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ABSTRACT 

A recently developed bounds-analysis approach has been used to interpret density-

functional-theory (DFT) results for the As and Ga antisites in GaAs. The bounds analysis 

and subsequent processing of DFT results for the As antisite yielded levels - defined as 

the Fermi levels at which the defect charge state changes - in very good agreement with 

measurements, including the −1/0 level which is within 0.1 eV of the conduction-band 

edge. Good agreement was also obtained for the activation energies to transform the AsGa 

from its metastable state to its stable state. For the Ga antisite, the bounds analysis 

revealed that the −1 and 0 charge states are hole states weakly bound to a localized −2 

charge state. The calculated levels are in good agreement with measurements. 
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I. INTRODUCTION 

 

 Point defects in semiconductors typically exist in more than one charge state. The 

charge states of a defect and its levels, which are defined as the Fermi levels at which the 

charge state changes, are technologically important because they control the relative rates 

of carrier capture and emission, and thus determine how much influence a defect has on 

the performance of a minority-carrier device. Since experimental studies of defects are 

challenging, there has been considerable interest in theoretical defect studies. 

 Theoretical studies of point defects rely mainly on Kohn-Sham density-functional 

theory 1 (DFT) and a semilocal exchange-correlation functional such as the local density 

approximation (LDA) 2 or generalized gradient approximation (GGA). 3 DFT calculations 

are typically performed in a periodically repeated parallelpiped (supercell) containing a 

single defect surrounded by bulk material. Candidate charge states are simulated by 

adding electrons to or removing electrons from the defect supercell, and DFT is used to 

minimize the supercell energies of the candidate charge states with respect to their ionic 

coordinates. The results are then analyzed to identify the stable defect charge states and 

processed to enable comparisons with experimental data and modeling of the defect's 

influence on minority-carrier devices. 4 

 In this study, DFT has been used to determine the charge states and levels of the 

As antisite (AsGa) and Ga antisite (GaAs) in GaAs. Details about the DFT calculations, the 

identification of the AsGa and GaAs charge states, and the processing of the levels 

associated with these charge states are described in Section II. A novel aspect of this 

study is the use of a recently developed bounds-analysis approach 5 to identify and 
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interpret the DFT results for the candidate AsGa and GaAs charge states. In Section III, the 

charge states and levels of AsGa and GaAs are reported and compared with measurements 

and previous theoretical results. In addition, activation energies for thermal transitions 

between two different AsGa structures are reported and compared with measurements. 

 

II. THEORETICAL TECHNIQUES 

 

A. DFT calculations 

 

Kohn-Sham DFT calculations were performed using the Socorro code, 6 with 

periodic boundary conditions, a plane wave basis, 7 norm-conserving pseudopotentials 

(NCPs), 8 and LDA 2 exchange and correlation. Semilocal Ga+3 and As+5 NCPs were 

constructed using the FHI98PP code 9 and converted into local potentials and Kleinman-

Bylander projectors 10 for use in Socorro. A 40 Ryd energy cutoff was used to define the 

plane-wave basis set for the Kohn-Sham orbitals and Kleinman-Bylander projectors, and 

a 160 Ryd cutoff was used to define the plane-wave basis set for the electron density and 

local potentials. The occupations of the Kohn-Sham orbitals were calculated from their 

eigenvalues using a Fermi function with kT = 0.0257 eV, and Brillouin-zone sampling 

meshes (denoted n×n×n, where n is an integer) were constructed using the Monkhorst-

Pack technique. 11 

To validate the NCPs, equilibrium lattice parameters were determined for bulk 

gallium, arsenic, and GaAs. DFT calculations for zinc-blende GaAs were performed in 2-

atom primitive supercells with seven lattice constants ranging from 5.451 Å to 5.768 Å 
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and using 5×5×5 sampling meshes. The supercell energies were fit using the Murnaghan 

equation, 12 which yielded an equilibrium lattice constant of 5.607 Å and a bulk modulus 

of 0.721 Mbar. A subsequent calculation at the equilibrium lattice constant yielded a 

direct Kohn-Sham band gap of 0.70 eV. Consistent with general trends found when using 

the LDA, the lattice constant is 0.8% smaller than measured value (5.653 Å), 13 the bulk 

modulus is 4.8% larger than measured value (0.756 Mbar), 14 and the Kohn-Sham band 

gap, ΔKS = 0.70 eV, is less than half of the measured gap at low temperature (1.52 eV). 15 

DFT calculations for bulk gallium were performed for an orthorhombic A11 structure 

using a 24×24×24 sampling mesh. The equilibrium lattice constants were a = 4.440 Å, b 

= 4.454 Å, and c = 7.524 Å, which are 1.5% smaller than measured values. 16 

Calculations for bulk arsenic were performed for a rhombohedral A7 structure also using 

a 24×24×24 sampling mesh. The hexagonally-transformed equilibrium lattice constants 

were a = 3.741 Å and c = 10.131 Å, which are 0.5% and 3.0% smaller than measured 

values. 17 

Candidate charge states were chosen for each defect type as discussed in Section 

III. The charge states were simulated by adding electrons to or removing electrons from 

defect supercells formed by inserting various defect configurations reported in the 

literature into bulk supercells. The supercell energy was then minimized by relaxing the 

ionic coordinates of the supercell using DFT ionic forces. To test the stability of the 

relaxed structure, atoms near the defect were given small displacements and the energy 

was then minimized again. In all cases, the purturbed structure returned to the original 

relaxed structure. Since the periodic boundary conditions used in the DFT calculations 

produced an infinite periodic array of defects, a uniform compensating charge density 
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was added to supercells having non-zero charge states to obtain well-defined solutions to 

Poisson's equation. 18 Defect calculations were performed in cubic 216-, 512- and 1000-

atom supercells with sizes L = 3×, 4× and 5×5.607 Å, where L is the cube root of the 

supercell volume. Uncertainties in the supercell energies due to Brillouin-zone sampling 

were reduced to 0.02 eV by using multiple sampling meshes: 2×2×2, 3×3×3, 4×4×4, and 

5×5×5 in the 216-atom supercells; 2×2×2, 3×3×3, and 4×4×4 in the 512-atom supercells; 

and 2×2×2 and 3×3×3 in the 1000-atom supercells.  

