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This paper provides a method based on rigorous coupled wave analysis for the calculation of
the radiative thermal conductance between a layer that is patterned with arbitrary, periodically
repeating features and a planar substrate. This method is applied to study the transfer from an
array of beams with a rectangular cross section. The impact of the structure size and spacing on
the thermal conductance are investigated. These calculations are compared to an effective medium
theory, which becomes increasingly accurate as the structure sizes fall well below the relevant res-
onance wavelengths of materials and structures. Moreover, comparisons are made with a modified
proximity approximation and the far-field approximation, which become valid for small and large
spacings, respectively. Results show that new levels of control over the magnitude and spectral
contributions to thermal conductance can be achieved with corrugated structures relative to planar
ones. Specifically, we show for SiC arrays with rectangular cross sections and with the same filling
fraction that the use of a smaller periodicity leads to a lowered far-field thermal transfer and an
increased near-field thermal transfer.

INTRODUCTION:

The control of thermal emission is critical to a vari-
ety of applications such as energy conversion1,2, imaging3
and thermal emitters4,5. One way to achieve control
over thermal emission is by manipulating the near-field
surrounding optically-resonant nanostructures6,7. Radia-
tive thermal transfer between two objects which obeys
Planck’s law8 in the far-field limit shows a dramatic
enhancement when the separation is reduced to such
an extent that near-field effects dominate the thermal
transfer9–11. Near-field effects cause a redistribution of
the local density of states (LDOS) and enable evanescent
waves to make the most significant contribution to the
total thermal transfer. In addition to the total magni-
tude of the thermal transfer, the spectral contributions
also dramatically change in the near-field regime10.

Recent developments in area of nanophotonics have in-
spired efforts to use structures with subwavelength fea-
tures for the purpose of controlling radiative thermal
transfer. An exact theory is available to quantify the
thermal transfer between an arbitrary number of arbi-
trarily shaped objects12. However, finding numerical so-
lutions for seemingly simple geometries (e.g. a nanopar-
ticle above a plane) requires tremendous computational
power as multiple frequencies and length scales are in-
volved. For this reason, there have been intense efforts
to develop new, efficient numerical techniques that en-
able calculation of thermal transfer in specific geometries.
This enabled calculation of thermal transfer in important
basic geometries, such as planar-to-planar9,13,14 as well
as planar structures to a sphere15–17, a cylinder17, and
even a cone17. A good review that summarizes the results
of such studies is given in reference18.

In addition to the development of faster numerical
techniques, physical insight is also used to improve the
speed by making certain reasonable approximations. For

example, effective medium theory has been used to speed
up calculation of the thermal transfer between sub-
wavelength periodic structures19–23. This theory trans-
forms high spatial frequency structures to uniform, sim-
ple structures for which the variations in optical proper-
ties occur just along a single dimension creating a strat-
ified medium; after that, theories to deal with strati-
fied media9 can be applied for calculation of the ther-
mal transfer. Effective medium theories cannot han-
dle periodic structures with structure sizes that are not
deep-subwavelength for all of the relevant wavelengths
in the problem. Here, the relevant wavelengths can be
linked to materials-related resonances (e.g. plasmonic or
phononic) or structure related resonances (e.g. Mie or
grating resonances).

In this paper we theoretically derive an expression
for the radiative thermal heat transfer in periodic struc-
tures based on rigorous coupled wave analysis (RCWA)
method that can handle such structures. This enables
one to access new physical regimes and to discover and
systematically analyze new physical phenomena in ther-
mal transfer physics. Thermal emission from periodic
structures to air is investigated in several references24,25.
Moreover, the thermal transfer between two gratings
with semi-infinite sizes is investigated using the scatter-
ing method, recently26,27. The scattering trace formu-
las have also been incorporated for structures made of
multiple bodies28. Here, we consider the thermal trans-
fer between a finite-sized nano-structured periodic mate-
rial and a planar structure in the near-field regime. The
RCWA technique together with the possible use of sym-
metries in a system boosts the numerical efficiency com-
pared with the simulations that has been done for calcu-
lation of thermal transfer between grating structures us-
ing the Finite-difference time-domain (FDTD) method,
recently29. Moreover, for comparison purposes, some ap-
proximation methods are developed for thermal transfer
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calculation. One well known method for near-field ther-
mal transfer calculation is the proximity method30–32.
Here, since the periodic structure can have a finite-sized
height, the proximity method is generalized to take care
of such finiteness. On the other hand in the far-field
regime, the thermal transfer can be calculated based on
knowledge of the directional emissivity of the substrate.

