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We examine the Dyakonov and Perel theory of the Spin Hall Effect (SHE) from the viewpoint
of irreversible thermodynamics, which is more constraining than the symmetry arguments of pure
phenomenology. As thermodynamic driving forces we include the thermal gradient, the gradient of
the electrochemical potential (rather than the potential gradient and density gradient separately),
and the “internal” magnetic field that is thermodynamically conjugate to the magnetization. In
turn, we obtain the form of bulk transport coefficients relating the fluxes to the thermodynamic
forces. Relative to Dyakonov and Perel, in addition to the new terms due to thermal gradients, the
Onsager relations require three new (non-linear) terms in the current density, and minor revisions
in the current density and spin current density. The center-to-edge transverse voltage difference,
due both to the −β ~P × ~E term of of the number current density ~q and to one of the new current
density terms, is calculated for the first time. An ac capacitative probe likely would not significantly
disturb this effect. An Appendix explicitly relates the Anomalous Hall Effect (AHE) to the term in
the (vector) number flux that is Onsager-related to the SHE term in the (tensor) spin flux.

PACS numbers: 72.25.-b, 05.70.Ln, 72.20.Dp, 71.70.Ej

I. INTRODUCTION

The Spin Hall Effect (SHE), based on spin-orbit scat-
tering off atoms (even scattering off spin-less atoms)1,2

was first proposed by Dyakonov and Perel,3,4 both for
semiconductors and metals. However, not until the SHE
was independently recognized and named by Hirsch5 – at
a time when it was realized that spin manipulation had
the prospect of being integrated with the practical world
of electronic devices – did the SHE become a subject
of intense interest.6 In the SHE a longitudinal electric
current in zero magnetic field causes a transverse spin
current that is spin-polarized in the second transverse
direction. Unlike the Hall Effect (HE), the SHE is not
identical to its inverse; in the Inverse Spin Hall Effect
(ISHE) a longitudinal spin current causes a transverse
electric current.
The ISHE was observed in the 1980’s,7 and (with ~S the

spin density) the Onsager-related ~∇× ~S term in the elec-
tric current,8 which can lead to an Anomalous Hall Effect
(AHE), but the SHE has been observed only within the
last decade.9–11 The transported spin that cannot escape
the transverse walls of the sample leads to an excess spin
(beyond the equilibrium value) that is called the spin

accumulation;3,4 one of the predictions of the theory is
that spin will accumulate along the sides of the sample
in the presence of a longitudinal electric current.
For a system with a negative charge-carrier, Dyakonov

and Perel applied their theory to a sample in the shape
of a wire, which at the time was the geometry most likely
to be studied.3,4,12 More recently Dyakonov rewrote his

equations to use spin polarization density ~P rather than
the spin (accumulation) density

~S = (~/2)~P

as a variable. He then studied, for the now commonly-
available planar geometry, magnetic field dephasing
(Hanle effect) on the spin accumulation, which leads to a
magnetoresistance.13 Lifshits and Dyakonov, motivated
by a microscopic view of a scatterer yielding both ordi-
nary and spin-orbit scattering, have have used the spin
Boltzmann equation to study in detail two terms in the
spin current,14 called spin swapping terms because the
spatial index (flow direction) and the spin index (spin
direction) are interchanged. The spin-swapping terms
were included phenomenologically in Ref. 4.
At least some aspects of this work by Dyakonov et

al3,4,13,14 are consistent with the Onsager principle, but
the work as a whole has not yet been approached from
the viewpoint of irreversible thermodynamics, of which
the Onsager principle is a part. It is the purpose of the
present work to provide such an approach. We also in-
clude the effect of temperature gradients, thus touching
on the area of “spin caloritronics”.15

We find that, with a few additions, Refs. 3, 4, 13,
and 14 are consistent with irreversible thermodynam-
ics. Specifically, the Onsager principle predicts three new
non-linear terms in the electric current. One of these new
terms reduces a newly predicted current-induced center-
to-edge transverse voltage ∆V⊥ by a factor of two. Table
I gives a ∆V⊥ as large as 10−4 V for GaAs, but 10−8 V
for Pt.

A. Dyakonov and Perel vs Hirsch

Although both Dyakonov and Perel (DP) and Hirsch
have in mind the same physical mechanism of spin-orbit
scattering, only DP develop a theory for the electric
current and spin current, with Hirsch relying on sub-
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tle, but physically-motivated, arguments to estimate the
spin Hall effect for a paramagnet, using an analogy to
the AHE for a ferromagnet. Such reasoning is valid be-
cause the ferromagnet and the paramagnet are related
by a continuous transformation of a single order parame-
ter. Therefore certain properties of the ferromagnet can
be applied perturbatively to the paramagnet (in Hirsch’s
case, the AHE). DP remark, without proof, that their
theory implies the AHE; Appendix A shows this explic-
itly.

B. Phenomenology vs Irreversible Thermodynamics

The present work is based on the methods of irre-
versible thermodynamics, rather than being a pure phe-
nomenology, or being based on a Boltzmann equation.
To illustrate the distinction between these three types of
theory, we consider the bulk spin transfer torque (STT)
and spin pumping (SP) in ferromagnets with non-trivial
equilibrium configurations (e.g. a domain wall). In STT
a spin-polarized current drives the magnetic dynamics; in
SP magnetic disequilibrium drives a spin-polarized cur-
rent.

For both STT and SP, there are two such terms. In
a pure phenomenology this leads to four unconstrained
coefficients. However, use of irreversible thermodynam-
ics relates two pairs of these terms, leading to only two
unconstrained terms. In addition, irreversible thermo-
dynamics shows that the so-called adiabatic terms are
dissipative (they are adiabatic in space but not in time),
and contribute to the rate of entropy and heat produc-
tion, whereas the so-called non-adiabatic terms are non-
dissipative, and do not contribute to the rate of entropy
and heat production.16 Transport theories can obtain
these properties of the irreversible thermodynamics and
also give specific values for the corresponding transport
coefficients. Ref.17 develops a transport theory for the
spin Hall effect in ferromagnets, but restricts itself to
diagonal components for the spin, and thus does not
consider certain transport coefficients of interest in the
present work. Note also Ref.18, which presents a sophis-
ticated phenomenology for magnetic semiconductors, and
applies it to the spin Hall effect.

