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The mesoscale allows a new probe of spin glass dynamics. Because of the spin glasses lower
critical dimension dl > 2, the growth of the correlation length ξ(t, T ) can change the nature of
the spin glass state at a crossover time tco when ξ(tco, T ) = ℓ, a minimum characteristic sample
length (i.e. film thickness for thin films and crystallite size for bulk samples). For thin films, and
times t < tco such that ξ(t, T ) < ℓ, conventional three dimensional dynamics are observed. When
t > tco, a crossover to d = 2 behavior takes place. The parallel correlation length, associated with
a Tg = 0 transition, increases in time from the saturated value of the perpendicular correlation
length ℓ to an equilibrium value of the parallel correlation length proportional to T−ν . This results
in a pancake-like correlated state, with a thickness ℓ and a temperature dependent in-plane radius
that increases with decreasing temperature. Activated dynamics are associated with these states.
Measurements on Cu:Mn thin films are analyzed quantitatively within this framework. We extract
a temperature dependent activation energy from a fit to the frequency dependence of the dynamic
susceptibility. The extrapolated temperature at which the activation energy would become large
is close to the extrapolated glass transition temperature from ac susceptibility measurements. All
known relevant experimental data are consistent with this approach. For polycrystalline materials,
there is a distribution of length scales P(ℓ). For sufficiently broad distributions, a logarithmic time
dependence is derived for the time decay of the thermoremanent magnetization MTRM(t, T ) using
an approach originally derived by Ma. Properties dependent upon an effective waiting time teffw are
derived that are consistent with experiment, and further measurements are suggested.

PACS numbers: 71.23.Cq, 75.10.Nr, 75.40.Gb, 75.50.Lk

I. INTRODUCTION

The time evolution of non-linear dynamical systems
depend strongly on initial conditions. For spin glasses,
Zotev et al. [1] showed that the aging properties of a
spin-glass depend sensitively on the cooling protocol as-
sociated with arrival at the final measurement tempera-
ture. This behavior was explored at some length in the
work of Rodriguez et al. [2]. They demonstrated the re-
lationship between the cooling protocol and an effective
waiting time teffw .

Another initial condition to which attention has been
drawn [3,4] is the relation of the magnitude of the spin
glass correlation length ξ(t, T ) to a representative sam-
ple dimension, ℓ. In a physical system prepared at times
sufficiently short so that ξ(t, T ) < ℓ, the system behaves
according to (spatial) dimension d = 3 dynamics. How-
ever, for preparation times greater than a crossover time
tco, defined through ξ(tco, T ) = ℓ, the effective dimen-
sionality is reduced. This reduction is of great signifi-
cance for spin glasses in that the lower critical dimension
dl > 2 [5,6].

The advent of the mesoscale [7] allows these properties
to be probed in real systems, allowing in principle the
determination of the transverse correlation length expo-
nent ν. This paper will be concerned with thin films, of
the order of 20 - 30 Å thickness, and polycrystalline sam-
ples where the crystallite size is in the mesoscale range.
The experimental results for thin films form a remark-

able series of papers, beginning with the Michigan State
University group [8, 9] and culminating with their col-
laborators at Uppsala University [10, 11]. Though these
papers are now nearly twenty five years old, they nev-
ertheless hold promise for new studies that will further
elucidate spin glass dynamics in reduced dimensionality.
The results for polycrystalline materials are more recent,
and illustrate the origin of the “end of aging” dynami-
cally.
Our analysis is based on theoretical calculations [12 -

14] for the growth of the spin glass correlation length with
time, ξ(t, T ), and its experimental observation [15] for
d = 3. In d = 2, the parallel (in plane) spin glass correla-
tion length grows rather slowly with time as calculated by
Rieger et al. [16], then saturates at an equilibrium value
proportional to T−ν with the exponent ν = 3.6±0.02 for
Ising spin glasses [17], and ν = 0.9 ± 0.2 for Heisenberg
spin glasses [18].
For short measurement times, the spin glass correla-

tion length ξ(t, T ) is less than the film thickness, and
the dynamics can be regarded as appropriate to d = 3.
Under these conditions, it is found [12 - 14] that ξ(t, T )
grows as,

ξ(t, T )

a0
= c1

(

t

τ0

)c2·(T/Tg)

, (1)

where a0 is the average distance between magnetic spins,
c1 and c2 are material-dependent constants, Tg is the
spin glass transition temperature, and τ0 is the average
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exchange time τ0 ≈ ~/(kBTg). The exponent c2 is found
to be very small, of the order of 0.12 < c2 < 0.17, de-
pending upon the system [3]. As a consequence, ξ(t, T )
increases very slowly at long times, but it can reach thin
film thicknesses within experimental time scales provided
the temperature T is not too far below the glass temper-
ature Tg. Thus, as we shall show, the growth of ξ(t, T ) to
a film thickness ℓ = 15.5 nm (the length scale of Guch-
hait et al. [4]) for Cu:Mn (13.5 at.%) takes 5× 105 sec at
T = 0.83 Tg, and the age of the universe for T = 0.5 Tg;
while it takes only 5 msec for ℓ = 3 nm (the length scale
of Sandlund et al. [10]) at T = 0.56 Tg.
At a given temperature, the d = 3 correlation length

ξ(t, T ) grows to the film thickness ℓ at a time we designate
as the crossover time tco, changing the dimension from
d = 3 to d = 2. At that point in time, the d = 2 parallel

correlation length, ξ‖(tco, T ), equals the perpendicular

correlation length ξ⊥(tco, T ) = ℓ [19]. If the temperature
is subsequently lowered, ξ⊥(t, T ) is fixed at ℓ while the
parallel (d = 2) correlation length grows slowly [16] until

it reaches its equilibrium value ξ
‖
eq(T ) ∝ T−ν.