 

B. Analysis of candidate defect charge states 

 

 Due to the substantially reduced band gaps obtained in DFT calculations using 

semilocal functionals, a defect level that is experimentally observed to be in the band gap 

may lie within one of the band edges in the DFT calculation and therefore involve partial 

occupation of bulk conduction-band states or de-occupation of bulk valence-band states 

for one or both of its associated charge states. 5 In addition to introducing  errors in the 

DFT levels, this can make it difficult to identify the defect charge states. To help mitigate 

this difficulty, we recently developed a bounds-analysis approach 5 to interpreting defect 

results from semilocal DFT calculations. The basis of this approach is a comparison of 

the DFT levels with bounds representing the energies to add an electron to and remove an 

electron from the bulk material in a defect supercell. To make this more precise, consider 

a defect of type D in a supercell of size L. The level associated with candidate charge 

states q and q − 1 is given by the equation 19, 20 
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 ΔD q −1/ q, L( ) = E D q −1, L( ) − E D q, L( ) − εVBE ,  (1) 

 

in which E D q, L( )  and E D q −1, L( ) are the supercell energies of the two charge states 

and the level is referred to the Kohn-Sham eigenvalue of bulk GaAs at the valence-band-

edge (VBE), εVBE . (For future reference, we note that one can think of this level as 

arising from either the addition of an electron to a supercell in charge state q or the 

removal of an electron from a supercell in charge state q − 1.) The upper bound is defined 

as the energy to add one electron to a neutral bulk supercell of size L, 5 

 

 ΔB −1, L( ) = EB −1, L( ) − EB 0, L( ) − εVBE ,  (2) 

 

and the lower bound is defined as the energy to remove one electron from a neutral bulk 

supercell of size L, 5 

 

 ΔB +1, L( ) = EB 0, L( ) − E B +1, L( ) − εVBE ,  (3) 

 

where E B 0, L( ) is the energy of the neutral bulk supercell, E B −1, L( )  is the energy with 

one electron added, E B +1, L( )  is the energy with one electron removed, and the bounds 

are referred to εVBE  for consistency with the definition of a defect level (Eq. 1). Due to 

band-filling effects, 5 these bounds have substantial supercell-size dependences and the 

bounds analysis is facilitated by plotting the levels and bounds together vs. inverse 

supercell size (1/L) 21 and extending the bounds to the infinite supercell-size limit (1/L = 
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0) via cubic-spline fits of the calculated bounds; ΔB, fit −1, L( )  and ΔB, fit +1, L( ). At this 

limit, EB −1, L( ) − E B 0, L( ) → εCBE ,  the Kohn-Sham eigenvalue of bulk GaAs at the 

conduction-band-edge (CBE), and the upper bound thus becomes εCBE − εVBE = ΔKS ,  the 

Kohn-Sham band gap. 5 Likewise, the lower bound becomes εVBE − εVBE = 0. We refer to 

reader to Ref. 5 for further details about the bounds and how to efficiently calculate them 

in large supercells. 

 A bounds analysis was performed for each defect type and structure. 5 The first 

step in the analysis was to identify the defect charge states from among the candidate 

charge states. This was done for each supercell size (L) by a process of elimination. If the 

calculated level between two candidate charge states was at or above the upper bound, 

the more negative of the charge states was eliminated since it involves addition of an 

electron to bulk-like conduction-band states. Likewise, if the calculated level was at or 

below the lower bound, the more positive of the candidate charge states was eliminated 

since it involves removal of an electron from bulk-like valence-band states.  If the level 

was between the lower and upper bounds, neither of the two candidates was eliminated. 

 In the second step, the supercell-size dependence of each defect level identified in 

the first step was inspected to see if the level was: (1) near a bound, and (2) followed the 

bound, i.e., maintained a constant energy separation from it as a function of the inverse 

supercell size. As noted in Ref. 5, these criteria indicate that at least one of the associated 

charge states may be a hydrogenic state having a charge distribution which is weakly-

localized at the defect. The charge states associated with levels that did not meet these 

criteria were provisionally identified as having well localized charge distributions 

(subject to the third step in the analysis). 
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 In the third step, the defect levels that did not meet the criteria in the second step 

were compared with the bounds at the infinite supercell-size limit (ΔKS and 0). If the 

calculated level was above ΔKS, the more negative charge state could involve partial 

occupation of delocalized bulk conduction-band states. Likewise, a negative calculated 

level indicates that the more positive charge state might involve partial de-occupation of 

delocalized bulk valence-band states. If the level was between the VBE and CBE, its 

charge states were identified as having well-localized charge distributions. For each 

defect charge state that was identified as having partial occupation or de-occupation of 

delocalized bulk states, the magnitude of the delocalized charge was estimated using a 

technique described in Ref. 5, in which the excess charge in a bulk supercell was varied 

until the Fermi level became equal to the Fermi level of the defect supercell. If the 

relative delocalized charge was less than 20%, the charge state was processed using the 

procedures described in the next section, recognizing that the results will be less reliable 

than results for charge states without delocalized charge. (The 20% criterion is not based 

on a rigorous analysis at this point, but rather on an observation that a 20% delocalization 

did not significantly alter the dilute limit of an AsGa level as discussed in Section III.A.) 