The RCWA formalism provides significant flexibility
to include arbitrarily shaped nanostructures and good
criteria for determining the accuracy of obtained results
based on convergence by increasing the number of spa-
tial harmonics. Our proposed method bears some re-
semblance to the scattering method15,33 in its final form;
however, there are some distinguishing technical differ-
ences. Our method also provides a very direct way for
determining the variation in thermal transfer across a
period in the periodic structures. This variation can it-
self give important information to determine whether the
periodicity is in the subwavelength regime or not. For in-
stance, in the regime that periodicity is on the same order
or even larger than the pertinent resonance wavelength,
one would intuitively expect that the thermal transfer
flow to be maximized in the regions where the top and
bottom layer are closer together and vice versa. In fact,
in this regime the total thermal transfer can be seen as
a superposition of parallel channels corresponding to re-
gions with different gap sizes, in which the contribution
of each channel is dependent on the local gap size. This
decomposition breaks down in the regime that periodicity
becomes subwavelength, in which effective medium the-
ory becomes more accurate, and the interference between
two adjacent regions becomes increasingly important. In
the deep subwavelength regime, thermal transfer should
have negligible variation across the period.

It should be noted that there are some recent proposed
techniques such as using of trace formulas based on the
boundary element methods34 for thermal transfer calcu-
lation. In addition, there are some available Eigen-mode
expansion methods35 for this purpose. However, the su-
periority of the proposed method is that it does not need
to find a proper orthonormal basis based on the geom-
etry of the structure. Furthermore, it does not require
carrying out FDTD simulations for obtaining the spectral
energy flux from each mode.

Use of the RCWA method for obtaining electromag-
netic field patterns is quite common in nanophotonics. A
numerically stable version of this method was first devel-
oped by moharam36,37, and this technique can be used
to obtain electromagnetic field distributions developed
around arbitrary periodic structures under plane wave
incident field illumination. However, for thermal transfer
calculations we will use it to calculate the Green’s func-
tions that capture the electromagnetic field responses to
arbitrarily located and oriented electric dipoles. For cal-
culation of the Green’s functions with the RCWAmethod
we have made use of the modified Sipe’s formalism25,38.

In continuation, the derived method is used for cal-
culation of the thermal conductance between a SiC slab
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Figure 1: Schematic of (a) planar structured materials
and (b) a planar and an arbitrary shaped periodic
structure that will be analyzed in thermal transfer

calculations.

and an array of SiC beams of rectangular cross section.
Here, the dependence of the thermal transfer on beam
size is explored. Silicon carbide is a polar semiconductor
and its surface supports electromagnetic waves coupled
to collective lattice vibrations known as surface phonon
polaritons (SPhPs). These surface waves which are in
the infrared spectral region provide the main channels for
thermal transfer in the near-field regime for such materi-
als. The numerical calculations are done for spacings and
periodicities that span several orders of magnitudes to ex-
plore different physical regimes for the thermal transport.
Since SiC has a phononic resonance wavelength around
10µm, we also expect Mie resonances to show up them-
selves in these range of distances. Our calculations verify
this hypothesis by showing that in this range of distances,
the thermal conductance obtains its maximum value for
non planar structures. This observation demonstrates
that periodic structures can be used to reach new levels
of control over thermal transfer and afford access to new
resonant pathways that enhance or spectrally control the
thermal transfer.

EXACT THEORY:

Before deriving the theory used for calculating the
thermal transfer from a periodic to a planar structure, it
is educational to briefly review the derivation of Green’s
functions in planar structures through the use of Sipe’s
method38. Thermal transfer calculations involving pla-
nar structures were first done by Van hove and Polder in
19719. Sipe showed how the required Green’s functions
for calculation of thermal transfer can be re-derived in
a convenient form for an arbitrary stack of planar ma-
terials. The first section of the supplemental material39
is devoted to this re-derivation. This corresponds to cal-
culation of Green’s functions in structures like the one
shown in Fig. 1a. Generalizing Sipe’s approach, Green’s
functions can be obtained for periodic structures. Those
Green’s functions can be used later for obtaining the ther-
mal transfer through calculation of the Poynting vector
that captures the thermal power flow from one medium
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to another. A schematic of the type of periodic struc-
tures of interest is illustrated in Fig. 1b. For illustration
purposes and to simplify the math involved, we restrict
ourselves to have one of the materials to be planar (shown
as material 2).