The number of correlated spins, encompassed by the
perpendicular and parallel correlation lengths, ξ⊥(t, T )
and ξ‖(t, T ), respectively, generates a distribution of free
energy barrier heights as a function of the Hamming dis-
tance between states, up to a maximum ∆max(T ) [3]. As
shown in [20], the ultrametric relationship between states
[21] separated by the barriers results in a temperature
dependence for the barrier heights that causes a rapid
growth (or diminution) as the temperature is lowered (or
raised). Hence, in experiments where the temperature
is changed during the experimental protocol, the initial
temperature controls the subsequent dynamics. We term
this temperature the “quench temperature”, Tq.
Because the states are ultrametrically related, with

state density increasing exponentially with increasing
Hamming distance, the maximum barrier height reached
after time t at temperature T , ∆max(t, T ), effectively con-
trols the dynamics [4, 20]. We relate ∆max(T ) to ξ(T ) in
analogy to d = 3 [15] through,

∆max(T )

kB Tg
=

1

c2

[

ln

(

ξ(t, T )

a0

)

− ln c1

]

. (2)

In order to compare seamlessly with expressions ap-
propriate to three dimensions, we define an effective cor-
relation length ξeff(t, T ) for thin films by,

ξeff(t, T ) =
{

ξ⊥(t, T ) · [ξ‖(t, T )]2
}

1

3

. (3)

The d = 2 correlation length, ξ‖(t, T ), is presumed to
grow on the time scale of experiment to its equilibrium

value ξ
‖
eq(T ), so that for t ≥ tco, ξ

eff(t ≥ tco, T ) ≡ ξeff(T )
is only a function of temperature T , remembering, of

course, that ξ
‖
eq(T ) remains temperature dependent, pro-

portional to T−ν.
Under controlled experimental conditions, the temper-

ature is quenched to an initial value, Tq. At that initial

temperature, ξ(t, Tq) grows with time until t = tco when
ξ(tco, Tq) = ℓ, the sample thickness. After tco, the sys-
tem is frozen in a d = 2 state, with the largest barrier set
entirely by the sample’s physical dimensions,

∆max(T = Tq)

kBTg
=

1

c2

[

ln

(

ℓ

a0

)

− ln c1

]

, (4)

with both perpendicular and parallel correlation lengths
ξ⊥(t ≥ tco, Tq) = ξ‖(t ≥ tco, Tq) = ℓ. The only role of the
quench temperature Tq is the rate at which ξ(t, Tq) grows
to ℓ from Eq. (1). The fact that Eq. (4) holds for differ-
ent Tq arises from the self-similarity of states at different
temperatures, found experimentally over accessible tem-
perature ranges in Refs. [4] and [20].
When the temperature is lowered from Tq, ξ

‖(t, T )

grows to ξ
‖
eq(T ), proportional to T−ν . This leads to,

ξeff(tco, T ) =
{

ℓ · [ξ‖eq(T )]
2
}

1

3

, (5)

and, concomitantly, through Eq. (2),

∆max(T )

kBTg
=

1

c2

[

ln

(

ξeff(tco, T )

a0

)

− ln c1

]

. (6)

The combination of a maximum barrier height and ex-
ponential increase of the state occupancy with Hamming
distance (and hence barrier height [22]) means that the
dynamics after tco will be Arrhenius-like, with an expo-
nent ∆max(T ) that is itself temperature dependent.
The temperature dependence of ∆max(T ) has a com-

ponent in addition to the temperature dependence of ξ
‖
eq.

This arises from the temperature dependence of the Ham-
ming distance arising from the ultrametric tree for the
free energy states, associated with the temperature de-
pendence of the Edward-Anderson overlap qEA(T ) [15].
This has been measured explicitly through the temper-
ature cycling experiments of Joh et al. [15]. In Sec. III
of this paper, we shall assume that the increase in Ham-
ming distance is associated with the correlation length
ξeff(tco, T ) through Eq. (5). A new interpretation of
the experiments of Kenning et al. [8, 9] and Sandlund
et al. [10] and Granberg et al. [11] on thin Cu:Mn films
will be based on this analysis.
In the latter two papers, the dynamic susceptibil-

ity χ(τ) was measured at different observations times τ
(τ = 1/ω) for thin film sandwiches of Cu:Mn 13.5 at.%,
of thickness 30 Å and 20 Å, respectively, over a range
of temperatures from the bulk value of the spin glass
temperature Tg to low temperatures. The authors ex-
trapolated the effective spin glass transition temperature
T eff
g → 0 as the film thicknesses were reduced. What is

new in our analysis is the interpretation that what was
observed was the response of the correlated spins within
an effective volume [ξeff(tco, T )]

3 through the arguments
leading up to Eqs. (5) and (6).
This picture was invoked in a previous publication [4]

to explain the time dependence of zero-field cooled mag-
netization (ZFC) of (thicker) film of a-Ge:Mn [23], but
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at the quench temperature Tq. This paper extends their
treatment to (thinner) films of Cu:Mn [8 - 11], and to
temperatures below and above Tq.

For polycrystalline spin glasses with random crystal-
lite length scales, we shall argue that the RKKY ex-
change coupling is cut off by finite crystallite length
scales. This occurs even though the electrical conductiv-
ity generally is somewhat insensitive to polycrystallinity.
The reason lies in the nature of the RKKY interaction
itself. Its long range and oscillatory nature is associ-
ated with the sharpness of the Fermi surface. However,
as Kasuya calculates [24], electron scattering will change
the long range cos(2kF rij)/[kF rij ]

3 range dependence to
r0/[(r

2
0 − r2ij)

2+4r20r
2
ij ], where kF is the Fermi wave vec-

tor, rij is the distance between spins i and j, and r0 is
a characteristic scattering length that we take to be of
the order of the crystallite size. The lack of an oscilla-
tory character removes frustration, a requirement for spin
glass behavior (in addition to randomness), and thus ef-
fectively decouples the individual spin glass grains.

In analogy with the previous discussion, this will limit
the growth of ξ(t, T ) to a size characteristic of a particular
spin glass crystallite. The distribution of crystallite sizes
leads to a distribution of maximum barrier heights ∆max

according to (4). The overall dynamics for a distribution
of activation energies can be calculated using an expres-
sion originally introduced by Ma [25], and more generally
by Amir et al. [26]. One finds a long time logarithmic de-
cay for the thermoremanent magnetization MTRM(t, T ),
first observed for spin glasses by Kenning et al. [27], but
known for many other glassy systems [e.g. 28, 29]. In ad-
dition, this model can be used to explain the very large
times for overlap of the MTRM(t, T ) decay curves at in-
creasing effective waiting times, teffw , and the dependence
of the crossover time, tco on teffw , as observed in [27].

The next section will be a brief review of the dynam-
ical spin glass properties to be explored in the paper in
order to give the reader not familiar with spin glass nota-
tion sufficient background to access subsequent sections.
Sec. III will treat the dynamics of uniform spin glass
thin films, showing that the crossover to d = 2 behavior
leads to activated dynamics with a temperature depen-
dent maximum barrier height as discussed above. Sec. IV
addresses polycrystalline samples for random crystallite
length scales, spanning a sufficiently broad range for the
analysis of Ma [25] and Amir et al. [26] to be relevant.
A logarithmic time decay for MTRM(t, T ) is obtained,
in agreement with the experiments of Ref. [27]. Sec. V
analyzes the overlap of the very long time behavior of
MTRM(t, T ) for different teffw , and Sec. VI the dependence
of tco on teffw . Sec. VII summarizes our results followed
by our many acknowledgments in Sec. VIII.