 The bounds analysis thus identifies three types of defect states: (1) states with 

well-localized charge distributions, (2) states with partially localized and delocalized 

charge distributions, and (3) states that may have weakly-localized charge distributions 

characteristic of hydrogenic states. The first type is suitable for processing using the 

standard procedures described in the next section that are applicable to well-localized 

charge distributions. For the second type, the technique described in Ref. 5 is used to 

quantify the partial delocalization and determine if the state is suitable for processing 
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using the standard procedures discussed in the next section. For the third type, further 

analysis is needed to confirm that the state is truly hydrogenic. If this is so, then it is not 

suitable for processing using the standard procedures described in the next section. Since 

the bounds-analysis approach may be unfamiliar to some readers, we emphasize that it 

precedes and is separate from the processing discussed in the next section. 

 

C. Processing defect supercell energies 

 

 For defect charge states having suitably localized charge distributions, we used 

standard procedures to process their supercell energies and thereby obtain results that can 

be compared with experimental data and theoretical results in the literature. To begin, we 

calculated the defect formation energies. For a defect with structure D in a supercell of 

size L with charge state q, the formation energy is given by the equation 22, 23, 24 

 

 E f
D q, L,EF( ) = E D q, L( ) − E B 0, L( ) − Σiniμi + qEF , (4) 

 

in which E D q, L( )  is the defect supercell energy and E B 0, L( ) is the energy of a neutral 

bulk supercell of size L obtained using the same sampling mesh as the defect supercell. 

The third term is a sum over the number of atoms, ni ,  of type i that were added to 

ni > 0( )  and removed from ni < 0( )  a bulk supercell to form the defect structure, 

multiplied by the chemical potential, μi ,  of a reservoir providing atomic exchange. 

Therefore, this term is μGa − μAs  for AsGa and μAs − μGa  for GaAs. Our formation energies 

are reported for As-rich conditions in which μAs  is the DFT energy per atom of bulk A7 
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arsenic and μGa = μGaAs − μAs ,  where μGaAs  is the DFT energy per formula unit of bulk 

GaAs. The fourth term in Eq. 4 involves the Fermi level, EF , which is defined in terms 

of the chemical potential of a reservoir providing electron exchange, μe,  and a relative 

Fermi level, εF ,  such that EF = μe + εF . In this study, we used the customary convention 

in which μe  is the Kohn-Sham eigenvalue at the VBE, εVBE . 

Due to the use of periodic boundary, the formation energies obtained from Eq. 4 

contain supercell-size-dependent electrostatic interactions that were removed by fitting 

the formation energies to the Makov-Payne formula 25 truncated at the third-order term, 

 

 E f
D, fit q, L,εVBE( ) = E f

D, fit q, L → ∞,εVBE( ) −
α q | e |( )2

εL
+ A3

L3 . (5) 

 

In this formula, α = 2.8373 is the Madelung constant of a cubic lattice of point charges, 

q | e |,  embedded in a uniform compensating background charge, e is the electron charge, 

ε = 12.8  is the static dielectric constant of GaAs, 26 and E f
D, fit q, L → ∞,εVBE( ) is the 

defect formation energy in the limit of an infinite-sized supercell (the dilute limit), which 

is obtained from the fit along with the parameter of the third-order term, A3.  From these 

fits, the supercell-size dependences (ssd) of the defect levels and their dilute limits were 

obtained from the equation 24 

 

 ΔD,ssd q −1/ q, L( ) = E f
D, fit q −1, L,εVBE( ) − E f

D, fit q, L,εVBE( ),  (6) 
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which is analogous to Eq. 1 for this choice of the Fermi level EF = εVBE( ). We note that 

to obtain a more compact presentation of our defect results, we will plot the supercell-

size dependences of the defect levels, ΔD,ssd q −1/ q, L( ),  together with the DFT levels, 

ΔD q −1/ q, L( ),  and the cubic-spline fits of the defect bounds, ΔB, fit −1, L( )  and 

ΔB, fit +1, L( ). However, this presentation should not be taken to indicate that the bounds 

analysis depends on the fits of the defect levels. As noted above, the bounds analysis 

solely involves comparisons of the DFT levels, ΔD q −1/ q, L( ), with the defect bounds. 

  To compare the dilute limits of the levels with measurements, the DFT VBE and 

CBE were shifted to align them with the measured VBE and CBE. In this study, the VBE 

shift, ΔVBE ,  was chosen to be −0.41 eV so that the calculated +1/+2 level of AsGa agrees 

with the measured +1/+2 level. A CBE shift, ΔCBE ,  was then chosen so that 

ΔCBE − ΔVBE = 0.82 eV and the corrected DFT band gap agrees with the measured band 

gap at low temperature (1.52 eV). 15 We note that this procedure is analogous to the 

Marker Method 27 in that ΔVBE  is determined by aligning a DFT level with a measured 

level. It is also consistent with results from recent theoretical studies that compared levels 

obtained using semilocal functionals and hybrid functionals. 19, 28 These studies showed 

that semilocal and hybrid functionals give similar separations between defect levels, but 

the band edges from the hybrid functionals are shifted roughly equally toward lower 

(VBE) and higher (CBE) energies compared with the band edges from the semilocal 

functionals. For consistency with the shifts of the defect levels, we note that qΔVBE  was 

added to the reported formation energies (Eq. 5). 
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III. RESULTS 

 

A. As antisite charge states and levels 

 

 AsGa is the defect that results when an As atom substitutes for a Ga atom in GaAs. 