The above examples apply to the case of so-called off-
diagonal dissipation coefficients. Irreversible thermody-
namics has also been used to study a diagonal dissipation
coefficient. There are two phenomenological theories of
magnetic damping, one due to Landau and Lifshitz, and
one due to Gilbert. However, there are three indepen-
dent derivations of near-equilibrium magnetic damping,
each of which yields Landau-Lifshitz damping. This and
related issues are discussed in Appendix B.

C. Outline

Section II gives the equations employed in Ref. 14 and

points out that the spin polarization density ~P is em-
ployed, in the context of irreversible thermodynamics,
in three ways, a clarification necessary for appreciating
the complexity of the theory. Section III presents the
thermodynamic variables and the thermodynamics of the
system. Section IV presents the equations of motion for
the system, and the constraint on the rate of entropy
density production Rs ≥ 0. Section V shows that, in
the absence of temperature gradients (not considered in
Ref. 14) the equations of Ref. 14 are not quite consistent
with Rs ≥ 0, and gives three additional terms that must
be present in the number flux qi. Section VI gives all
of the fluxes, including the entropy flux (which has the
same symmetry as the number flux), that are consistent
with Rs ≥ 0. Section VII applies two of the nonlinear

terms in qi – the (~P × ~E) term and the “new” Pj∂iPj

term to the strip geometry, finding that there is a small
transverse voltage difference between the center and the
edges of the strip. Section VIII gives a summary and
conclusions. Appendix A determines the AHE resistiv-
ity ρAHE using the theory of Dyakonov and Perel, and
Appendix B discusses irreversible thermodynamics and
magnetic damping.

II. ON THREE USES OF THERMODYNAMIC

VARIABLES

Theories of the SHE have employed any of the equiva-

lent variables spin density ~S, spin polarization density ~P

(units of density) or magnetization ~M (units of magnetic
moment density); they are all proportional with “univer-

sal” constants. Following Ref. 13 we will employ ~P . We

point out that ~P appears in the theory in three roles: (1)
dynamical variable; (2) “structure constant” used to con-
struct thermodynamic forces and sources with the correct
number of vector indices and the correct spatial inversion
properties; (3) thermodynamic driving force.

To be specific, we consider the equations employed in
Ref. 13. The number density n is associated with the
number flux ~q, which is proportional to the current den-

sity ~j, and ~P is associated with the polarization flux qij .

With carrier charge −e (electrons), electric field ~E, mo-
bility µ, and parameter (rather than variation) δ, Ref. 13
gives for ~q and qij

~q = −
~j

e
= −[µn~E +D~∇n]− β ~E × ~P − δ~∇× ~P , (1)

qij = −µEiPj −D∂iPj + εijk[βnEk + δ∂kn]. (2)

(In qij the first index is real space and the second index is
spin space.) Observe that ~q and qij satisfy the equations
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of motion

∂tn+ ~∇ · ~q = 0, (3)

∂tPj + ∂iqij = −(~Ω× ~P )j − τ−1
s Pj , (4)

where the angular frequency ~Ω = γ ~Ba ( ~Ba = µ0
~Ha is in

units of Tesla, where µ0 is the permeability of free space

and the applied field ~Ha is in units of A/m). Note that
~Ω and ~P have signatures under time-reversal T : t→ −t
that are both odd. In both (1) and (2), the terms in β
and δ were introduced in Ref. 3, and are due to spin-
orbit scattering. Their signature under time-reversal is
opposite the signature of the usual (dissipative terms),
and therefore they are non-dissipative.
In qij , which was the focus of Refs. 3 and 4, the

ǫijk(βnEk + δ∂kn) terms are responsible for the SHE. In

~q the ~P × ~E term, which is required by the Onsager prin-
ciple from the SHE terms in qij , leads to an Anomalous
Hall effect (AHE) in the presence of an out-of-plane mag-
netic field that is strong enough to overcome the demag-

netization field acting on ~P . This is shown in Appendix
A. (Dyakonov and Perel did not invoke the Onsager prin-

ciple in obtaining their results.) The ~∇× ~E term in ~q is
responsible for the ISHE.
With these equations at hand, we can now comment

on the three types of usage of ~P :

• ~P is a dynamical variable in the ∂tPj term of (4).

• ~P is used twice as an order-parameter-related struc-

ture term: in ~q the term proportional to ~E× ~P , and
in qij the term proportional to EiPj . Systems for
which Pi = 0 have no such order and no such struc-
ture term.

• ~P is used three times as a stand-in for the as-yet-

undefined thermodynamic driving force ~ψ, to which

it is proportional: in ~q the term in ~∇ × ~P and in
qij the term in ∂iPj both serve as thermodynamic
forces that yield fluxes; and in ∂tPj the Pj term
serves as a thermodynamic force that leads to a

source. We will show that ~ψ is the same as the
(properly defined) spin accumulation potential ~µs:

~ψ ≡ ~µs.

Because ~S ∼ ~P ∼ ~µs, spin accumulation is often used for
spin accumulation potential.
Note that the density operator matrix in spin space ñ

can be written as13

ñ =
1

2
(nσ0 + ~n · ~σ),

where σ0 is the unit 2-by-2 matrix, ~σ is the set of Pauli
spin matrices, and

~n ≡ ~P .

Nevertheless we continue to use ~P of Ref. 13. Other
notations have also been employed for n̂ and the variables
it contains, sometimes without the factor of 1

2 .
Ref. 14 adds four (nonlinear) terms ∆qij to the qij

given above:

∆qij = −κsoµ(PiEj − δij ~P · ~E)− κsoD(∂jPi − δij ~∇ · ~P ),
(5)

where κso is due to spin-orbit scattering (Ref. 14 uses κ,
which we will reserve for the thermal conductivity, later).

qij+∆qij contains three terms bilinear in ~P and ~E. They
are all dissipative.
Our use of irreversible thermodynamics leads to a the-

ory with the same structure as that of Dyakonov and
Perel, with two exceptions:

(1) Wherever the electric field ~E appears by itself, it

should be accompanied by a density gradient ~∇n with
coefficient such that the combination may be condensed

to a single effective electric ~E∗ (see below) that includes
both.19 This density gradient correction is significant for
semiconductors but not for metals. For a Rashba po-

tential where a true field ~E shifts the particle energy in
a nearly two-dimensional situation, this comment does

not hold because there ~E serves as a structure constant
rather than as a thermodynamic force.20