II. BRIEF REVIEW OF DYNAMICAL SPIN

GLASS PROPERTIES

The memory effect, typical of glasses in general, and
of spin glasses in particular, arises from the cooling of
the sample temperature from above the freezing temper-
ature, referred to as the spin glass temperature Tg, to
the measurement temperature Tq (which is here same as
the quench temperature as defined before). It is assumed
that the time to reach Tq is short, (but see [2, 30] for dis-
cussions of the effect of the cooling protocol). The time
spent at Tq before the magnetic field H is changed is
termed the waiting time tw. The magnetic field change,
either from H = 0 to the applied field H , leading to
zero-field cooled (ZFC) dynamics; or from the applied
field H to H = 0, leading to thermoremanent magnetiza-
tion (TRM) dynamics; causes a change in the magnetic
moment, the magnitude and time dependence of which
depends upon tw. The system exhibits, almost always,
behavior characterized by an effective waiting time, teffw ,
larger than tw, depending upon the cooling protocol [2,
30]. The effective waiting time, teffw , is typically extracted
from the position of the peak in the relaxation function

S(t) = −
1

H

dM(t, T )

d ln t
, (7)

where M(t, T ) is either the ZFC or TRM magnetiza-
tion [31].
A physical interpretation of this phenomenon was in-

troduced in Ref. [20] in terms of barrier hopping between
degenerate free energy phase space states. The tempera-
ture dependence of a specific barrier was measured, and
shown to increase rapidly as the temperature is lowered
within a narrow temperature range of ∆T ≈ 0.08 K for
Ag:Mn (2.6 at. %). For temperatures above Tq within
this narrow temperature range, Tq + ∆T > T > Tq,
small increases in temperature reduce barrier heights sig-
nificantly, allowing diffusion to proceed more rapidly be-
tween states representative of those present at the mea-
suring temperature Tq. Hence, this effective aging time,
teffw , as derived from the peak position of S(t), is larger
than the actual waiting time tw, the longer the cooling
protocol finds itself within the narrow temperature range.
The work of Rodriguez et al. [2,] and Parker et al. [30],

examined the dependence of teffw on the cooling path
taken to reach Tq for Cu:Mn (6 at. %) (“Heisenberg-
like”); and CdCr1.7In0.3S4, Au:Fe (8 at. %), and
Fe0.5Mn0.5TiO3 (all “Ising-like”), respectively. While
their interpretations are different, they provided clear ev-
idence that the cooling path to reach Tq alters the magni-
tude of teffw , even for tw = 0. For this reason, the experi-
ments of Kenning et al. [27] were conducted using the fast
cooling protocols of Ref. [2], where the temperature after
the quench is not allowed to rise above Tq. This keeps
the occupied phase space states within the same set of
barriers appropriate to the effective aging time teffw at Tq,
or, equivalently, within the same spatial region spanned
by ξ(teffw , Tq), minimizing teffw for a given tw. Using this
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protocol, one can safely work at longer times t ≫ teffw
to explore the consequences of ξ(t, T ) growing to sam-
ple dimensions. The end of aging is then associated with
ξ(t, Tq) ≈ ℓ at a fixed temperature Tq less than Tg at
macroscopic length scales.
However, for mesoscopic length scales the form of

Eq. (1) changes the growth dynamics. Thus, for
ℓ ∼ 3 nm, as in the work of Sandlund et al. [10],
ξ(t, Tq) = ℓ at 5 ms for Tq = 37.5 K (Tg = 66.8 K).
This results in dynamics accessible within laboratory
time scales, as will be discussed in the following section.
It is also important to understand the remarkable de-

pendence of the growth rate of ξ(t, T ) on temperature
from Eq. (1). Using the values for c1 and c2 from the
literature [4, 20], one finds that ξ(t, T ) grows very slowly
for T significantly less than Tg, while for temperatures in
the vicinity of Tg the growth is relatively rapid. Thus, as
long as the temperature is significantly below Tg, ξ(t, T )
will never reach ℓ on laboratory time scales, and spin
glass dynamics are appropriate to d = 3. However, in
the vicinity of Tg, the reverse is true. For example,
Ref. [4] finds ξ(t, T ) = ℓ on laboratory time scales for
15.5 nm films of amorphous Ge:Mn in the narrow tem-
perature range 0.83 < T/Tg < 0.92 (Tg = 24 K). For
T < 20 K (T/Tg = 0.83), the time required for ξ(t, T ) = ℓ
exceeds 4 × 105 sec (reaching 3 × 106 sec at 19 K, with
T/Tg = 0.79), while for T > 22 K (T/Tg = 0.92), the
time for ξ(t, T ) to reach ℓ is of the order of 104 sec, a
more accessible experimental time range. This limits dy-
namical measurement in practice to a rather narrow tem-
perature range.
In summary, in order to prepare the spin glass sample

for the purposes of extraction of dynamics in the time
range where ξ(t, T ) ≈ ℓ, it is necessary to work with as
short a teffw as possible, requiring a rapid cooling protocol
wherein the approach of temperature to the measuring
temperature Tq never rises above Tq after quench, and
either select a narrow temperature range below Tg for
which ξ(t, Tq) can approach ℓ for macroscopic samples,
or work with materials of mesoscale dimensions for which
ξ(t, Tq) can approach ℓ over a wide temperature range.

III. SPIN GLASS DYNAMICS FOR UNIFORM

THIN FILMS

As discussed in Ref. [4], when the spin glass correlation
length, ξ(t, T ), grows from nucleation at t = 0 to the
thickness ℓ of a uniform thin film at t = tco, the system
crosses over from dimension d = 3 to d = 2 dynamical
behavior. The latter is associated with a bulk Tg = 0
by virtue of the lower critical dimension for spin glasses
dl > 2 [5, 6].
The earliest work on finite size effects on the spin

glass transition were performed on thin films of Cu:Mn
(7 at. %) at a single effective time scale (inversely pro-
portional to the temperature scan rate) in Refs. [8, 9].
In that work, the spin glass thickness was changed in

order to change the spatial dimension from d = 3 to
d = 2 in order to probe the spin glass lower critical di-
mension dl. The spin glass transition temperature Tg
was measured over a range of thicknesses, ranging from
2 nm to 1000 nm. Extrapolations were introduced in
order to demonstrate that Tg → 0 as one approached
d = 2. In subsequent work, a broad spectrum of ob-
servation times τ was extracted for 30 Å thin films of
Cu:Mn (13.5 at. %) from the dynamic susceptibility χ(τ)
measured as a function of temperature at frequencies
ω = 1/τ for 10−5 < τ < 104 sec in Ref. [10]; while
thin films of thickness 20 Å were probed over time scales
of 10−4 < τ < 103 sec in Ref. [11] in a similar manner. A
generalized Arrhenius law with a zero-temperature crit-
ical point was extracted for the very thin films. This
was interpreted in terms of “...a crossover from three-
to two-dimensional spin-glass dynamics when one spatial
dimension is gradually diminished to a finite size” [11].