From experimental and theoretical studies, 29 it has a stable state referred to as EL2 and a 

(higher-energy) metastable state referred to as EL2*. From experiments, EL2 is known to 

have Td symmetry, three charge states (0, +1, +2), and two levels (+1/+2, 0/+1). 29 Deep-

level transient spectroscopy measurements find the +1/+2 level 0.54 eV above the VBE 

and the 0/+1 level 0.77 eV above the VBE. 30 At temperatures below 140 K, neutral EL2 

can be optically excited into neutral EL2*, which has C3v symmetry. 29 DFT studies by 

two groups played an important role in establishing that EL2* forms when the substituted 

As atom shifts along a <1,1,1> direction into a planar configuration with three of its near-

neighbor As atoms. 31, 32 From experiments, EL2* is known to have two charge states (−1, 

0) and one level (−1/0) 0.016 eV above the CBE at ambient pressure. 33 

We began our studies of EL2 and EL2* by choosing candidate charge states, 

calculating their DFT energies and levels (Eq. 1), and performing a bounds analysis on 

the results. To illustrate the bounds analysis, we review the results from our earlier study 

of the EL2 levels 5 in which we considered the three observed charge states (0, +1, +2) 

plus two additional candidates (−1, +3). In Fig. 1, we plot the levels  and cubic-spline fits 

of the bounds vs. inverse supercell size (1/L). From these plots, we eliminated the +3 

charge state because the +2/+3 levels were at the lower bounds, and the −1 charge state 

because the −1/0 levels were above the upper bounds. Since the +1/+2 and 0/+1 levels 
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were between the bounds, we concluded that +2, +1, and 0 are EL2 charge states, in 

agreement with experimental results. 29 From an inspection of Fig. 1, we also concluded 

that the +1/+2 and 0/+1 defect levels do not involve partially occupied or de-occupied 

bulk states because the levels are between the 0 and ΔKS . In addition, we concluded that 

the 0, +1, and +2 charge states are not hydrogenic since the levels are well-separated 

from the bounds and do not follow them. 

 Having identified the EL2 charge states, we processed them for comparison with 

measurements. The dashed lines in Fig. 1 are the supercell-size dependences of the defect 

levels, ΔD,ssd +1 / +2, L( ) and ΔD,ssd 0 / +1, L( ). In the dilute limit, they yield a +1/+2 level 

0.13 eV above the VBE and a 0/+1 level 0.36 eV above the VBE. After shifting the VBE 

by ΔVBE  (−0.41 eV), the 0/+1 level is 0.76 eV above the measured VBE in good 

agreement with the measurement of Lagowski et. al. 30 (0.77 eV) in p-type GaAs (see 

TABLE I). The formation energies at the dilute limit (including the qΔVBE  shift) are 0.19 

eV for the +2 charge state, 0.73 eV for the +1 charge state, and 1.49 eV for the 0 charge 

state (see TABLE II). 

 There have been numerous DFT studies of EL2, beginning in 1988 with the 

pioneering work of Dabrowski and Scheffler 31 and Chadi and Chang. 32 More recent 

studies include those of Schultz and von Lilienfeld in 2009, 34 Komsa and Pasquarello in 

2011, 28 and Chroneos et al. in 2014. 35 Our levels are 0.05 eV higher than the levels 

obtained by Schultz and von Lilienfeld using the LDA, and the 0.22 eV difference 

between our levels is close to the 0.24 eV found by Schultz and von Lilienfeld. 34 Our 

1.49 eV formation energy for neutral EL2 is likewise close to the 1.50 eV obtained by 

Schultz and von Lilienfeld, 34 and 0.26 eV higher than the formation energy found by 
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Chroneos et al in a 216-atom supercell. 35 The study of Komsa and Pasquarello 28 

surveyed the effect of hybrid functionals, which combine exact and semilocal electronic 

exchange to reduce DFT band gap errors. Using theoretical GaAs lattice constant and 

functionals tuned to give a band gap in good agreement with measurements, Komsa and 

Pasquarello obtained a +1/+2 level 0.04 eV higher than the measurement and a 0/+1 level 

0.2 eV higher than the measurement. 

For EL2*, we began with the two observed charge states (−1, 0) and added three 

more candidates (−3, −2, +1). In Fig. 2, we plot the levels from these charge states and 

cubic-spline fits of the bounds vs. inverse supercell size. From an inspection of the plots, 

we eliminated the +1 and −3 charge states and concluded that −2, −1, and 0 are EL2* 

charge states. Since the −2/−1 and −1/0 levels do not follow the upper bound, we 

concluded that the −2, −1, and 0 charge states are not hydrogenic. However, the −2/−1 

and −1/0 levels are above ΔKS ,  indicating that the added electrons in the −1 and −2 

charge states were partially delocalized in bulk conduction-band states. Specifically; 8, 

15, and 22% of the first added charge was in bulk regions of the 216-, 512-, and 1000-

atom supercells, and 25, 30, and 38% of the second added charge. 