For calculation of the near-field thermal trans-
fer, the Green’s functions
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where êb is the unity vector in direction b, which
takes on the unity vectors in x, y, and z directions
in the summation. These are the electric and mag-
netic fields at position x, y, and z, produced by the
unity component a of the current density at z′ = 0, re-
spectively. Note that
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responses at position x, y, and z to P and
S polarized incident plane waves with transversal
wave vector ββ̂ and unity electric field amplitude
at position z′ = 0 and angular frequency of
ω. Similarly,
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magnetic field responses. These vector quantities can be
obtained through the RCWA method. The above equa-
tions are modified versions of Sipe’s formalism38 as ap-
plied to periodic structures.

Moreover, we know that fluctuating current densities
inside a material that is in thermodynamic equilibrium at
a temperature T , obey the following correlation relation
known as the fluctuation dissipation theorem40,41:

〈
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Using the above equations and after a somewhat te-
dious derivation39, the following expression is obtained
for the thermal conduction:
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In fact, what is measured as the total heat conductance
is the average of the above function across a period, which
we show here with the same symbol:

Stotal =
1

P

ˆ P

x=0

Stotal (x) dx (5)

We have assumed that the periodic material is located
between planes z = 0 and z = −h. In the case that the
periodically structured material extends to infinity, we
should simply neglect the terms corresponding to z = −h
in the Eq. 4.

It is important to note that considering only the fields
in a line in the x-direction saves significant computational
time. In fact this is achieved by exploiting the transla-
tional symmetry of our structure in y-direction and also
the fact that for obtaining the energy flow, it is sufficient
to calculate the Poynting vector in a cross section. Note
that in our method, the variation in the thermal transfer
across a period can also be obtained. This provides the
ability to determine the contributions of different loca-
tions across the period to the total thermal transfer or
conductance.

Moreover, in the above calculations, we are involved
with only transverse components of the electromagnetic
fields. Since these quantities are continuous across the
barrier, we need only to calculate the electromagnetic
fields in the substrate right at the boundary and also
in the plane z = −h right outside the periodic mate-
rial. Electromagnetic fields in the substrate right at the
boundary can be calculated from the reflection coeffi-
cients in the RCWA formalism. Similarly, electromag-
netic fields right outside the periodic material can be cal-
culated from transmission coefficients. This will further
simplify the required RCWA calculations since the calcu-
lation of the electromagnetic fields in the middle layers
are not needed anymore. [See section 7 of reference37]



4

APPROXIMATION METHODS:

Far-Field Approximation Method:

For calculation of the thermal transfer in the far-field
regime, we can use the fact that the directional emissivity
of the substrate is given by the ep (θ) = 1 − |Rp (θ) |2
and es (θ) = 1 − |Rs (θ) |2 corresponding to the p and s
polarizations, respectively42. Then the thermal transfer
can be calculated based on how much the emitted power
is absorbed by the periodic structure. To first order, if
we neglect the contribution of the rays after reflection
from the top structure and returning to it after reflection
from substrate, we have:

S(ω) =
~2ω4

8π3c2kbT 2

(
e

~ω
kbT − 1

)−2
e

~ω
kbT

×
ˆ 2π

0

ˆ π
2

0

sin (θ) cos (θ) dθdφ

× (ep (θ)Ap (θ, φ) + es (θ)As (θ, φ)) (6)

where in that Ap (θ, φ) and As (θ, φ) corresponds to
the absorption of the periodic structure at an azimuthal
angle φ and a polar angle θ for p and s polarizations,
respectively.

Since the contributions of the rays undergoing two or
more reflections to the thermal transfer are neglected,
this approximation gives a lower limit to the exact ther-
mal transfer in the far-field regime.

Modified Proximity Method:

For calculations in the near-field regime, the proximity
method is perhaps the most popular one30–32. However,
in its original form the two bodies are assumed to have
semi-infinite height. Here, since the periodic structure
can have a finite height, the proximity method has to be
generalized. In this method, thermal transfer is calcu-
lated across a period, based on the distance of the two
bodies and the height of the periodic structure at that
point. According to this method, for an array of beams
with rectangular cross section, thermal transfer should
vary in proportion to the filling fraction (FF ), which is
defined as the ratio of the beam width to the periodicity.