However, as noted in Ref. [4], for times t > tco (when
the transition from d = 3 to d = 2 dynamics has taken
place) there will still remain correlated spins in the spin
glass state, different from the interpretation of [8, 9] and
[10, 11]. There will exist a maximum barrier height be-
tween metastable states for these states, the largest of
which is given by Eq. (4) while at the quench tempera-
ture Tq. Because the degeneracy of the ultrametric space
increases exponentially with Hamming distance, and be-
cause the barrier heights ∆ are linearly proportional to
the Hamming distance [22], dynamical properties will be
determined through the largest barrier height ∆max given
by Eq. (4). This description remains until an external pa-
rameter is changed (e.g. temperature or magnetic field).

The data of Sandlund et al. [10] and Granberg
et al. [11] for χ(τ) versus temperature at different ob-
servation times τ allow a determination of the tempera-
ture dependence of ∆max(T ). In d = 3, the temperature
dependence of a specific barrier can be determined [20],
with ∆max(T ) increasing rapidly as the temperature is
lowered from the quench temperature, as discussed in the
Introduction. A fit to the measured data, when extrapo-
lated to lower temperatures, produced very large values
of ∆max(T ) that were well outside the experimentally ac-
cessible time window. This was speculated to lead to the
pure states of Parisi [32]. For d = 2, we shall show from
the data of Ref. [10] that the correlated states also ex-
hibit rapid barrier height growth as the temperature is
lowered from the quench temperature Tq.

For temperatures accessed below the quench tempera-
ture, the increase of ∆max(T ) with decreasing tempera-
ture arises from two sources for thin films, as discussed in
the Introduction. The first is associated with the growth
of the Hamming distance as the temperature is lowered.
The second is the growth in real space of the parallel
correlation length ξ‖(t, T ). This length grows slowly in

time [16] from an initial value of ξ
‖
eq = ℓ at Tq, to an
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FIG. 1: The temperatures for which χ(τ ) peaks are extracted
from the plots of χ(τ ) versus temperature at different obser-
vation times τ , where τ = ω−1, from Figs. 1(a) in Refs. 10
and 11, for Cu:Mn (13.5 at.%) films of 30 Å and 20 Å, respec-
tively. The points at the higher peak temperatures (shorter
τ ) are less certain because of the broader experimental curves
in this time regime.

equilibrium value [19],

ξ‖eq(T ) = ℓ ·

(

T

Tq

)−ν

, (8)

for T < Tq. In the absence of explicit cooling times from

Refs. [10, 11], it is impossible to know if ξ‖(t, T ) had

reached its equilibrium value ξ
‖
eq(T ) within the time scale

of the experiments. For purposes of analysis, we shall as-
sume that sufficient time had elapsed in the experiments

of Refs. [10, 11] for ξ‖(t, T ) to reach ξ
‖
eq(T ) as given by

Eq. (8). Experiments sensitive to the growth of ξ‖(t, T )
with time t is an area ripe for further investigation.
From the above arguments, we hypothesize that for

decreases in temperature, the increase of ∆max(T ) arises
from an increase in ∆max(T ) from Eqs. (5) and (6) plus
an increase in the Hamming distance [20]. For increases
in temperature, our hypothesis is different. The longitu-
dinal correction length is pinned at the film thickness ℓ,
effectively pinning the transverse correlation length also
at ℓ [19]. The only change of ∆max(T ) with tempera-
ture is through the decrease in the Hamming distance,
starting from the value ∆max(T = Tq) from Eq. (4).
In principle, the difference in the temperature depen-

dences of ∆max(T ) for temperatures below and above the

quench temperature allows for the extraction of ξ
‖
eq(T ),

and thus a direct measurement of the d = 2 critical ex-
ponent ν from Eq. (8).
We have employed the above analysis to extract

∆max(T ) from the experiments of Sandlund et al. [10]
and Granberg et al. [11]. Their experiments measured
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FIG. 2: The temperature dependent activation energy of the
highest barrier, ∆max(T ) from Eq. (9) for the 30 Å Cu:Mn
(13.5 at.%) film, plotted against the peak temperature for
χ(τ ), using the data in Fig. 1. To guide the eye, a best fit to
a linear dependence is plotted on the same graph. It is seen
that there is a significant departure from a linear relationship
between the values of ∆max(T ) and the peak temperatures
for χ(τ ) at the larger values of ∆max(T ) (lower peak temper-
atures).

the temperature dependence of the dynamic susceptibil-
ity χ(τ) for different observation times τ for thin Cu:Mn
(13.5 at. %) films of thicknesses 30 Å and 20 Å, respec-
tively. The observation times τ(T ) ranged over nine and
seven orders of magnitude, respectively, in their respec-
tive Figs. 1(a). We extract ∆max(T ) from their measure-
ments through the Arrhenius relation,

1

τ(T )
=

1

τ0
exp

(

−
∆max(T )

kBT

)

. (9)

To extract parameters appropriate to their measure-
ments, we use an average Mn spin separation appropri-
ate to a concentration of 13.5 at. % of a0 = 4.45 Å, and
Tg = 66.8 K. We make use of the values for c1 and c2 for
Cu:Mn (6 at. %) extracted by Joh et al. [15]: c1 = 0.653
and c2 = 0.169, on the assumption that these parameters
are relatively insensitive to Mn concentration. Scaling
1/τ0 from the 6 at. % Mn concentration of Joh et al. [15]
to the 13.5 at. % Mn concentration of Sandlund et al. [10]
and Granberg et al. [11] leads to 1/τ0 = 9.2×1012 sec−1.
The values for ∆max(T = Tq) from Eq. (4) can be

extracted through a fit to the data of Refs. [10, 11] for the
two film thicknesses using the above parameters. We find
∆max(T = Tq) = 923 K for ℓ = 30 Å film, and ∆max(T =

Tq) = 727 K for ℓ = 20 Å film. As stated above, these
values are set by the film thickness, and are independent
of temperature. The quench temperatures for these two
films were not given in Refs. [10, 11], so we extract them
from a fit of Eq. (4) to the peak temperature of the zero-
field susceptibility χ(τ) for different observation times
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FIG. 3: The temperature dependent activation energy of the
highest barrier, ∆max(T ) from Eq. (9) for the 20 Å Cu:Mn
(13.5 at.%) film, plotted against the peak temperature for
χ(τ ), using the data in Fig. 1. To guide the eye, a best fit
to a linear dependence is plotted on the same graph. Some
curvature could be imputed to the experimental points, but
the data are too uncertain to claim anything else than a lin-
ear relationship between the values of ∆max(T ) and the peak
temperatures for χ(τ ).