Given the sizeable bulk occupations in the −2 charge state, we concluded that the 

−2 charge state and the −2/−1 level would be better suited to consideration with hybrid 

functionals. Given the smaller bulk occupations in the −1 charge state, we processed the 

energies of the −1 and 0 charge states. The dashed line in Fig. 2 is the supercell-size 

dependence of the defect level, ΔD ,ssd −1/ 0, L( ),  which yields a dilute limit 1.05 eV 

above the VBE. After shifting the VBE by ΔVBE  and the CBE by ΔCBE ,  the −1/0 level 

was found to be 1.46 eV above the measured VBE and thus 0.06 eV below the measured 
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CBE at low temperature. To test the sensitivity of this result to bulk occupations, we 

calculated the energies of the 0 and −1 charge states in a 64-atom supercell using a 7×7×7 

sampling mesh for which the estimated bulk occupation of the added charge was 3%. 

Repeating the processing using energies from the 64-, 216-, and 512-atom supercells 

yielded a −1/0 level 0.02 eV lower than the level obtained above. 

Our result for the −1/0 level is in good agreement with the measurements of 

Dreszer and Baj 33 who found the −1/0 level to be 0.016 eV above the CBE at ambient 

pressure (TABLE I). Our result is also in good agreement with a theoretical model 

proposed by Dabrowski and Scheffler from which the −1/0 level is found to be near the 

CBE. 31 Including the shift, qΔVBE , the formation energies in the dilute limit are 1.86 eV 

for the 0 charge state and 3.31 eV for the −1 charge state (TABLE II). The result for the 0 

charge state is in good agreement with the 1.93 eV obtained by Schultz and von 

Lilienfeld using the LDA. 34 

 

B. Thermal transitions between EL2* and EL2 

 

 Experimental studies report that neutral EL2 can be optically excited into neutral 

EL2* at temperatures below 140 K. 29 Our DFT results are consistent with this report in 

that our formation energy for neutral EL2 is 0.37 eV lower than our formation energy for 

neutral EL2* (i.e. EL2* is metastable with respect to EL2). In semi-insulating GaAs, it is 

further observed that neutral EL2* transforms to EL2 with an activation energy of 0.34 

eV, 29 while in n-type GaAs, −1 EL2* transforms to EL2 with a lower activation energy 

of 0.075 eV, emitting an electron to the conduction band. 33 
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 In addition to our calculations for EL2 and EL2*, we used the dimer method 38 to 

determine the saddle-points for transitions between EL2* and EL2 in the 0 and −1 charge 

states. The saddle-point calculations were performed using the same supercell sizes and 

sampling meshes used for stable and metastable EL2 and EL2*. In Fig. 3, we plot the 

−1/0 levels of the saddle-points and cubic-spline fits of the bounds vs. inverse supercell 

size. Since the levels are between the lower and upper bounds and do not follow either 

bound, we concluded that −1 and 0 are well-localized defect charge states. However, 

since the levels are above ΔKS , the added electron in the −1 charge state will be partially 

delocalized in bulk conduction-band states. We estimated the bulk charge to be 2, 6, and 

8% in the 216-, 512-, and 1000-atom supercells, and based on this we proceeded to 

process the results using the procedures described in Section II.C. The dashed line in Fig. 

3 is the supercell-size dependence of the defect level, ΔD ,ssd −1/ 0, L( ),  from which we 

obtain a dilute limit 0.90 eV above the VBE. After shifting the VBE by ΔVBE ,  the −1/0 

level is 1.31 eV above the VBE and thus within the measured band gap. The dilute limits 

of the formation energies (including the qΔVBE  shift) are 2.07 eV for the 0 charge state 

and 3.36 eV for the −1 charge state. The corresponding formation energies of EL2* are 

1.86 and 3.31 eV. Thus, the activation energies for transitions from EL2* to EL2 are 0.21 

eV in the 0 charge state and 0.05 eV in the −1 charge state. 

 Our result for the 0 charge state is 0.13 eV lower than the measured activation 

energy (0.34 eV) for the 0 charge state, 29 and our result for the −1 charge state is 0.025 

eV lower than the measured activation energy (0.075 eV)  for the −1 charge state. 33 In 

addition, our result for the 0 charge state is 0.02 eV higher than the activation energy 

obtained by Schultz and von Lilienfeld using the LDA, 34 and our result for the −1 charge 
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state is close to the estimate of Dabrowski and Scheffler 29 (0 eV) based on an analysis of 

Kohn-Sham eigenvalues. 

 

C. Ga antisite charge states and levels 

 

GaAs is the defect that results when a Ga atom substitutes for an As atom in GaAs. 

While GaAs has not been studied as extensively as AsGa, is it known from experiments to 

have Td symmetry, three charge states (–2, –1, 0), and two levels (–1/0, –2/–1) 0.077 and 

0.230 eV above the VBE. 36, 37
 In our study of Td GaAs we considered the three observed 

charge states plus four additional candidates (–3, +1, +2, +3). In Fig. 4, we plot the levels 

and cubic-spline fits of the bounds vs. inverse supercell size. From an inspection of the 

plots, we eliminated the +3 and −3 charge states and concluded that −2, −1, 0, +1 and +2 

are GaAs charge states. The nearly constant separation of the −2/−1, −1/0, 0/+1, and 

+1/+2  levels from the lower bound (supercell-to-supercell variations ≤ 0.01 eV) indicates 

that some of these charge states may be hydrogenic states. Support for this comes from a 

simple electron-counting analysis of Td GaAs in which 4×2 = 8 electrons are needed to 

saturate the bonds between the Ga atom and its four near-neighbor Ga atoms, whereas 3 + 

4×(3/4) = 6 are available in the neutral charge state. Thus, the Ga-Ga bonds will be 

saturated when GaAs is in the –2 charge state, which will be localized and thus likely to 

attract and bind at least two holes. To investigate the possibility of hydrogenic states 

further, we performed a simple calculation of shallow hole states in GaAs. 