NUMERICAL SIMULATIONS:

In the following, we consider a periodic array of SiC
beams of rectangular cross section placed above a contin-
uous slab of SiC (Fig. 2). Using our developed formalism,
the thermal conductance between the SiC beams and the
slab of SiC is numerically calculated. The details of the
notations used for the parameters involved in this struc-
ture are shown in Fig. 2. Calculations for this structure

Air

SiC

FF×P P

d
d

beam

SiC beams

with rectangular 

cross section 

Figure 2: SiC beams with a rectangular cross section
are placed in front of a SiC substrate. The width of each
beam is assumed to be FF × P , and they are separated

by a distance P from each other. The distances
involved for this structure are shown in the figure.

have been done for four different separations between the
two SiC structures (specifically d = 50µm, d = 5µm,
d = 0.5µm, and d = 0.05µm) and different periodicities
(specifically P = 1um, P = 10um, and P = 0.1um).
The height of the beams in the considered structures is
dbeam = 5µm.

Based on references43,44, it is assumed that the rel-
ative permittivity of SiC can be written as ε = ε∞ +

ω2
0 (εs − ε∞)

(
ω2
0 − ω2 + iωδ

)−1, with ε∞ = 6.7, εs = 10,
δ/ω0 = 0.006 and ω0/(2π) = 2.38 × 1013sec−1(12.6µm).
The frequency variations of the real and imaginary parts
of this relative permittivity are plotted in Fig. 3. In ad-
dition, the temperature that is assumed in the numerical
calculations is T = 315K.

Numerical Implementation:

For calculations based on the RCWAmethod, it is well-
known that increasing the number of harmonics leads
to a more accurate determination of the field distribu-
tions. However, this increase will lead to an increase in
computational time as well. Since the numerical evalua-
tion of the thermal conductance by the presented method
involves inverting 4n × 4n matrices, the computational
time grows with the cube of the number of harmonics
incorporated. It is clear from the last equation in theory
section that obtaining the spectral thermal conductance
at a specific frequency requires two dimensional integra-
tions in the kx, ky plane. For each value of kx and ky,
a RCWA calculation should be carried out to obtain the
corresponding integrand. This clarifies the importance of
identifying a fast integration technique to maximize the
speed of calculations. We have used the VEGAS method
for integration in kx, ky plane which is based on Monte
Carlo important sampling of the integrand function45.
To verify our calculation technique, we first accurately
reproduced the results for the limiting cases of gratings
with filling fractions of 0 and 1. In those cases, using
just one harmonic will lead to the precise result and the
RCWA method will converge to the results that can be
obtained with the transfer matrix method for a stratified
medium consisting of uniform layers. In these extreme
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Figure 3: Frequency variations of the real and
imaginary parts of SiC relative permittivity.

cases we can simply use the planar methods developed
by Polder and Van hove9.

For this study, these numerical calculations were run
on a node with 16 CPUs using MPI46 for paralleliza-
tion (The node that we used for our calculations has 16
processors of 2.67 GHz Intel Xeon X5550). The time re-
quired for obtaining each set of results on a single node
for the case of 21 harmonics was around 10 hours. How-
ever, this can be decreased by capitalizing on certain sym-
metries in specific periodic structures, which has been
proposed for the 2D grating in reference47 and can be
incorporated in 1D grating structures as well (using for
instance the inversion symmetry present in the binary
grating).

To study the convergence of the results with the num-
ber of harmonics, calculations were made with 4 differ-
ent numbers of harmonics: 1, 5, 11, and 21. Obtained
results show that for the considered structures, the ther-
mal conductance converges with less than 2% error by
incorporating 21 harmonics without the need for using
more harmonics.