(2) By Onsager, the three terms in qij + ∆qij bilin-

ear in ~P (as a structure term) and ~E (as a thermody-
namic force) lead to three additional terms in qi that

are bilinear in ~P (as a structure term) and the gradient

of its thermodynamic driving force ~ψ ≡ ~µs. Because, as

shown by Dyakonov and Perel, ~P is produced by ~E, these
new terms are non-linear in deviations from equilibrium.
Sect. VIII presents the example of a transverse voltage
whose value is reduced by a factor of two by one of the
new terms.
In principle we treat the three-dimensional (3D) case,

where there is bulk inversion asymmetry (BIA), but
we also have in mind the two-dimensional case (2D),
where there is surface inversion asymmetry (SIA), nor-
mally associated with either the Dresselhaus21 or Rashba
interaction.20

III. METHOD OF IRREVERSIBLE

THERMODYNAMICS

Although the method of irreversible thermodynamics
is well-established,24–29 often it is not applied, even when
it is relevant. (It took some 30 years before irreversible
thermodynamics was applied to distinguish between two
proposed phenomenologies for magnetic damping – see
Appendix B.) In the present case of the spin Hall effect,
there has been a time-interval of over forty years between
the initial, seminal, work3,4 and the present application of
irreversible thermodynamics to test its consistency. (A
number of recent works16,22,23 have applied irreversible
thermodynamics to magnetic systems, but they have not
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considered the spin Hall effect). The method, briefly, is
as follows:
(1) Define the appropriate variables for the system and

give its thermodynamics, typically for the energy density
in terms of intensive thermodynamic variables (such as
temperature T ) and the density of the conjugate exten-
sive variable (such entropy density s). This depends on
the order, or symmetry, of the system.
(2) For each thermodynamic density X write down the

conservation law or (when not appropriate, as for spin
density, which is not conserved) the equation of motion
in terms of an unknown flux jXi and (if X does not corre-
spond to a conserved quantiiy) an unknown source RX ,
quantities it is the goal of irreversible thermodynamics
to obtain.

∂tX + ∂ij
X
i = RX . (6)

(3) Using the thermodynamics and the equations of
motion, determine the rate of entropy density production
Rs as a sum of products of fluxes (such as entropy flux
jsi ) with their appropriate thermodynamic force (such as
temperature gradient ∂iT ) and as a pure divergence in-
volving fluxes.
(4) Determine the forms of the fluxes and sources, lin-

ear in the thermodynamic forces, and subject to the sym-
metries appropriate to the particular system being stud-
ied (for example, entropy flux proportional to tempera-
ture gradient and gradient of electrochemical potential).
In the present case we will use the fluxes given above.
(5) Enforce the condition that the rate of entropy den-

sity production Rs ≥ 0. At this point we apply the
Onsager relations for the transport coefficients to ensure
that dissipative contributions to the rate of entropy pro-
duction with the same form are equal (e.g., from entropy
current driven by the gradient in electrochemical poten-
tial and from electric current driven by the gradient in
temperature) and that non-dissipative terms cancel. In
the present case we will test the fluxes given above, and
if there are problems, we will determine how to append
them.
We now follow the specified procedure.

IV. THERMODYNAMICS

A. Definitions

For our magnetic system, with no spontaneous magne-

tization ~M , the differential of the energy density ε will be
written in terms of an entropy density s, a number den-
sity n, and (following Ref. 13) a spin polarization density

Pi directed along the direction Ŝi of the local spin den-
sity Si. In terms of up and down spin number densities
n↑ and n↓, we have

n = n↑ + n↓, Pi = Ŝi(n↑ − n↓). (7)

Thermodynamically conjugate to s is the temperature
T , and thermodynamically conjugate to n is the electro-
chemical potential

µ̃ = µc − eV, (8)

where µc is the chemical potential of electrons with
charge −e (with subscript c to distinguish µc from the
mobility µ), e is the magnitude of the electronic charge,
and V is the electrical potential. From this one can de-
fine the effective potential V ∗, whose negative gradient

gives the effective electric field ~E∗:

V ∗ = V −
1

e
µc = −

µ̃

e
. (9)

~E∗ =
1

e
~∇µ̃ = −~∇V ∗ = −~∇V +

1

e
~∇µc. (10)

We employ ~E∗ rather than ~̃E because the latter is awk-
ward.
Considering µc to be a function only of n, we may take

δµc = (∂µc/∂n)δn, and write

~E∗ = ~E +
1

e

∂µc

∂n
~∇n. (11)

When a field ~E appears in the equations, it should be in

the above combination with ~∇n.19 Note that a tempera-
ture dependent term leads to thermoelectric and magne-
tothermoelectric effects, which we obtain below.
With gyromagnetic ratio

γ ≡
|g|µB

~
, µB ≡

e~

2me
, (12)

where g ≈ −2 is the g-factor and µB is the Bohr magne-

ton (me is the bare electron mass), the magnetization ~M

and spin density ~S are related by

~M = −γ~S. (13)

Further, ~S and the polarization density ~P are related by

~S =
~

2
~P , (14)

and thus

~M = −
|g|µB

2
~P = −a~P , a ≡

|g|µB

2
=
γ~

2
. (15)

Note that for the common case where |g| ≈ 2 we have

a ≈ µB . In SI units ~M is given in A/m.

B. Thermodynamics

The thermodynamics of the system alone is given by

dεsys = Tds+ µ̃dn+ µ0
~Hint · d ~M, (16)
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where T is the temperature, s is the entropy density, µ0

is the magnetic permeability of free space, and ~Hint is

the (internal) field (in A/m) that is conjugate to ~M .

Note that the energy density of interaction of ~M and

an applied field ~H is

εI = −µ0
~M · ~H, (17)

and that in equilibrium ~Hint = ~H .
The magnetic induction is

~B = µ0( ~H + ~M), (18)

and is in units of Tesla. Note that ~M × ~Ba = µ0
~M × ~Ha.