    Using a static dielectric constant of 12.8 26 and a heavy hole mass of 0.51 mo, 39 

we calculated the binding energy of a hole in a hydrogenic defect state to a localized −2 
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defect charge to be 0.17 eV. Returning to the bounds analysis, we note that the separation 

between a given level and the lower bound is the energy gained by adding a hole to the 

defect instead of the valence band. For shallow defect states with energies near the VBE, 

we can think of this as the binding energy of the hole. For the −2/−1 level, the binding 

energies are between 0.22 and 0.23 eV for the three supercells (Fig. 4), which agree well 

with the result of our simple calculation. The corresponding hydrogenic radius is 6.7 Å, 

so it should be possible to represent such a state in the supercell sizes considered in our 

DFT study. In contrast, a hydrogenic defect state formed from the light hole band (m = 

0.082 mo
 39) would have a radius of 42 Å and a binding energy of only 0.03 eV, and we 

would not expect to be able to distinguish such a state from the VBE in our calculations.  

Thus, we consider only the heavy hole band in interpreting our data. As successive holes 

are added to the defect, they interact with both the attractive charge of the −2 defect and 

the repulsive charge of the other holes bound to it, the binding becomes weaker, the 

defect state becomes more extended, and the successive defect levels are closer to the 

VBE. Since we have not included spin-orbit coupling in our calculations, the heavy-hole 

band of GaAs is doubly degenerate at the VBE, two 1s-like hydrogenic defect states can 

be constructed from these bands, and each of these states can contain a spin-up and a 

spin-down electron. Thus, we should be able to accommodate up to four holes in these 

states to produce charge states ranging from −1 to +2. Our DFT −2/−1, −1/0, 0/+1, and 

+1/+2 levels display successively smaller binding energies, consistent with this simple 

analysis. 

     When a fifth hole is added to a localized −2 defect charge in GaAs (treated 

without spin-orbit coupling), it can no longer be accommodated in a 1s-like hydrogenic 
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defect states, and we also might expect the repulsive interaction with the other holes to 

overwhelm the attractive interaction with the −2 defect. Our DFT results for the +2/+3 

level of GaAs are consistent with this. In the 216-atom supercell, our calculated +2/+3 

defect level lies below the lower bound indicating that the additional hole does not have 

enough volume to completely avoid the repulsive region near the defect. In the larger 

supercells, the additional hole can more effectively avoid the repulsive interaction, and 

the calculated defect levels coincide more closely with the lower bound. If spin-orbit 

coupling was included in our calculations, there would only be a single heavy hole band 

at the VBE, and only two holes could be accommodated in 1s-like hydrogenic defect 

states. Thus, our results for the +1 and +2 charge states of GaAs would change, and it 

would not be surprising to find that the third and fourth hole would then be unbound with 

the 0/+1, and +1/+2 levels behaving like our calculated +2/+3 levels.  

   We note that the possibility of interpreting the GaAs levels as shallow levels was 

considered by Schultz and von Lilienfeld. 34 However, a comparison of the levels to the 

bounds is needed to recognize the similarity in the energies to add a hole to the defect and 

to bulk GaAs. If we did not perform this analysis and simply used Makov-Payne fits to 

obtain the dilute limits of the −2/−1 and −1/0 levels as though the −1 and 0 charge states 

were highly localized, we would have obtained levels 0.33 eV and 0.16 eV above the 

VBE. After shifting the VBE by ΔVBE ,  the −2/−1 level would be 0.74 eV above the VBE 

and the −1/0 level would be 0.56 eV above the VBE. These values are nearly identical to 

the 0.74 and 0.55 eV obtained by Schultz and von Lilienfeld 34 using the LDA, and are 

slightly higher than the 0.61 and 0.26 eV found by Chroneos et al. 35 They are also close 

to the 0.75 and 0.45 eV found by Komsa and Pasquarello, 40 who used a hybrid functional 
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and corrected their formation energies for spurious electrostatic interactions. In contrast, 

the bounds analysis (Fig. 4) shows that the levels are separated from the lower bound by 

small and essentially constant binding energies (0.22 - 0.23 eV for the −2/−1 level and 

0.15 - 0.16 eV for the −1/0 level). The large separations between these levels and the 

VBE noted above thus arise from the Makov-Payne fits, used to remove electrostatic 

interactions between periodically repeated supercells, and the subsequent shift of the DFT 

VBE. These procedures assume highly-localized charge states, and if our interpretation of 

the charge states as weakly localized is correct, these assumptions and are not satisfied 

and the use of these procedures is not justified. Instead, we believe that if calculations for 

larger supercells were performed, these levels would continue to follow the lower bound 

with essentially the same binding energies. Furthermore, since hydrogenic defect states 

are constructed from VBE states, we propose that these levels should be shifted relative 

to the VBE. Based on the binding energies in the 1000-atom supercell, we therefore 

predict that GaAs has a −2/−1 level 0.23 eV above the VBE and a −1/0 level 0.16 eV 

above the VBE. 