τ from the data exhibited in Figs. 1(a), respectively, of
Refs. [10] and [11]. Fig. 1 plots the temperatures of the
peak of the measured χ(τ) for each listed value of τ , as
best we can extract them from the published figures. We
find Tq = 37.5 K for the 30 Å film from the data of

Ref. [10]; and Tq = 30 K for the 20 Å film from Ref. [11].
The temperature dependent ∆max(T ) can be extracted

by applying Eq. (9) to the temperature of the peak of
χ(τ) for each characteristic time τ , as exhibited in Fig. 1.
We plot ∆max(T ) in Fig. 2 for the 30 Å film, and in Fig. 3
for the 20 Å film. The difference of the dependence of
∆max(T ) on temperature for the two films is striking.
For the 30 Å film, ∆max(T ) increases more rapidly than
linearly with temperature as the temperature is lowered
(exhibited by the departure from the “best fit to a linear
relationship” line on Fig. 2). For the 20 Å film, the re-
lationship of ∆max(T ) to temperature is approximately
linear (exhibited by the “best fit to a linear relationship”
line on Fig. 3).
The data from which we have to work is rather sparse,

but taking finite differences from Figs. 2 and 3, we plot
the values for δ∆max(T )/δT against ∆max(T ) for both
film thicknesses in Fig. 4. The data for the 30 Å film in
Fig. 4(a) is suggestive of a relationship similar to that
found for bulk spin glasses [20] in that −δ∆max(T )/δT
appears to rise rather rapidly with increasing ∆max(T ).
The solid line is a fit to Eq. (10) below. The data for
δ∆max(T )/δT for the 20 Å film in Fig. 4(b) is so scat-
tered that it is difficult to draw any analytic conclusion
except that −δ∆max(T )/δT does appear to increase with
increasing ∆max(T ).
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FIG. 4: Plots of δ∆max(T )/δT against ∆max(T ) extracted (a)
from the data points for the 30 Å film from Fig. 2 and (b)
from the data points for the 20 Å film from Fig. 3. The solid
line for the 30 Å film in Fig. 4(a) is a fit of the 30 Å data
to an exponential dependence of ∂∆max(T )/∂T on ∆max(T ),
Eq. 10, following the reasoning of Ref. 20. The scatter for the
20 Å film in Fig. 4(b) obviates any fit.

Following the approach of Ref. 20, we fit the extracted
data for ∂∆max(T )/∂T for the 30 Å film to an exponential
form:

−
1

kB

∂∆max(T )

∂T
= α exp

[

β∆max(T )

kBTg

]

. (10)

In order to reduce the number of unknown constants, we
make use of the value β = 0.2 from Ref. 20. We find
α = 2.18 from a fit of Eq. (10) to the data in Fig. 4(a).
The data exhibit some scatter around the fitted line, with
the greatest scatter at the smaller values of ∆max(T )
that occur at the higher temperatures. The experimental
curves for the dynamic susceptibility χ(τ) from Fig. 1(a)
in [10] are broadest at the higher temperatures, so an ac-
curate extraction of the temperature of the peak is more
difficult in this region of temperature [and concomitantly
for ∆max(T ) at the smaller values]. The value of α (2.18)
is approximately four times larger than the value of 0.5
from [20]. Noting that α in Eq. (10) is a scale factor rep-
resenting the size of the barrier heights ∆(T ), and that
the Mn concentration to which we are fitting for Cu:Mn
alloys is 13.5 at.% in Ref. [10], while the Mn concen-
tration of Ref. [20] is 2.6 at.%, one would expect a ratio
of approximately five from the concentration difference
alone, as compared to four for the increase in α. The
closeness of this scaling adds weight to our interpreta-
tion.
Integration of Eq. (10) leads to barrier heights increas-

ing ever more rapidly as the temperature is lowered. The
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FIG. 5: Integration of the exponential form for the depen-
dence of ∂∆max(T )/∂T on ∆max(T ) for 30 Å film, fitted to
the experimental data (solid line portion), as a function of
(T − T ∗)/Tg, over the full range of ∆max(T )/(kBTg) and
(T − T ∗)/Tg using Eq. 11. The × denotes the value of ∆max

at quench from Eq. 4.

finite thickness of a thin film would mitigate against an
infinite barrier height, but the fit in Fig. 4(a) to Eq. (10)
certainly suggests much higher barriers for temperatures
below those at the lowest experimentally accessible tem-
perature. Integration of Eq. (10) leads to,

∆max(T )

kBTg
= −

1

β
ln

[

αβ (T − T ∗)

Tg

]

, for T > T ∗, (11)

where in principle ∆max(T ) would diverge at T = T ∗.
The fitted values, α = 2.18 and β = 0.2 for the

30 Å film, are used to plot the magnitude of ∆max(T−T
∗)

vs the temperature difference dT = T −T ∗ from Eq. (11)
in Fig. 5. The dashed curve is Eq. (11), with the solid
portion the extracted values of ∆max(T ). The cross is
at the position of the quench temperature Tq [equiva-
lently, ∆max(T = Tq) from Eq. (4)]. The extrapolated
divergence of ∆max(T ) is predicted to take place at a
(T − T ∗)/Tg ≈ 0.06 below the temperature of the lowest
peak in [10], 31.5 K, leading to an extrapolated diver-
gence of ∆max(T ) at T ≈ 27.8 K. The lowest experi-
mental peak temperature is associated with τ = 104 sec.
Going to any lower temperature, according to Eq. (11)
plotted in Fig. 5, would lead to values of τ well beyond
any experimental measurement range for χ(τ).
As added evidence, Sandlund et al. [10] note that

“there is a pronounced cooling rate dependence of the
FC susceptibilities, with the knee shifting towards lower
temperatures with decreasing cooling rate.” Associating
the decrease in the cooling rate with an increase in τ
is consistent with the growth of ∆max(T ) as the tem-
perature is lowered. The extrapolated value of ∆max(T )
would represent an infinite time scale for τ , that would
lead to a projected knee in the field cooled (FC) magnetic

susceptibility MFC/H at T = T ∗ ≈ 27.8 K in the τ → ∞

limit.
The results for the 20 Å film are quite different. Fig. 3,

the plot of the ∆max(T ) vs temperature, is approximately
linear, displaying no noticeable increase beyond linear at
the lower temperatures, and the scatter in Fig. 4(b) is
so great that no analytic fit is possible. We suspect the
difference of behavior from the 30 Å film is the relatively
small number of correlated spins even for times t > tco
when ξ(tco, Tq) = ℓ. With the average distance between