For paramagnetic systems (our present concern)

~M ≈ χ ~H, (19)

with χ dimensionless; ~M , like ~H, is in units of A/m.
For fixed s and n, integration of (16) with (19) gives an
energy of magnetization µ0M

2/2χ, as expected.
The total energy, including the field interaction energy,

satisfies

dε = Tds+ µ̃dn+ µ0
~H∗ · d ~M, ~H∗ ≡ ~H − ~Hint. (20)

We now shift thermodynamic variable from ~M to ~P
via (15), which requires a shift from conjugate thermo-

dynamic variable ~H∗ to

~ψ = −
gµB

2
(µ0

~H∗) = −
γ~

2
(µ0

~H∗), (21)

so that µ0
~M · ~H∗ = ~P · ~ψ. Then the thermodynamics is

dε = Tds+ µ̃dn+ ~ψ · d~P . (22)

For a paramagnetic system,

~ψ ≈
µ0a

2

χ
~P = λ~P , λ ≡

µ0a
2

χ
. (23)

For dimensional checks note that µ0a
2 has units of

energy-volume, ~ψ has units of energy, and ~P has units
of density.

C. On Notation

We now compare the present notation ~H∗ for a
conducting ferromagnet, introduced by Johnson and
Silsbee30 and earlier used by the author,16 with the (vec-
tor) spin chemical potential ~µs employed by Refs. 31 and

32. We will find that ~H∗ ∼ ~ψ = ~µs. Paramagnets and
ferromagnets can be compared because they are related
by a single continuous order parameter; when a param-
agnet has a non-zero polarization (magnetization) that
gives it the same symmetry as a ferromagnet. We will
find that a term in the current that does not normally

appear for paramagnets is what enables us to make the

identification ~H∗ ∼ ~ψ = ~µs.

Although Refs. 31 and 32 do not employ thermody-
namics, they do present the electric current, which can
then be compared with the current of Ref. 16, which also
does the thermodynamics. We take the majority spin
current to be down, and the down-spin conductivity σ↓
to exceed the up-spin conductivity σ↑. Let

σ ≡ σ↑ + σ↓, P ≡ (−σ↑ + σ↓)/σ,

where P is the polarization of the spin current (not the
magnitude of the spin polarization). Ref. 32 gives (we
restore a missing factor of e) the current density ji as

eji = σ∂iµ− Pσ∂i(M̂ · ~µs). (24)

The second term in the current does not normally appear
for a paramagnet. Ref.17, which uses the spin-diagonal
Boltzmann equation to study the spin Hall effect in a fer-
romagnet, also obtains this second term, among others.

On the other hand, Ref. 16, which does both the ther-
modynamics and irreversible thermodynamics of a fer-
romagnet, gives eqs.(A15-A16) for the number currents.
The sum of the number currents yields, on neglecting all
but the most essential terms,

j↑i + j↓i = −
σ↑
e2
∂iµ

∗
↑ −

σ↓
e2
∂iµ

∗
↓ + . . . . (25)

Here the magnetoelectrochemical potentials µ∗
↑ and µ∗

↓

are given in terms of the electrochemical potentials

µ̃↑ ≡ µ↑ − eV, µ̃↓ ≡ µ↓ − eV,

where µ↑ and µ↓ are the chemical potentials and V is the
voltage, via

µ∗
↑ ≡ µ̃↑+(γ~/2)M̂ · ~H∗, µ∗

↓ ≡ µ̃↓−(γ~/2)M̂ · ~H∗. (26)

Setting µ̃↑ = µ̃↓ = µ we then obtain for e times the
current density ji = −e(j↑i + j↓i) that

eji = σ∂iµ− Pσ∂i

(

M̂ · (−γ~/2)(µ0
~H∗)

)

. (27)

Comparison with (21) yields that

~µs = −
γ~

2
(µ0

~H∗). (28)

This is identical with (21). Henceforth we will employ

~µs of Refs. 31 and 32 rather than continue to use ~ψ. By
(23) we then have

~µs ≈
µ0a

2

χ
~P = λ~P , λ ≡

µ0a
2

χ
. (29)
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V. IRREVERSIBLE THERMODYNAMICS

DERIVATION

What follows refers only to the non-equilibrium parts
of the spin currents, thus assuming that any equilibrium
spin currents33 are not subject to dissipation. Following

Ref. 13 we employ ~P rather than ~S or ~M . We employ jεi ,
jsi , j

n
i , and qij for the energy flux, entropy flux, number

flux, and polarization flux. For the source terms for the
non-conserved entropy s and polarization Pi we employ
Rs ≥ 0 and Rj .
If, as we assume, the field source is constant in time,

its energy does not change (dεfield = 0), so with

εtot = ε+ εfield, (30)

the thermodynamics is given by (20).
The equations of motion for ε, n, s, and Pj are

∂tε+ ∂ij
ε
i = 0, (31)

∂ts+ ∂ij
s
i = Rs, (32)

∂tn+ ∂iqi = 0, (33)

∂tPj + ∂iqij = −γµ0(~P × ~H)j +Rj . (34)

Use of (31)-(34) in the time-derivative of eq. (30) leads
to an equation for the non-negative quantity Rs. We
rewrite this equation, using partial integration as needed,
so that it is a sum of two types of terms. First is a di-
vergence; second is a sum over each flux times its corre-
sponding thermodynamic force. Specifically, we have (on

dropping the term involving ~P × ~µs = ~0)

0 ≤ Rs = −∂i[j
ε
i − T jsi − µ̃qi − qijµs,j ]

−jsi ∂iT − qi∂iµ̃− qij∂iµs,j −Rjµs,j . (35)

A. The Fluxes of Dyakonov and Perel in the

Language of Irreversible Thermodynamics

For later reference, we rewrite the fluxes of Dyakonov
and Perel, ~q and qij (appended by ∆qij) in the language
of irreversible thermodynamics, where E∗

i is replaced by

(1/e)∂iµ̃,
34 and (where appropriate) ~P is replaced by

~µs/λ. Eqs. (1), (2), and (5) then become

~q = −µn~E∗ − β ~E∗ × ~P − δ~∇× ~P

= −
µn

e
~∇µ̃−

β

e
(~∇µ̃× ~P )−

δ

λ
~∇× ~µs, (36)

qij = −µE∗
i Pj −D∂iPj + εijkβnE

∗
k

= −
µ

e
∂iµ̃Pj −

D

λ
∂iµs,j + εijk

βn

e
∂iµ̃, (37)

∆qij = −κsoµ(PiE
∗
j − δij ~P · ~E∗)

−κsoD(∂jPi − δij ~∇ · ~P )

= −
κsoµ

e
Pi(∂j µ̃) +

κsoµ

e
δij ~P · ~∇µ̃

−
κsoD

λ
∂jµs,i +

κsoD

λ
δij ~∇ · ~µs. (38)

Comparison of (4) and (34) yields

Rj = −
1

τs
Pj = −

1

τsλ
µs,j . (39)

The equations above distinguish between ~P used as a
structure term and used to form the thermodynamic
force-source ~µs. (We will see that µs,i is a source as-
sociated with spin-flip processes, and ∂jµs,i is a force
associated with diffusion and other processes.)
Note that β has units of mobility and δ has units of dif-

fusivity. The spin-orbit-related parameter κso is dimen-
sionless; 14 gives values of 0.3 (InSb) and 0.003 (GaAs).