 Experimental studies indicate that GaAs forms a double acceptor with levels 0.230 

eV and 0.077 eV above the VBE. 36, 37 Our result for the −2/−1 level (0.23 eV) agrees 

exceptionally well with measurements (TABLE I), whereas the agreement is not as good 

for the −1/0 level (0.16 eV). One possible reason is that we neglected spin-orbit coupling 

in our DFT calculations. As discussed above, this results in degenerate 1s-like hydrogenic 

defect states, and this artificial degeneracy may reduce the Coulomb interaction when 

two holes are added to the −2 charged defect. In reality, the second hole must occupy the 

same state as the first hole (with the opposite spin), which likely will result in a larger 
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Coulomb interaction and thus a smaller binding energy for the second hole. Based on the 

formation energy of the 0 charge state in the 1000-atom supercell (3.16 eV) and the levels 

given above, we estimate the formation energy of the −1 charge state to be 3.32 eV and 

the formation energy of the −2 charge state to be 3.55 eV in the dilute limit (TABLE II). 

Our result for the 0 charge state is in good agreement with the 3.24 eV found by Schultz 

and von Lilienfeld using the LDA. 34 

 

IV. CONCLUSIONS 

 

 We have used a recently developed bounds-analysis approach to help interpret the 

results from DFT calculations for AsGa and GaAs defects in GaAs. The analysis correctly 

identified the charge states and levels of AsGa, including the −1/0 level of the metastable 

state, which is observed to be close to the CBE. For GaAs, the bounds analysis indicated 

the presence of hydrogenic states and a simple calculation of hydrogenic hole states in 

GaAs confirmed that the −1 and 0 charge states are hole states weakly bound to a 

localized −2 charge state. This insight precluded processing the −2/−1 and −1/0 levels 

using standard procedures and thereby produced good agreement with measurements. 

 

 

ACKNOWLEDGMENT 

 

This work was performed, in part, at the Center for Integrated Nanotechnologies, a 

U.S. Department of Energy, Office of Basic Energy Sciences user facility. Sandia 



 22

National Laboratories is a multi-program laboratory managed and operated by Sandia 

Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. 

Department of Energy's National Nuclear Security Administration under contract DE-

AC04-94AL85000. The authors wish to thank S. R. Lee and W. R. Wampler at Sandia 

National Laboratories for helpful discussions.  



 23

References 

[1] W. Kohn and L. J. Sham, Phys. Rev. 140, A1133 (1965). 
 
[2] See for example: D. M. Ceperley and B. J. Alder, Phys. Rev. Lett. 45, 566 (1980); J. 
P. Perdew and Y. Wang, Phys. Rev. B 45, 13244 (1992). 
 
[3] See for example: J. P. Perdew, K. Burke and M. Ernzerhof, Phys. Rev. Lett. 77, 3865 
(1996). 
 
[4] See for example: S. M. Myers, P. J. Cooper, and W. R. Wampler, J. Appl. Phys. 104, 
044507 (2008). 
 
[5] N. A. Modine, A. F. Wright, and S. R. Lee, Computational Materials Science, 92, 431 
(2014). 
 
[6] See http://dft.sandia.gov/socorro. 
 
[7] J. Ihm, A. Zunger, and M. L. Cohen, J. Phys. C 12, 4409 (1979). 
 
[8] D. R. Hamann, M. Schülter, and C. Chiang, Phys. Rev. Lett. 43, 1494 (1979). 
 
[9] http://www.fhi-berlin.mpg.de/th/fhi98PP/. Three electrons were treated as valence 
(4s2 and 4p1) in Ga and five electrons (4s2 and 4p3) in As. Cutoff radii of 1.10, 1.30, and 
2.25 Bohr were used for the s, p, and d channels of Ga and 1.00, 1.18, and 1.80 Bohr 
were used for As. Non-linear core corrections [S. G. Louie, S. Froyen, and M. L. Cohen, 
Phys. Rev. B 26, 1738 (1982)] were included for both atom types with partial core charge 
radii of 1.20 and 1.00 Bohr for Ga and As, respectively. 
 
[10] L. Kleinman and D. M. Bylander, Phys. Rev. Lett. 48, 1445 (1982). Projectors were 
constructed using the s semilocal NCP as the local potential. 
 
[11] H. J. Monkhorst and J. D. Pack, Phys. Rev. B 13, 5188 (1976). 
 
[12] F. D. Murnaghan, Proc. Natl. Acad. Sci. U.S.A. 30, 244 (1944). 
 
[13] J. B. Mullin, B. W. Straughan, C. M. H. Driscoll, and A. F. W. Willoughby, Inst. 
Phys. Conf. Ser. 24, 275 (1975). 
 
[14] J. S. Blakemore, J. Appl. Phys. 53, R123 (1982). 
 
[15] B. J. Skromme and G. E. Stillman, Phys. Rev. B 29, 1982 (1984). 
 
[16] E. A. Brandes, in Smithells Metals Reference Book (Butterworths, London, 1983). 
 
[17] J. Donohue, The Structures of the Elements (Wiley, New York, 1974). 



 24

 
[18] Y. Bar-Yam and J. D. Joannopoulos, Phys. Rev. B 30, 1844 (1984).  
 
[19] A. Alkauskas, P. Broqvist, and A. Pasquarello, Phys. Stat. Sol. B 248, 775 (2011). 
 
[20] C. D. Latham, M. Alatalo, R. M. Nieminen, R. Jones, S. Oberg, and P. R. Bridden, 
Phys. Rev. B 72, 235205 (2005). 
 
[21] For another example of this type of plot, see H.-P. Komsa, T. T. Rantala, and A. 
Pasquarello, Phys. Rev. B 86, 045112 (2012). The bounds-analysis approach is analogous 
to their approach, differing in that whereas their approach employs the defect and the 
band-edge eigenvalues, the bounds-analysis approach uses the defect levels and bounds 
on defect levels. 
 
[22] S. B. Zhang and J. E. Northrup, Phys. Rev. Lett. 67, 2339 (1991). 
 
