ϕ (x, y)

∂r

]2
=

4π2

L2

1

cos2 2πx
L + sinh2 2πy

L

,

|∆| = ∆0 tanh

√
y2 + y20
2ξGL

φ,

φ =
1

cosh 2πy
L

[
cos2

2πx

L
+ sinh2 2πy

L

]1/2
All following considerations are similar to those in a sin-
gle vortex state. In the domain of weak currents the cur-
rent conservation law gives in the main approximation
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the expression for the vector potential

A=

0,
A∞∆2

0 (Γ)〈
|∆|2

〉
x

, 0

 , Γ=
J

Jc
=−3

√
6 |e|A∞ξGL.

(A3)
Next important moment is the calculus of the integrals
of the type

〈
Φ−2 (x, y)

〉
x
. One finds

Ib =
1

L

∫ L/2

−L/2

dx

sinh2 πy
L + sin2 πx

L + sin2 πδ
L − 2 sin πx

L sin πδ
L cosh πy

L

=−4
z1z2

[
(z3+z4)−2 cosh 2πy

L −4 sin2 πδ
L

]
+(z1+z2)

[
(1−z3z4)+4z3z4 sin2 πδ

L +2z3z4 cosh 2πy
L −(z3+z4)

]
(z1−z3) (z2 − z3) (z1 − z4) (z2 − z4)

, (A4)

where

z1,2 = exp

(
2πy

L

)[
1± 2i sin

πδ

L
− 2 sin2 πδ

L

]
,

z3,4 = exp

(
−2πy

L

)[
1± 2i sin

πδ

L
− 2 sin2 πδ

L

]
.

The direct and combersome integration of Eq. (A4) re-
sults in

Ib =
2

sinh 2πy
L

[
1 +

4 sin2 πδ
L sinh2 πy

L

sinh2 2πy
L + 4 sin2 πδ

L

]
.

Now, using the Eqs. (A3)-(A4), and the definition (10)
one can find the necessary values:

〈[
∂ϕ (x, y)

∂r

]2
|∆|2

〉
x

=
π2

4L2ξ2GL

cos2 πδL
cosh2 πy

L

(
y2+y20+

32

27
Γ2ξ2GL

)
,

(A5)

〈
∂|∆|2

∂x

〉
x

=
( π

2L

)2 ∆2
0 (Γ)

ξ2GL cosh2 πy
L

(
y2 + y20 +

32

27
Γ2ξ2GL

)
·
[

1

2
exp

(
−2πy

L

)
+ sin2

(
πδ

L

)
sinh

(πy
L

)
exp

(
−πy
L

)]
,

(A6)

〈
∂|∆|2

∂y

〉
x

=
Z (y,Γ) ∆2

0 (Γ)

2L2

{
L2

4Z2

(
∂Z

∂y

)2 [
1 + tanh2 πy

L

]
+
πL

Z

(
∂Z

∂y

)
tanh πy

L

cosh2 πy
L

+π2 tanh
(
πy
L

)
cosh4

(
πy
L

) (3

4
+ exp

(
−2πy

L

)
+

1

4
exp

(
−4πy

L

))}
y > 0. (A7)

In order to obtain the value of the activation energy from
Eq. (2) one has to learn how to integrate the Eqs. (A5)-
(A6) over y. We demonstrate here some of them:∫ ∞

0

dy

Z (y,Γ)

(
∂Z

∂y

)2

=
4

3ξGL
− π

2ξ2GL

√
y20 +

32

27
Γ2ξ2GL,

(A8)

∫ ∞
0

dy

Z (y,Γ) cosh2 πy
L

(
∂Z

∂y

)2

=
L

πξ2GL

[
1− π2

L2

(
y20 +

32

27
Γ2ξ2GL

)
I2

(
π

2L

√
y20 +

32

27
Γ2ξ2GL

)]
,



10∫ ∞
0

〈
∂|∆|2

∂x

〉
x

dy =
∆2

0 (Γ)

8

L

πξ2GL

{
3

4
ζ (3)− 1

2
ζ (2) +

π2

L2
(2 ln 2− 1)

(
y20 +

32

27
Γ2ξ2GL

)
+ sin2 (πδ/L)

[
ζ (2)− 3

4
ζ (3) +

2π2

L2
(1− ln 2)

(
y20 +

32

27
Γ2ξ2GL

)]}
,

I1 (α) =

∫ ∞
0

dx

coshx

1

x2 + 4α2
=
π

2

[
π

2α cos 2α
+ 2

∞∑
n=0

(−1)
n

4α2 − π2
(
n+ 1

2

)2
]
,

I2 (α) =

∫ ∞
0

dx

cosh2 x

1

(x2 + 4α2)
=

1

2

{
π

2α cos2 2α
−
∞∑
n=0

4π2
(
n+ 1

2

)
4α2 − π2

(
n+ 1

2

)2
}
,

α > 0.

Appendix B

Let us notice that if the function ∆̃ (x, y) is that one,
for which the conditional extremum of the GL functional
Eq. (2) is reached, the value of free energy in this state
takes a specially simple form:

Fs=−ν
∫
d3r

[
7ζ (3)

16π2T 2
|∆ (r) |4+

1

c

(
A− c

2e
∇ϕ
)
· j∞

]
.

(B1)
This expression enables us to determine the value of pa-
rameter r1. In order to do this we calculate the value of
the GL free energy Eq. (B1) using Eqs. (19)-(20). In
result one finds the equation

ln2

(
2γL2

r21

)
tanhY

cosh2 Y − (3L − 2) /L
= const, (B2)

where Y = y0
√

3L − 2/ (2ξGL) and the value of the con-
stant is independent on y0. The maximal value of r1 is

reached when Y satisfies the condition of extremum:{
∂

∂Y

[
tanhY

cosh2 Y − (3L − 2) /L

]}
Y=YL

= 0. (B3)

Eq. (B3) can be solved:

tanhYL = 2

[
1− L

4− 3L+
√
L (16− 15L)

]1/2
. (B4)

One can see, that our assumption that the in Eq. (B2)
the value of the constant is independent on y0 is con-
firmed (the found value YL is independent on it). Now
we can use the found value

y0 =
2ξGL√
3L − 2

arctanh

[
4 (1− L)

4− 3L+
√
L (16− 15L)

]1/2
to perform the final integration in Eq. (B1), what results
in

δFs = 4ν∆2
0 (Γ) τSξGL

√
3L − 2

{
1− tanhYL

6L
[4 + (3L − 2) tanhYL (1 + tanhYL)]

−
√

2 (1− L)

3L − 2

[
arctan

√
3L − 2

2 (1− L)
− arctan

(√
3L − 2

2 (1− L)
tanhYL

)]}
.
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