Ref. 3, which uses ~S rather than ~P , gives the relationship

β =
eδ

kBT
; (40)

that relationship still holds, although both β and δ now
have different units than in Ref. 3. Further, Ref. 3 gives

γso =
β

µ
=

δ

D
, (41)

where γso is a dimensionless measure of the effect of the
spin-orbit interaction (Ref. 13 actually uses γ, rather
than γso), and is about 10−2 for GaAs and 0.37 × 10−2

for Pt at room temperature. The fact that (40) and (41)
were given by Dyakonov and Perel is an indication of the
Boltzmann equation approach underlying their papers.3,4

VI. SYMMETRY-ALLOWED STRUCTURE OF

FLUXES

We now derive the irreversible thermodynamics. For
clarity, we will present the fluxes (in this usage we con-
sider the source Ri to be a generalized type of flux) in
three stages. First, we give the usual fluxes when there is
no spin-orbit interaction. Second, we include terms when
there are spin-orbit interactions, but we do not use Pj in
constructing the fluxes. Third, we construct the fluxes
with spin-orbit interactions and with Pj . For q

n
i , jsi , and

qij each term must be odd under spatial inversion, but
for Ri each term must be even under spatial inversion.
After the fluxes are constructed we will compare with

the forms given above.
Using Onsager coefficients L (superscripts are associ-

ated with the “flux” to the left, subscripts are associated
with the “force” to the right), the first set of linearized
thermodynamic fluxes is given by

q
(1)
i = −Ln

T∂iT − Ln
µ̃∂iµ̃, (42)

j
s(1)
i = −Ls

T∂iT − Ls
µ̃∂iµ̃, (43)

q
(1)
ij = −LP1

µs
∂iµs,j , (44)

R
(1)
i = −LP

µs
µs,i. (45)
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Comparison with (36), (37), (38), and (39) yields

Ln
µ̃ =

µn

e
=

σ

e2
, σ ≡ neµ, (46)

LP1
µs

=
D

λ
, LP

µs
=

1

τsλ
. (47)

With κ the thermal conductivity, S the Seebeck coeffient,
and Π the Peltier coefficient, comparison of (42) and (43)
with conventional definitions yields

Ls
T =

κ

T
, Ln

T = −
σS

e
, Ls

µ̃ = −
Πσ

eT
. (48)

The second set of linearized thermodynamic fluxes is

q
(2)
i = −Ln

µs
εijk∂jµs,k = −Ln

µs
(~∇× ~µ)s,i, (49)

j
s(2)
i = −Ls

µs
εijk∂jµs,k = −Ls

µs
(~∇× ~µ)s,i, (50)

q
(2)
ij = −LP

T εijk∂kT − LP
µ̃ εijk∂kµ̃

−LP2
µs
∂jµs,i − LP3

µs
δij∂kµs,k, (51)

R
(2)
i = 0. (52)

Except for those associated with the entropy flux, these
all have corresponding terms in Ref. 13. Comparison with
(36), (37), (38), and (39) yields

Ln
µs

=
δ

λ
, LP

µ̃ = −
βn

e
, LP2

µs
=
κsoD

λ
, LP3

µs
= −

κsoD

λ
.

(53)
Two (thermal) terms were not discussed in Ref. 13:

Ls
µs
, LP

T .

The third set of linearized thermodynamic fluxes is

q
(3)
i = −Ln1

µsPPj∂iµs,j − Ln2
µsPPj∂jµs,i − Ln3

µsPPi∂jµs,j

−Ln
TP (~P × ~∇T )i − Ln

µ̃P (~P × ~∇µ̃)i, (54)

j
s(3)
i = −Ls1

µsPPj∂iµs,j − Ls2
µsPPj∂jµs,i − Ls3

µsPPi∂jµs,j

−Ls
TP (

~P × ~∇T )i − Ls
µ̃P (

~P × ~∇µ̃)i, (55)

q
(3)
ij = −LP1

µ̃PPj∂iµ̃− LP2
µ̃PPi∂j µ̃− LP3

µ̃P δijPk∂kµ̃

−LP1
TPPj∂iT − LP2

TPPi∂jT − LP3
TP δijPk∂kT, (56)

R
(3)
i = 0. (57)

Only the terms in q
(3)
ij associated with gradients of µ̃ are

already contained in Ref. 14. In addition to the sets of
terms involving the entropy flux and involving temper-
ature gradients, the terms associated with the number
flux are new. Of these sixteen new terms, the theory of
Dyakonov and Perel makes statements about only four
of them:

Ln
µ̃P = −

β

e
, LP2

µ̃P =
µ

e
, LP3

µ̃P =
κsoµ

e
, LP1

µ̃P = −
κsoµ

e
.

(58)
The others remain undetermined:

Ln1
µsP , L

n2
µsP , L

n3
µsP , L

s1
µsP , L

s2
µsP , L

s3
µsP ,

Ln
TP , L

s
TP , L

s
µ̃P , L

P1
TP , L

P1
TP , L

P1
TP .

Nevertheless, because of various Onsager relations – soon
to be derived – the three new terms associated with ~q –
Ln1
µsP

, Ln2
µsP

, Ln3
µsP

– can be related to various coefficients
determined by Ref. 14.