Mn spins equal to 4.45 Å, a spherical correlation volume
with radius ℓ/2 would contain only of the order of 50
spins in the 20 Å film, so that one might expect large
spatial fluctuations for dynamical properties. This could
be the origin of the scatter in Fig. 4(b). The 30 Å film
contains of the order of 160 spins within a correlation
volume at t = tco [ξ(t = tco, Tq) = ℓ] and can be thought
of as a precursor to bulk. It would be of interest to probe
the dynamical properties of films with thicknesses in the
vicinity of 20 Å to 30 Å to probe the approach to bulk
behavior as a function of the number of correlated spins.
It should be noted that the interpretations of Refs. [10]

and [11] differ from our own, in that they associate their
observed time scales with a generalized Arrhenius law us-
ing droplet scaling theory [33] for two-dimensional spin-
glass systems. Their analysis, on the assumption of a
zero temperature transition (Eq. 3 of Ref. [10]), is based
on,

ln(τ/τ0) ∝ T
−(1+ψν)
f , (12)

with Tf their “freezing temperature” associated with the
maximum in the time-dependent susceptibility, and ψν =
1.6± 0.2. Our own analysis would yield a form more like
that for critical dynamics [20]. Inserting (11) into (9), we
find,

τ

τ0
= αβ

(

T − T ∗

Tg

)−1/[β·(T/Tg)]

. (13)

This expression is of the usual critical exponent form [34],
with zν = 1/[β · (T/Tg)]. Using our value for β = 0.20,
and taking T equal to the quench temperature 37.5 K,
we find zν ≈ 9. Further, from Fig. 5, we find a value
for T ∗ = 27.8 K. The former is in rather remarkable
agreement with experiments on three dimensional spin
glasses [35, 36], and the latter with the value extracted
using a critical slowing down analysis in [10] of Tg = 26 K.
Our analysis, based spin glass correlations after ξ(t, T )

has reached the film thickness ℓ, appears consistent with
all known relevant thin film and bulk experimental data.

IV. ORIGIN OF THE LOGARITHMIC TIME

DEPENDENCE FOR TRM DECAY

In a polycrystalline sample, there is a distribution of
crystallite sizes. As argued in the Introduction, this will
introduce scattering into the integral responsible for the
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RKKY interaction, the oscillatory character of which is
responsible for frustration that leads to spin glass be-
havior in dilute magnetic systems. The scatter changes
the long range oscillations to a uniform coupling falling
off faster than the RKKY interaction [24]. This removes
frustration and effectively decouples the spin glass states
in the grains from one another, even though the electrical
conductivity remains high.

The distribution of crystallite sizes, and hence of length
scales ℓ, introduces dynamics that are more complex than
for the uniform thin films treated in Sec. III. We denote
the distribution of crystallite sizes through a probability
distribution P(ℓ), where ℓ is the length scale associated
with a given crystallite. There exists, therefore, a maxi-
mum barrier height ∆max(T = Tq) associated with each
crystallite of length scale ℓ from Eq. (4), that we desig-
nate as ∆max(ℓ). All of the experiments treated in this
section will be at constant measuring temperature Tq, so
that Eq. (4) uniquely determines ∆max(ℓ).

The distribution of length scales ℓ, governed by a prob-
ability density P(ℓ), leads from (4) to a probability den-
sity for ∆max(ℓ) given by,

P(∆max) = [∂∆max(ℓ)/∂ℓ]
−1P(ℓ). (14)

The purpose of this Section is to derive the long time
dynamical properties for a polycrystalline spin glass. An
example is the work of Kenning et al. [27] who displayed
a logarithmic time dependence for the decay of the ther-
moremanent magnetization, MTRM(t, Tq) at long decay
times. We shall derive this property on the assumption
that the measurement time scale is sufficiently long that
each crystallite has crossed over into a low dimensional
state. That is, we assume that for each crystallite there
is a crossover time tℓco, defined by ξ(tℓco, Tq) = ℓ, and that
the measurement time t > tℓco, for all ℓ.

The time development of MTRM(t, T ) can then be de-
duced as follows. Upon removal of the magnetic field, all
barriers are reduced in height by the change in Zeeman
energy, EZ [37] (see the next section for more detail).
The states occupied between barriers from 0 < ∆ < EZ
are instantaneously emptied into the lowest energy Zee-
man state (in our case, M = 0 for TRM decay). The
remaining states then decay to the M = 0 state by tran-
sitions over the remaining barriers of height 0 < ∆ <
∆max(ℓ) − EZ . For small changes in magnetic field, we
can neglect EZ with respect to ∆max(ℓ), so that the effec-
tive decay rate for a particle of size ℓ will be set by the
largest barrier ∆max(ℓ). For waiting times short com-
pared to the time for ξ(t, Tq) to reach ℓ (we shall see
that this condition is violated in some cases in Sec. VI),
as the measurement time t increases, the TRM decay
will cross over from conventional TRM decay to expo-
nential for a given particle of length scale ℓ at measure-
ment times t > tℓco. We shall refer to the magnetization
remaining at that time in the particle of length scale ℓ as
M ℓ

TRM(t > tℓco, Tq). This leads to a size-dependent decay
rate 1/τℓ for M

ℓ
TRM(t > tℓco, Tq) for a particular crystal-

lite of length scale ℓ, where by generalizing Eq. (9),

1

τℓ
=

(

1

τ0

)

exp

[

−
∆max(ℓ)

kBTq

]

. (15)

For a particle of length scale ℓ, M ℓ
TRM(t > tℓco, Tq) will

then decay according to,

M ℓ
TRM(t > tℓco, Tq) =M ℓ

TRM(tℓco, Tq) exp(−t/τℓ). (16)

A polycrystalline sample consists of particles of length
scale ℓ distributed through a probability density P(ℓ).
This requires that (16) with (15) be averaged over
P(ℓ). To make the average tractable, we shall replace
M ℓ

TRM(tℓco, Tq) with an average MTRM(tco, Tq) that will
have to be extracted from experiment. We are then left
with integrals of the sort

∫ ∞

0

exp(−t/τℓ)P(ℓ) dℓ. (17)

To make the evaluation more transparent, we use (14)
with (15) to transform from P(ℓ) to P(∆). The integrals
are then of the form, in an obvious notation,

∫ ∞

0

exp(−t/τ∆)P(∆) d∆. (18)

This class of integrals were first evaluated in this context
by Ma [25]. For a flat distribution of barrier heights of
width much greater than kBTq, (18) can be transformed
to,

∫ ∞

kBTq ln(t/τ0)

P(∆) d∆. (19)