Numerical Results:

One important fact that can be derived from the ob-
tained results is that, as the periodicity decreases, the
result obtained with using just one harmonic becomes
more accurate. This is to be expected since in the case
of incorporating just one harmonic, our method repro-
duces results obtained by the effective medium theory
(EMT) which becomes increasingly accurate in subwave-
length regime (compared with the surface phonon po-
lariton resonance wavelength). Note that in the case of
using just one harmonic, the permittivity of each layer
is replaced by a constant value across the period. This
constant value, however, takes on different magnitudes
depending on the incident electric field direction. This is
the case also in the effective medium theories19–23, used
for calculation of the thermal transfer, in which effective
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Figure 4: Contributions to the thermal conductance for
the structure shown in Fig. 2 across a period for

different values of periodicity, by assuming a constant
value of FF = 0.4, in the case of (a) d = 5µm (b)

d = 0.5µm (c) d = 0.05µm.

permittivities of different layers are calculated as con-
stant tensorial quantities. In this regard, our proposed
method can be used to determine the accuracy of the ef-
fective medium theory and how the actual responses are
deviating from it.

Figure 4 shows the contribution of different points
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across the period to the total thermal conductance. In
this figure the thermal conductance is plotted as a func-
tion of position x across the period at the z = 0 plane
for different values of periodicity and distances. The fill-
ing fraction is assumed to be the same value of 0.4 in all
cases. Note that since we have translational symmetry
in the y direction, there is no change in thermal con-
ductance in that direction. This figure verifies the fact
that the thermal conductance in the limit of small peri-
ods tends toward a constant value across the period which
can be obtained by effective medium theory. On the other
hand, this figure further demonstrates that for periodici-
ties larger than some critical value, the thermal conduc-
tance can be modeled as a superposition of two channels;
a channel with larger thermal conductance which is due
to parts of slabs that are closer together and the other one
with smaller thermal conductance which is due to the sec-
tions that are farther from each other. These plots were
obtained by incorporation of 21 harmonics. Note that
these plots show the total thermal conductance from the
substrate to outside and do consider the part of it that
goes outside the array of beams, as well.

The results of the calculations for the structure shown
in Fig. 2 with different values of periodicity are shown
in Fig. 5 for the case of d = 50µm. The total thermal
conductance for the small periods is monotonically in-
creasing with increasing filling fraction. This comes from
the fact that gratings with higher filling fractions feature
more SiC material that is located near the adjacent SiC
slab. This then naturally facilitates higher evanescent
coupling. However, for the case of d = 50µm with the
periodicity of P = 10µm, a peak in thermal transfer is
achieved for a value of the filling fraction which is nei-
ther 0 nor 1. Noting the fact that the phononic resonance
wavelength of the SiC is around 10µm, one can expect
Mie resonances of the beams to become important in this
case. Such resonances can enhance the thermal transfer
and give rise to the highest value of the thermal conduc-
tance for a non-unity filling fraction. Note that in this
case, the result of effective medium theory has the largest
inaccuracy. This is expected since in this case the peri-
odicity is the largest compared with the two other cases
(P = 1µm and P = 0.1µm).

The contributions of different frequencies to the ther-
mal conductance for the case of d = 50µm are shown
in Fig. 6. In this figure, the frequency spectra of the
thermal conductance are plotted for three selected filling
fractions and for different periodicities. Considering ar-
rays with a periodicity of P = 10µm, one can see that
the thermal conductance for the periodic structure with
a filling fraction of FF = 0.7 is higher compared with
the planar structure. From this figure, it can be seen
that this is due to resonant channels which contribute to
the thermal conductance, significantly.

For the case of d = 50µm, thermal conductance is also
calculated based on the far-field approximation (FFA).
As we expect, this approximation gives a lower value than
the exact calculation because it neglects contributions to
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Figure 5: Total thermal conductance for the structure
shown in Fig. 2 with d = 50µm and different values of
filling fraction with the periodicity of (a) P = 10µm (b)

P = 1µm (c) P = 0.1µm.

the thermal transfer arising from multiple reflections of
the thermal radiation. However, it is still consistent with
the fact that the thermal transfer achieves its maximum
for a non-unity filling fraction in the case of P = 10µm.

By decreasing the distance from d = 50µm to d =
5µm, the thermal conductance for different filling frac-
tions and periodicities increases but still becomes max-
imum for a non-planar structure at P = 10µm (See
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Figure 6: Thermal conductance frequency spectrum for
the structure shown in Fig. 2 with d = 50µm and

different values of filling fraction with the periodicity of
(a) P = 10µm (b) P = 1µm (c) P = 0.1µm.

Fig. 7a). This shows a transition regime, in which both
the near-field effect and Mie-resonances are helping to
achieve a higher thermal conductance.