VII. RATE OF BULK ENTROPY PRODUCTION

We now turn to the rate of bulk entropy (density)
production Rs of (35). A term in qij∂iµs,j involving
∂iµs,j∂jµs,i will have to be rewritten to enable us to
“complete the square”. To this purpose we employ the
identity

(∂jAi)(∂iAj) = ∂i(Aj∂jAi −Ai∂jAj) + (~∇ · ~A)2 (59)

for Ai = µs,i. When used later, this enables us to write

the rate of entropy production in terms of ~∇ · ~A)2 and
(∂iµs,j)

2 without any ∂iµs,j)(∂jµs,i) terms. This is rel-
evant to ensuring that, after the fluxes have been ex-
pressed in terms of forces, none of the off-diagonal terms
in Rs are too large – otherwise they could dominate, thus
permitting Rs to take on either sign, contrary to Rs ≥ 0.

In what follows we will assume that ~Ba is uniform, so its

gradient is zero. A uniform but non-zero ~Ba will affect

the equilibrium value of ~µs and ~P , which can be handled
as appropriate.
Now note that the divergence term, involving unknown

fluxes, must be zero, since divergences can be of either
sign. Therefore, no matter what the coefficients in the
fluxes, setting the divergence to zero gives jεi in terms
of the other fluxes (and an unphysical curl term, whose
divergence is zero).
After using the identity (59) to modify the divergence

term in (35) we find that the energy flux in (35) takes
the form

jεi = T jsi + µ̃qi+ qijµs,j − (µs,j∂jµs,i −µs,i∂jµs,j). (60)

Substitution of the fluxes of the previous section into
(35) yields 28 terms. Specifically, qi contributes eight
terms, jsi eight terms, qij eleven terms, and Ri one
term. Of these, six terms directly involve the squares
of the thermodynamic forces, two are identically zero be-
cause they involve self-cross-products, and the remaining
twenty have the form of products of different thermody-
namic forces, with ten repeats. It is to these repeats that
the Onsager principle applies, reducing the number of
off-diagonal terms to ten, for a total of sixteen indepen-
dent transport coefficients. For the on-diagonal terms in
Rs ≥ 0 we find

0 ≤ Rs = Ls
T (~∇T )

2 + Ln
µ̃(~∇µ̃)

2 + LP1
µs

(∂iµs,j)
2

+(LP2
µs

+ LP3
µs

)(~∇ · ~µs)
2 + LP

µs
( ~µs)

2 + . . .(61)
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All of these diagonal terms must have non-negative coef-
ficients, so

Ls
T ≥ 0, Ln

µ̃ ≥ 0, LP1
µs

≥ 0,

LP2
µs

+ LP3
µs

≥ 0, LP
µs

≥ 0. (62)

For the off-diagonal terms in Rs we find

0 ≤ Rs = (∂iT )(∂iµ̃)(L
s
µ̃ + Ln

T )

+(~∇T · ~∇× ~µs)(L
s
µs

+ LP
T )

+(~∇T · ~P × ~∇µ̃)(Ls
µ̃P − Ln

TP )

+(∂iT )(Pj∂iµs,j)(L
s1
µsP + LP1

TP )

+(∂iT )(Pj∂jµs,i)(L
s2
µsP + LP2

TP )

+(∂iT )(Pj∂iµs,j)(L
s3
µsP + LP3

TP )

+(~∇µ̃ · ~∇× ~µs)(L
n
µs

+ LP
µ̃ )

+(∂iµ̃)(Pj∂iµs,j)(L
n1
µsP + LP1

µ̃P )

+(∂iµ̃)(Pj∂jµs,i)(L
n2
µsP + LP2

µ̃P )

+(∂iµ̃)(Pj∂iµs,j)(L
n3
µsP + LP3

µ̃P ) + . . . (63)

The terms even (odd) under time-reversal are dissipa-
tive (non-dissipative). In effect, the Onsager principle
states that the two contributions to Rs from a prod-
uct of two thermodynamic forces are equal (or equal
and opposite) if the combined term (including structure
terms, like Pi) is even (or odd) under time-reversal. The
Onsager principle thus ensures that the non-dissipative
terms (which can change sign under time-reversal) do not
contribute to the rate of entropy production, and that the
“force” A acting on the flux b conjugate to the “force”
B causes the same rate of dissipation as the “force” B
acting on the flux a conjugate to the “force” A.
Application of the Onsager principle then leads to

Ls
µ̃ = Ln

T , Ls
µs

= −LP
T , Ls

µ̃P = Ln
TP , Ln

µs
= −LP

µ̃ ,

Ls1
µsP

= LP1
TP , Ls2

µsP
= LP2

TP , Ls3
µsP

= LP3
TP ,

Ln1
µsP

= LP1
µ̃P , Ln2

µsP
= LP2

µ̃P , Ln3
µsP

= LP3
µ̃P . (64)

The first of these leads to

Ln
T = −

σS

e
= Ls

µ̃ = −
Πσ

eT
, (65)

so

Π = TS, (66)

a thermoelectric relation due to Kelvin.
In terms of coefficients that have been defined in

Ref. 14 we have

Ln1
µsP

= LP1
µ̃P = µ

e . (67)

Ln2
µsP

= LP2
µ̃P = κsoµ

e . (68)

Ln3
µsP

= LP3
µ̃P = −κsoµ

e . (69)

Ln
µs

= −LP
µ̃ => δ

λ = βn
e . (70)

The last of these is consistent with the relationship (40),
on using the appropriate χ.
If we neglect the terms involving temperature gradi-

ents, there are four diagonal coefficients and four off-
diagonal coefficients. We do not write down the nine
inequalities, obtained by completing the squares, neces-
sary to ensure that the products of the off-diagonal terms
(which can be of either sign, according to the direction of
a given thermodynamic force) not overwhelm the corre-
sponding diagonal terms. Some of them require transport

coefficients that are higher order in ~P , which we do not
consider.
Neglecting the effects of temperature gradients in q

(3)
i ,

the new terms augment (36) by

∆qi = −Ln1
µsPPj∂iµs,j − Ln2

µsPPj∂jµs,i − Ln3
µsPPi∂jµs,j

= −
µ

e
λPj∂iPj −

κsoµ

e
λPj∂jPi −

κsoµ

e
λPi∂jPj ,

(71)

where the second equality arises on using (58) and (29).
In what follows we will need only the first of these terms.