We take P(∆) to be flat with width D between ∆0 −

(D/2) and ∆0+(D/2), where ∆0 is the mean value of ∆ in
P(∆), and we assume D ≫ kBTq, so that P(∆) = 1/D.
Ma [25] evaluates this integral by noting that it is the
area under P(∆) to the right of (Tq/Tg) ln(t/τ0). The
part to the left of (Tq/Tg) ln(t/τ0) has already decayed.
Then the integral (19) is equal to,

1

D

[

∆0 +
D

2
− kBTq ln

(

t

τ0

)]

. (20)

Using (16) and (20), we now have,

MTRM(t, Tq) =

MTRM(tco, Tq)

D

[

∆0 +
D

2
− kBTq ln

(

t

τ0

)]

, (21)

where t > tℓco for all ℓ. Taking the derivative with respect
to ln t generates,

∂MTRM(t, Tq)

∂ ln t
= −B T (r)

q MTRM(tco, Tq), (22)

where B is a constant containing the many factors as-

sociated with (22), T
(r)
q = Tq/Tg, and MTRM(tco, Tq) is
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FIG. 6: Reproduction of Fig. 1 from Ref. 27. Fig. 6(a) are the
decay curves for teffw equal to 7, 17.5, 25, 27, 35, 44, and 110
sec. In the inset, the relaxation curves S(t) for each curve are
used to determine teffw . Fig. 6(b) displays the subtraction of
the teffw = 7 sec TRM decay curve from the other TRM curves.
The MTRM(t) curve for teffw = 17.5 sec begins to overlap the
MTRM(t) curve for teffw = 7 sec at a time tov ≈ 6000 sec, while
the curve for teffw = 44 sec overlaps at a tov ∼ 105 sec, and by
extrapolation the curve for teffw = 110 sec overlaps at a time
tov ∼ 109 sec. The inset displays the relaxation curve S(t)
for the teffw = 7 sec curve, The curve becomes horizontal at
t ∼ 103 sec, remaining flat over two orders of magnitude in
time, indicating a crossover to a logarithmic time dependence
for the decay of MTRM(t).

an average value of MTRM(t, Tq) over the various times
tℓco (equivalently, an average ofM ℓ

TRM(tℓco, Tq) over parti-
cle dimensions ℓ). Experimentally,MTRM(tco, Tq) will be
taken to be the value of the TRM when the decay crosses
over to ln t behavior.

The experimental data for S(t) for Cu:Mn (6 at. %),

at Tq = 26 K [T
(r)
q = 0.83], was reported in Ref. [27]

and their Fig. 1 is reproduced here as our Fig. 6. The
inset in Fig. 6(b) for the shortest effective waiting time
(7 sec) clearly displays a crossover to logarithmic behav-
ior at approximately 1,000 sec, and continues for at least
two orders of magnitude in time. Using the parameters
from Joh et al. [3], one can calculate the value of the cor-
relation length ξ(t, Tq) to test the assumptions leading
to Eq. (15). At t = 103 sec, ξ(103, 26 K) ≈ 60 nm. At
t = 105 sec, ξ(105, 26 K) ≈ 130 nm. Rodriguez et al. [2]

estimate crystallite sizes ranging from 80 nm to 300 nm,
with an average size of approximately 100 nm. Thus,
in the time regime contained in the inset of Fig. 6(b),
where logarithmic time behavior is exhibited, the cor-
relation length is comparable to the length scale of the
Cu:Mn crystallites, a condition required for the use of
Eq. (15) for 1/τℓ. The broad range of crystallite length
scales probed by ξ(t, T ) over this time scale is consistent
with the approximations contained in the evaluation of
Eq. (19).
It should be noted that logarithmic behavior at long

times is not limited to spin glasses. For example, Amir
et al. [26] find a rather “general mechanism for slow re-
laxations and aging, which predicts logarithmic relax-
ations ...”, and, in an extensive analysis of electron glass
dynamics, find many examples of ln t behavior. In that
sense Eq. (22) may be a specific manifestation of a more
general relationship for glassy systems.

V. VERY LONG TIME BEHAVIOR OF

MTRM(t,T)

The previous section discussed the long time behav-
ior for polycrystalline spin glasses after crossover to
d < 3, i.e. when the correlation length has reached
the length scale of the crystallites. Fig. 6(b) (repro-
duced from Fig. 1(b) of [27]) exhibits the subtraction
of the teffw = 7 sec TRM decay curve for the fast cool-
ing protocol from those at longer effective waiting times,
17.5 ≤ teffw ≤ 44 sec, all utilizing the fast cooling protocol,
for polycrystalline Cu:Mn (6 at.%). The striking feature
of these differences is the very long time for the various
curves to crossover to the teffw = 7 sec value. For example,
the long time portion of the teffw = 17.5 sec decay curve
overlaps the long time portion of the teffw = 7 sec decay
curve at an overlap time, tov, of ≈ 6, 000 sec, whereas the
teffw = 44 sec and the teffw = 110 sec curves do not over-
lap at long times with the teffw = 7 sec decay curve until
tov ∼ 105 sec and, by inference, 109 sec, respectively.
We suggest that this striking dependence of the long

time behavior of the TRM decay upon teffw is the
result of the dependence of the initial magnitude of
MTRM(tov, Tq = 0.83Tg) on the effective waiting time,
teffw . The highest barrier surmounted during a waiting
time teffw is given by Eq. (9) that we rewrite as,

∆(teffw , Tq) = kBTq(ln t
eff
w − ln τ0). (23)

When the magnetic field is removed, measurements by
Chu et al. [36], along with other observations of a similar
nature by Vincent et al. [37], suggest that a change in
magnetic field reduces the barriers in the initially occu-
pied field cooled magnetization manifold, MFC, by the
change in Zeeman energy EZ . This reduction can be
thought of conceptually as diffusion between states of
constant MFC through intermediate states of lower Zee-
man energy [38]. States within the MFC manifold with
barriers less than the Zeeman energy change are emptied
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FIG. 7: A logarithmic plot of the time for theMTRM(t) curves
to overlap the MTRM(t) curve for teffw = 7 sec, as a function
of their respective teffw .

instantaneously into the M = 0 manifold [35, 36]. The
Zeeman energy change is given by,

EZ = Ns χFCH
2, (24)

where Ns is the number of spins within a correlation
length that participate in barrier hopping (we shall set
Ns = [ξ(teffw , Tq)/a0]

3), and χFC is the magnetic suscep-
tibility per spin obtained from the total value of the field
cooled magnetic susceptibilityMFC/H divided by the to-
tal number of spins N .
From Eqs. (23) and (24), the larger teffw , the larger

the thermoremanent magnetization, MTRM(t = 0, Tq),
remaining when the magnetic field is removed. That is,
the fractional change EZ/∆(teffw , Tq) diminishes as teffw
increases. This is seen explicitly in Fig. 6 where the ini-
tial value of MTRM(t = 0, Tq = 0.83 Tg) increases as
teffw increases. Hence, in order for the long time decay
portions of MTRM(t, Tq) to become comparable in mag-
nitude for differing values of teffw , the offset in the initial
values of MTRM(t=0, T ) must be overcome through the
time decay of MTRM(t, Tq). But the very slow decay of
MTRM(t, Tq) for t > tco, proportional to ln(t/τ0) from
(21), means that this difference will take very long times,
exponentially increasing with increasing teffw . This depen-
dence is exhibited in Fig. 7 where tov is plotted against
teffw .