[23] C. G. Van de Walle, D. B. Laks, G. F. Neumark, and S. T. Pantelides, Phys. Rev. B 
47, 9425 (1993). 
 
[24] C. Freysoldt, B. Grabowski, T. Hickel, J. Neugebauer, G. Kresse, A. Janotti, and C. 
G. Van de Walle, Rev. Mod. Phys. 86, 253 (2014). 
 
[25] G. Makov and M.C. Payne, Phys. Rev. B 51, 4014 (1995). 
 
[26] J. S. Blakemore, J. Appl. Phys. 53, R123 (1982). 
 
[27] A. Resende, R. Jones, S. Öberg, and P. R. Briddon, Phys. Rev. Lett. 82, 2111 
(1999); J. Coutinho, S. Öberg, V. J. B. Torres, M. Barroso, R. Jones, and P. R. Briddon, 
Phys. Rev. B 73, 235213 (2006). 
 
[28] H.-P. Komsa and A. Pasquarello, Phys. Rev. B, 84, 075207, (2011). 
 
[29] For a thorough discussion of experimental and theoretical investigations of AsGa see 
J. Dabrowski and M. Scheffler, Phys. Rev. B. 40, 10391 (1989) and references therein. 
 
[30] J. Lagowski, D. G. Lin, T. –P. Chen, M. Skonwronski, and H. C. Gates, Appl. Phys. 
Lett. 6, 929 (1985). 

[31] J. Dabrowski and M. Scheffler, Phys. Rev. Lett. 60, 2183 (1988) 
 
[32] D. J. Chadi and K. J. Chang, Phys. Rev. Lett. 60, 2187 (1988). 
 
[33] P. Dreszer and M. Baj, J. Appl. Phys. 70, 2679 (1991). 
 
[34] P. A. Schultz and O. A. von Lilienfeld, Modelling Simul. Mater. Sci. Eng. 17, 
084007 (2009). 
 



 25

[35] A. Chroneos, H. A. Tahini, U. Schwingenschlögl, and R. W. Grimes, J. Appl. Phys., 
116, 023505, (2014). 
 
[36] Phil Won Yu, W. C. Mitchel, M. G. Mier, S. S. Li, and W. L. Wang, Appl. Phys. 
Lett. 41, 532 (1982). 
 
[37] J. C. Bourgoin, H. J. Bardeleben, and D. Stiévenard, J. Appl. Phys. 64, R65 (1988), 
and references therein. 
 
[38] G. Henkelman and H. Jonsson, J. Chem. Phys. 111, 7010 (1999). 
 
[39] http://www.ioffe.rssi.ru/SVA/NSM/Semicond/GaAs/basic.html. 
 
[40] H-P. Komsa and A. Pasquarello, J. Phys.: Condens. Matter 24, 045801 (2012). 
  



 26

TABLE I. Comparison of our DFT defect levels at the dilute limit with experiments. The 
levels are given in eV relative to either the valence-band edge (VBE) or the conduction-
band edge (CBE). 
 

Defect and Level DFT Expt. 
EL2 AsGa     0/+1              VBE + 0.76              VBE + 0.77 a 

                  +1/+2              VBE + 0.54 *              VBE + 0.54 a 

   
EL2* AsGa  −1/0               CBE − 0.06               CBE + 0.016 b

   
          GaAs  −2/−1              VBE + 0.23              VBE + 0.230 c

                    −1/0              VBE + 0.16              VBE + 0.077 c

* Used as a marker to obtain the shift of the DFT VBE. 
a Ref. 30 
b Ref. 33 
c Refs. 36 and 37 
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TABLE II. Formation energies at the dilute limit in eV. 
 

Defect and Charge State Formation energy 
EL2 AsGa     0 1.49 
                  +1 0.73 
 0.19 
  
EL2* AsGa  −1 3.31 
                      0 1.86 
  
          GaAs   −2 3.55 
                     −1 3.32 
                       0 3.16 
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Figure 1. Bounds and EL2 levels vs. inverse supercell size (1/L). The solid lines are 
cubic-spline fits of the bounds, ΔB, fit −1, L( )  and ΔB, fit +1, L( ).  The symbols are DFT 
levels, ΔD q −1/ q, L( ), from 216-, 512- and 1000-atom supercells. The dashed lines are 
the supercell-size dependences of the DFT defect levels, ΔD,ssd q −1/ q, L( ),  identified in 
the bounds-analysis.  
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Figure 2. Bounds and EL2* levels vs. inverse supercell size (1/L). The solid lines are 
cubic-spline fits of the bounds, ΔB, fit −1, L( )  and ΔB, fit +1, L( ).  The symbols are DFT 
levels, ΔD q −1/ q, L( ), from 216-, 512- and 1000-atom supercells. The dashed line is the 
supercell-size dependence of the DFT defect level, ΔD ,ssd −1 / 0, L( ),  identified in the 
bounds-analysis.  
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Figure 3. Bounds and saddle-point level vs. inverse supercell size (1/L). The solid lines 
are cubic-spline fits of the bounds, ΔB, fit −1, L( )  and ΔB, fit +1, L( ). The symbols are DFT 
levels, ΔD q −1/ q, L( ), from 216-, 512- and 1000-atom supercells. The dashed lines are 
the supercell-size dependences of the DFT defect levels, ΔD,ssd q −1/ q, L( ),  identified in 
the bounds-analysis. 
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Figure 4. Bounds and GaAs levels vs. inverse supercell size, 1/L. The symbols are DFT 
levels, ΔD q −1/ q, L( ), from 216-, 512- and 1000-atom supercells. 