VIII. CENTER-TO-EDGE VOLTAGE: A

SECOND-ORDER EFFECT

Consider a long strip of width L with normal along z,

in a uniform field ~E0 along x, and −L/2 ≤ y ≤ L/2.
We now show that this leads to a center-to-edge voltage,
whose value is affected by the first term in (71).
Because the spin-orbit term βεijkE

∗
k in qyz is non-zero,

to satisfy the boundary conditions

qyz

∣

∣

∣

y=±L/2
= 0 (72)

requires a polarization Pz(y). The δ~∇ × ~P term in ~q
then leads to a small correction ∆qx(y) to the current
density qx, which in turn leads to a small correction ∆R
to the resistance R measured along x. For this geometry,
including an applied field Ha normal to the plane, Ref. 13
calculated ∆qx(y) and then the magnetoresistanceR(Ha)
that arises from the accumulation of Pz at the edge.
A. Non-zero Ey and ∆V⊥ = V (L/2)− V (0).

For Pz 6= 0, the β ~P × ~E∗ term in ~q of (36) leads to a
non-zero qy. Thus (recall that Dyakonov’s number flux
is ~q), to satisfy

qy

∣

∣

∣

y=±L/2
= 0 (73)

at the edges requires an E∗
y . This leads to a small but

not insignificant non-zero transverse voltage difference

∆V⊥ = V (±L/2)− V (0) = −

∫ L/2

0

Eydy, (74)

which might be observable by ac capacitative techniques
(these do not change the boundary conditions on either
the current qy or the spin current qyz).
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The new term −(µ/e)Pz∂yPz from (71) is of the same

order of magnitude as the β ~P × ~E∗ term in (36), so its
effect must be included. Since Ref. 13 does not present
Pz(y), we derive it now. We employ a perturbation the-
ory approach in powers of E0.
B. Evaluating Pz(y).
To lowest order we take

qy ≈ 0, qx ≈ −µnE0. (75)

In the bulk, but not necessarily near the leads along x,
∂xn = 0.
Assuming that Pz depends only on y, we consider only

qyz to be non-zero. To lowest order it is, by (37),

qyz = −D∂yPz + βnE0. (76)

From (4) with ∂tPz = 0 we have

∂iqiz = ∂yqyz = −
Pz

τs
. (77)

Combining (76) and (77) yields

−D∂2yPz = −
Pz

τs
. (78)

With Ls the spin-flip-diffusion time, the solution of this
is given by

Pz = A sinh(
y

Ls
) +B cosh(

y

Ls
), L2

s ≡ Dτs, (79)

for arbitrary A and B. Application of the boundary con-
ditions (72) at y = ±L/2 leads to A and B, and thence

Pz =
βnE0Ls

D

sinh( y
Ls

)

cosh( L
2Ls

)
. (80)

C. Evaluating Ey and ∆V⊥.
By (36) and the first term of (54) we have, with (67)

and µs,z = λPz ,

qy = −µnE∗
y + βE0Pz −

µ

e
Pz∂yµs,z. (81)

The last term is the correction due to the new term in
(71).

Because qx is nearly constant in space, the ~∇ · ~q = 0
condition also leads to qy being constant in space. Since
qy = 0 at y = ±L/2, we have qy = 0 for all y, a condition
that determines Ey and ∆V⊥. Specifically, from (81)
with qy = 0, and using ∂yPz explicitly (but not yet Pz)
we find that

E∗
y =

βE0

µn
Pz

(

1−
µλn

eD

cosh( y
Ls

)

cosh( L
2Ls

)

)

. (82)

By (70) and (41) we have

µλn

eD
= 1.

Then, substituting Pz yields

E∗
y = Ē sinh(

y

Ls
)
(

1−
cosh( y

Ls

)

cosh( L
2Ls

)

)

, Ē ≡
β2E2

0Ls

µD cosh(L/2Ls)
.

(83)
Use of E∗

y above in Gauss’s Law in the form

~∇ · ~E =
1

ǫ
(−eδn), (84)

where ǫ is the dielectric constant, with (11) leads to an
equation for δn:

∂yE
∗
y = −

e

ǫ
(δn− l2D∂

2
yδn), l2D ≡

ǫ

e2
∂µc

∂n
. (85)

Here lD is the electrical screening length.
With cI1 ≡ (1 − l2D/L

2
s)

−1 and cI2 ≡ (1 − 4l2D/L
2
s)

−1,
the inhomogeneous solution δnI is given by

δnI = −
Ēǫ

eLs
cI1 cosh

y

Ls
+
Ēǫ

eLs
cI2

cosh 2y
Ls

cosh L
2Ls

. (86)

Requiring that the homogenous solution be symmetric
about y = 0, it must have the form

δnH = K cosh(
y

lD
), (87)

where the overall charge neutrality requirement

∫ L/2

−L/2

dy(δnI + δnH) = 0 (88)

gives

K =
ǫĒ

elD
(cI1 − cI2)

sinh( L
2Ls

)

sinh( L
2lD

)
. (89)

Note that the dimensionless coefficient cI1−cI2 is of order
l2D/L

2
s, which is very small. Comparison of Ē and K

shows that δnH is smaller than δnI by a factor of lD/Ls.
With δn = δnI + δnH we solve Gauss’s law for Ey:

Ey = Ē sinh(
y

Ls
)
(

cI1−cI2
cosh( y

Ls

)

cosh( L
2Ls

)

)

−K
elD
ǫ

sinh(
y

lD
).

(90)
As just noted, typically lD ≪ ls, so we now can take
cI1 ≈ cI2 ≈ 1 for the term in Ē.
For the term in K, although the integral over

K sinh(y/lD) grows exponentially in L/lD, this is com-
pensated by a similarly exponentially growing denomina-
tor in K. The integral over y multiplies the Ē term by
a factor on the order of Ls, whereas it multiplies the K
term by a factor of only lD. The net effect is that the
transverse voltage produced by δnH ∼ K is smaller by
l2D/L

2
s than the transverse voltage produced by δnI ∼ Ē.

We thus neglect the effect of δnH on the transverse field
and voltage.
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Performing the integral of (74) using only the Ē term
in (90) yields

∆V⊥ ≈ −
(βE0Ls)

2

µD

[

1−
1

cosh( L
2Ls

)
−

1

4

cosh( L
Ls

)− 1

[cosh( L
2Ls

)]2

]

.

(91)
The last of the three terms in the bracket is due to the
new term – the correction due to the application of ir-
reversible thermodynamics. In the limit where L ≫ Ls,
this becomes

∆V⊥ ≈ −
(βE0Ls)

2

2µD
= −γ2so

µτsE
2
0

2
. (92)

Without the new term, for L ≫ Ls, ∆V⊥ would have
been twice as large as in (92).
Table 1 gives estimated experimental values, where

jmax is the maximum current before the sample burns
up, and we take

Emax
0 = ρjmax.