VI. EFFECTIVE WAITING TIME

DEPENDENCE OF tco

It was pointed in the Introduction that the crossover
time to logarithmic time decay for MTRM(t, Tq) depends
on the effective waiting time, teffw . This is caused by the
growth of ξ(t, T ) during the waiting time. If, for ex-
ample, ξ(t, T ) were to grow during teffw to overlap some

of the smaller crystallites, then when the magnetic field
is removed, the smaller crystallites portion of P(ℓ) (i.e.
those with the smallest length scale ℓ) would have al-
ready have transitioned to d < 3. Then, as time pro-
gresses after removal of the magnetic field, it would ap-
pear that the mean of P(ℓ) for which aging continues
(i.e. for d = 3 dynamics) is shifted to larger ℓ. This
would show up as an increase of tco with increasing
teffw . It would be interesting to test this dependence
experimentally. For example, in the Cu:Mn 6% sam-
ple used in the experiments of Rodriguez et al. [2], at
Tq/Tg = 0.95, a waiting time of tw = 110 sec would
yield ξ(tw=110 sec, Tq=0.95Tg) = 86 nm, just overlap-
ping the smallest of the crystallites in his sample. For
tw = 406 sec, ξ(tw=406 sec, Tq=0.95Tg) = 106 nm, al-
ready larger than the mean crystallite size of his sample.
Thus, the system would contain effectively larger crystal-
lites for cross over to logarithmic decay with increasing
teffw , hence a larger tco for larger t

eff
w . Experiments remain

to be performed over accessible time scales to check this
prediction.

VII. SUMMARY

We have explored the dynamics for spin glasses at
the mesoscale. For uniform thin films, we have exhib-
ited how the crossover from d = 3 to d = 2 results in
spin glass correlations with the perpendicular correlation
length equaling the film thickness, while the parallel cor-
relation length grows as the temperature is lowered. The
ultrametric nature of these states generates a temper-
ature dependence of the dynamics, consistent with the
observed temperature dependence of the dynamic sus-
ceptibility χ(τ) for a thin film of Cu:Mn (13.5 at.%) of
thickness 30 Å [10]. We were unable to analyze the dy-
namics of the thinner film of thickness 20 Å [11] because
of what we believe to be large spatial fluctuations asso-
ciated with the relatively small number of spins within a
correlated volume. For polycrystalline samples, we have
derived an expression for the logarithmic decay of the
TRM after the correlation length has become compara-
ble to crystallite sizes. This behavior is nearly universal
for glassy systems [28, 29], and in this sense, spin glasses
follow suit. The time for ξ(t, T ) to become comparable to
crystallite dimensions falls within the experimentally ac-
cessible range for temperatures in the vicinity of Tg, but
increases precipitously with lower temperatures. Finally,
predictions are made with respect to the onset of the
logarithmic decay of the thermoremanent magnetization
(TRM) that should be explored.
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[21] M. Mèzard, G. Parisi, N. Sourlas, G. Toulouse, and
M.A. Virasoro, Phys. Rev. Lett. 52, 1156 (1984); ibid
J. Physique 45, 843 (1984).
[22] D. Vertechi and M.A. Virasoro, J. Physique I
(France) 50, 2325 (1989).
[23] S. Guchhait, M. Jamil, H. Ohldag, A. Mehta, E.
Arenholz, G. Lian, A. LiFatou, D. A. Ferrer, J. T. Mark-
ert, L. Colombo, and S. K. Banerjee, Phys. Rev. B 84,
024432 (2011).
[24] T. Kasuya, “s-d and s-f Interaction and Rare Earth
Metals,” Magnetism, Vol. IIB, Ed. by G.T. Rado and H.
Suhl (Academic Press, New York, 1966), pp. 215 - 294.
[25] Shang-keng Ma, Phys. Rev. B22, 4484 (1980).
[26] A. Amir, Y. Oreg, and Y. Imry, Ann. Rev. Cond.
Mat. Phys. 2, 235 (2011); ibid Proc. Nat. Acad. Sci.
109, 1850 (2012).
[27] G.G. Kenning, G.F. Rodriguez and R. Orbach, Phys.
Rev. Lett. 97, 057201 (2006).
[28] A.L. Burin, D. Natelson, D.D. Osheroff and Y. Ka-
gan, “Tunneling Systems in Amorphous and Crystalline
Solids,” Ed. by P. Esquinazi (Springer, Berlin, 1998), pp.
223 - 316.
[29] P. Nalbach, D.D. Osheroff and S. Ludwig, J. Low
Temp. Phys. 137, 395 (2004).
[30] D. Parker, F. Ladieu, J. Hammann and E. Vincent,
Phys. Rev. B74, 184432 (2006).
[31] P. Nordblad, P. Svedlindh, L. Sandlund and L. Lund-
gren, Phys. Lett. A120, 475 (1987).
[32] G. Parisi, Phys. Lett. A 73, 203 (1979); Phys. Rev.
Lett. 43, 1574 (1979); J. Phys. A 13, L-463 (1980).
[33] D.S. Fisher and D.A. Huse, Phys. Rev. B 38, 373
(1988); 38, 386 (1988); 36, 8937 (1987).
[34] K. Gunnarsson, P. Svedlindh, P. Nordblad, L. Lund-
gren, H. Aruga, and A. Ito, Phys. Rev. Lett. 61, 754
(1988)
[35] P. Svedlindh, L. Lundgren, P. Nordblad, and H.S.
Chen, Europhys. Lett. 3, 243 (1987); P. Nordblad,
L. Lundgren, P. Svedlindh, K. Gunnarsson, H. Aruga
and A. Ito, J. Phys. (Paris) Colloq. (France) 49,
C8-1069 (1988); S.M. Rezende, F.C. Montenegro, M.D.



12

Coutinho-Filho, C.C. Becerra, and A. Paduan-Filho, J.
Phys. (Paris) Colloq. 49, C8-1267 (1988); L. Lèvy, Phys.
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