However, as Figs. 7b and 7c show, by further decreas-
ing the distance, we reach a regime in which the thermal
conductance monotonically increases with increasing fill-
ing fraction. Note that this increase is not necessarily
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Figure 7: Total thermal conductance for the structure
shown in Fig. 2 with different values of filling fraction
and periodicity for (a) d = 5µm (b) d = 0.5µm (c)

d = 0.05µm.

linear with the filling fraction. However this increase be-
comes more linear for large values of the periodicity. This
again is consistent with our intuition that for large val-
ues of periodicity, the interference between neighboring
beams is negligible and that the modified proximity ap-
proximation becomes more accurate.

By decreasing the distance, the spectral contributions
to the thermal conductance also change. As the distance
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Figure 8: Thermal conductance frequency spectrum for
the structure shown in Fig. 2 with the periodicity of
P = 10µm and different values of filling fraction for (a)

d = 5µm (b) d = 0.5µm (c) d = 0.05µm.

decreases, the frequency spectrum of the thermal con-
ductance becomes more concentrated around the surface
phonon polariton resonance frequency of a SiC/Air in-
terface. This can be seen from Fig. 8, which shows the
frequency spectrum of the thermal conductance for dis-
tances of d = 5µm, d = 0.5µm, and d = 0.05µm in the
case of periodicity of P = 10µm.
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Figure 9: Variation of the total thermal conductance as
a function of distance for the structure shown in Fig. 2
with FF = 0.4 and dbeam = 5µm. Calculations are done

for two periodicities P = 0.1µm and P = 10µm.

Finally, the variation of the thermal conductance with
distance for two arrays of beams with periodicities of P =
10µm and P = 0.1µm (with dbeam = 5µm and filling
fraction of 0.4) is shown in Fig. 9. As it can be seen from
the figure, for large distances, the thermal conductance is
higher for the array with larger periodicity (P = 10µm).
This can again be attributed to the Mie resonances of
the periodic structure with larger periodicity. However,
for the very small distances, d < 0.05µm, the structure
with smaller periodicity will have even higher thermal
conductance. Note that the thermal conductance in this
near-field regime is mainly concentrated around the SiC
surface phonon polariton frequency. Moreover, the curve
shows that the dependence in this regime is nearly as d−2;
however it shows small deviations for the two different
periodicities.

One important feature of our method is that it can be
used in this way for calculation of thermal transfer be-
tween a slab and a particle of any size or shape. This
comes from the fact that for sufficiently large periodic-
ities, the interference between neighboring particles be-
comes negligible and the thermal conductance is coming
from the sum of the contributions of individual beams.
This can be proposed as an alternative method for calcu-
lation of thermal conductance between e.g. a sphere and
a slab that has been done in several methods in several
references15–17.

CONCLUSIONS:

In this paper, we have developed a formalism for cal-
culating the thermal transfer in periodic structures with
building blocks of arbitrary size and shape. We applied
this method to obtain the thermal conductance between a
slab of SiC and an array of SiC beams of rectangular cross
section. The obtained results show that, thermal conduc-
tance in these cases can accurately be obtained through
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incorporation of some of the first harmonics. Moreover,
results show that the thermal transfer changes monotoni-
cally with increasing filling fraction for the cases that dis-
tances are much smaller than the SPhP resonance wave-
length. However, this trend breaks down for the case that
distances are on the same order of magnitude as the per-
tinent resonance wavelength. Results show that arrays
with larger periodicity but with the same filling fraction
show increased thermal transfer in the far-field regime.
However, the reverse holds in the near-field regime.

Our method, in the case of incorporating just one har-
monic reproduces the results obtained by the effective
medium theory. In this regard, this method can be used
to determine the accuracy of the effective medium theory
for specific structures of interest. According to the nu-

merical results obtained, as we expect, by decreasing the
periodicity of the structure to the subwavelength regime
compared with the relevant resonance wavelengths in the
system, effective medium theory becomes increasingly ac-
curate.

This method can also be used to analyze the thermal
transfer between structures in which one of the materi-
als is composed of an array of beams. Since in the limit
of large periodicity, the interference effects between par-
ticles become negligible, this method poses itself to be
used for calculation of thermal transfer between a slab
and arbitrarily shaped particles. For the reasons above,
we believe that the presented technique will prove versa-
tile for calculating and optimizing the thermal transfer
between wide varieties of practical structures.
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