For GaAs the estimated maximum center-to-edge trans-
verse voltage ∆V⊥ is on the order of 10−4 V, but for Pt
it is on the order of 10−8 V. The former holds much more
promise of measurement.

IX. SUMMARY AND CONCLUSIONS

We have applied the methods of irreversible thermo-
dynamics to the theory of non-magnetic conductors with

a spin 1/2 degree of freedom and spin-orbit scattering.
In addition to the terms of Refs. 13 and 14, we find three
additional terms that enter the electric current. When
applied to a transverse voltage difference that is second-
order in the applied electric field, we find that the ad-
ditional term cancels half of the voltage computed in its
absence, and that together the two terms yield a mea-
sureable voltage. Such measurement, however, cannot
be done with conventional probes because they might
draw current and/or spin accumulation, but a capaci-
tative measurement – perhaps one that is done with a
longitudinal ac field – might be effective as a detection
method.
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Appendix A: The Anomalous Hall Effect resistivity

from the Spin Hall Effect coefficient

For our geometry, with ~B = Bẑ, and strong enough

to align ~M along ~B, application of Pugh’s empirical re-
sult for the HE resistivity of ferromagnetic materials41,42

takes the form

ρH ≡
Ey

jx
= R0B +R1M. (A1)

Here Pugh employed emu, so B and M have the same
units; and R0 and R1 are material-dependent constants.
The second term is what is known as the Anomalous Hall
Effect (AHE). Dyakonov and Perel remark that this form

follows from the −β ~P × ~E term in their ~q. Because this
result is not well-known, we present it here.
As a start, we rewrite (A1) as

ρH = ρH,O + ρAHE. (A2)

To derive each term, we first add the Lorentz force ~v× ~B

to ~E∗ in ~q of (1). If ~B is strong enough to pull ~M out of

the plane, so ~M is directed along ~B, then ~P is opposite

to ~B. Moreover, the ~∇× ~P is now negligible.
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We now focus on qy, which in steady-state will go to
zero:

qy ≈ −µn(E∗
y + vxB)− βE∗Pz . (A3)

Using σ = neµ, ~P = −(2/γ~) ~M , ~j = −e~q, and

jx = σE∗
x = −nevx,

(A3) leads to

~jy ≈ σ[E∗
y −

σ

ne
E∗

x(B +
2βne2

σ2γ~
M)]. (A4)

Setting jy = 0 gives

E∗
y =

σ

ne
E∗

x(B +
2βne2

σ2γ~
M). (A5)

Now note that the transverse (Hall) voltage VH is ac-
tually determined by the electron chemical potential, and
therefore VH = E∗

yd yields E∗
y . From this we find that

ρH ≡
E∗

y

jx
=

B

ne
+

2

σ
(
β

µ
)(
M

γ~n
). (A6)

In the above equation the second two ratios are dimen-
sionless, so this obviously is a resistivity. Comparison
with (A2) then yields the ordinary and anomalous Hall
resistivities.

ρH,O =
B

ne
, ρAHE =

2

σ
(
β

µ
)(
M

γ~n
). (A7)

We have thus seen how the theory of Dyakonov and Perel
predicts an anomalous HE, and gives a specific form for
the anomalous Hall resistivity.

Appendix B: Magnetic Damping and Irreversible

Thermodynamics

The original proposal for the magnetic damping part

∂t ~Md of ∂t ~M , by Landau and Lifshitz (LL),43 was a phe-
nomenology of the form

∂t ~MLL,d = −λM̂ × ( ~M × ~Ba), (B1)

where ~Ba includes the applied and anisotropy fields, and
(if present) a non-uniform exchange field.

However, Kelly’s rotational hysteresis measurements
on permalloy with in-plane anisotropyK found unusually
large damping at low frequencies, which Gilbert could
not fit with the Landau-Lifshitz form.44 Gilbert then pro-
posed the magnetic damping form

∂t ~MG,d = αM̂ × ∂t ~M, (B2)

which he could fit to the data with a frequency-dependent
α (as large as 9) and a fixed gyromagnetic ratio.
A later study by Mayfield45 concluded that the excess

damping at low frequency was, “as first pointed out by
J. C. Slonczewski”, due to “abrupt reorientations of M ,
which must occur when K/M ≤ H ≤ 2K/M”. Here
K is the in-plane uniaxial anisotropy constant that de-
velops on cooling the system through the Curie tempera-
ture; this leads to two local minima in the indicated field-
range. (One may consider that H = Ba/µ0.) In other
words, the dissipation that Kelly observed, and which
prompted Gilbert to develop an alternate phenomenology
that, like Ref. 43, assumed small variations in magnetiza-
tion space, likely was due to the system undergoing large
variations in magnetization space. The possibility of ex-
plaining such damping quantitatively awaited a Fokker-
Planck theory of statistical fluctuations, which was not
provided until a few years later by W. F. Brown.46,47

Besides the theory of Gilbert, a number of alternate
theories of magnetic damping were developed, including
one by Callen48 that assumed the LL form for transverse
damping but added a longitudinal damping term that he
studied using magnons. However, Landau-Lifshitz damp-
ing is supported by many independent derivations using

irreversible thermodynamics, where M̂ × ~Ba is the ther-
modynamic driving force.49–51 Thus irreversible thermo-
dynamics has distinguished unambiguously between the
two distinct phenomenologies of Landau and Lifshitz and
of Gilbert.
From the viewpoint of irreversible thermodynamics the

primary objection to Gilbert damping is that it is not
driven by a thermodynamic force (which would have a

unique signature under time-reversal) – here ~M × ~Ba.
It is also somewhat peculiar in that the damping itself

(M̂ × ∂t ~M) is proportional to the quantity whose time-

derivative (∂t ~M) we are studying.
Most systems are not uniform. Nonuniformity

can introduce two-magnon scattering (inhomogeneous)
linewidths;52 further, surface scattering is not included
in (bulk) Landau-Lifshitz damping.53 Modern samples
have small values of λ/γ = α, making the LL and
Gilbert forms of damping nearly the same; theories
based on α have been rather successfully applied to real
materials.54,55


