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Abstract

We extend the Ginzburg-Landau (GL) theory of atomically rough bcc-liquid interfaces [Wu et

al., Phys. Rev. B 73, 094101 (2006)] outside of equilibrium. We use this extension to derive an

analytical expression for the kinetic coefficient, which is the proportionality constant µ(n̂) between

the interface velocity along a direction n̂ normal to the interface and the interface undercooling. The

kinetic coefficient is expressed as a spatial integral along the normal direction of a sum of gradient

square terms corresponding to different nonlinear density wave profiles. Anisotropy arises naturally

from the dependence of those profiles on the angles between the principal reciprocal lattice vectors

~Ki and n̂. Values of the kinetic coefficient for the (100), (110) and (111) interfaces are compared

quantitatively to the prediction of linear Mikheev-Chernov (MC) theory [J. Cryst. Growth 112,

591 (1991)] and previous molecular dynamics (MD) simulation studies of crystallization kinetics for

a classical model of Fe. Additional MD simulations are carried out here to compute the relaxation

time of density waves in the liquid in order to make this comparison free of fit parameter. The GL

theory predicts a similar expression for µ as the MC theory but yields a better agreement with MD

simulations for both its magnitude and anisotropy due to a fully nonlinear description of density

wave profiles across the solid-liquid interface. In particular, the overall magnitude of µ predicted

by GL theory is an order of magnitude larger than predicted by the MC theory. GL theory is

also used to derive an inverse relation between µ and the solid-liquid interfacial free-energy. The

general methodology used here to derive an expression for µ(n̂) also applies to amplitude equations

derived from the phase-field-crystal model, which only differ from GL theory by the choice of cubic

and higher order nonlinearities in the free-energy density.

PACS numbers: 68.08.-p, 68.08.De, 81.10.Fq , 81.30.Fb
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I. INTRODUCTION

A major determinant of the morphology of crystals grown from the melt far from local

thermodynamic equilibrium is the solid-liquid interface kinetic coefficient1–4. For atomically

rough interfaces, this coefficient µ(n̂) is the proportionality constant, defined by the linear

relation

V = µ(n̂)∆T, (1)

between interface velocity V and interface undercooling ∆T = Tm − T , where Tm is the

melting point. The crystallization rate and hence µ generally depends on the direction n̂

normal to the interface with respect to a fixed set of crystal axes. Both the magnitude

and anisotropy of µ have been shown theoretically, within the framework of solvability

theory5, and computationally using both front-tracking6 and phase-field7 approaches, to

have a crucial influence on dendritic solidification at large growth rates. To date, major

progress has been achieved in using molecular dynamics (MD) simulations with embedded-

atom-method (EAM) interatomic potentials to compute µ and its anisotropy for various

pure metals (e.g. Ni ,Cu, Mg, and Fe) and different crystal structures (e.g. bcc, hcp, and

fcc)3,8–12. Moreover, results of those simulations, such as for pure Ni9, have been used as

input parameters in phase field simulations7, thereby making it possible to link quantitatively

atomistic and continuum length scales for the prediction of dendrite growth rates that have

been compared with experiments3,4. Furthermore, results from MD simulations have made

it possible to test quantitatively basic theories of crystal growth kinetics, thereby shedding

light on the physical mechanisms that controls µ(n̂) (see4 for a review). The magnitude of

µ has been found to be well predicted by the expression

µ ≈ C
VTL

kBT 2
m

, (2)

proposed by Broughton, Gilmer, and Jackson (BGJ) to interpret crystallization rates mea-

sured by MD simulations in the Lennard-Jones system13. Here VT =
√

3kBT/m is the

thermal velocity of atoms in the liquid, assumed to limit the rate of atomic attachment at

the interface, m is the atomic mass and C is a constant of order unity that can generally

depend on the growth orientation; L is the latent heat per atom. BGJ introduced Eq. (2)

based on the finding that crystallization rates were too large to be explained by the common

assumption that atomic attachment at the solid-liquid interface is a thermally activated
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process with the same energy barrier as liquid-state diffusion. Coriell and Turnbull14 inde-

pendently developed an expression for µ in metallic systems based on a similar assumption

that crystallization is limited by the rate of liquid-atom collisions at the interface, but re-

lated this rate to the frequency of atomic vibrations in the solid instead of to the thermal

velocity of liquid-atoms, which yields the expression µ ≈ VSL/kBT
2
m where VS is the speed

of sound in the solid. This upper bound estimate of µ is much larger than values extracted

from MD simulations to date for pure metals3,8–12, which are in closer agreement with Eq.

(2).

Eq. (2) has been put on a firmer theoretical footing by Mikheev and Chernov (MC)15,16

who derived a similar form in the theoretical framework of classical density functional theory

of freezing17–19. In this density wave picture, crystal ordering of atoms increases from liquid

to solid through several atomic layers parallel to the interface. Concomitantly, the amplitude

of density waves corresponding to different reciprocal lattice vectors (RLV) of the crystal

lattice increases smoothly from zero in the liquid to constant values in the crystal along the

z-axis normal to the interface. The expression for µ in the MC theory is derived by only

considering the contribution of the set of principal RLV (with lowest magnitude | ~Ki|) to

the crystal density field, and by using a fluctuation-dissipation relation to relate the rate of

interface dissipation to the inverse half-width of the dynamic equilibrium structure factor

S(| ~Ki|, ω)20. This theory predicts a magnitude of µ of the form of Eq. (2) where C depends

on growth orientation through the orientation dependence of the spatial decay rate of density

waves into the liquid, which depends on K̂i · n̂. It should also be noted that, according to

the MC theory, the kinetic coefficient depends on a relaxation time of density waves in the

liquid, which in turn can be related to the liquid diffusion coefficient. Therefore, the MC

model appears to disagree with the main assumption first proposed by BGJ. In a recent MD

study, Mendelev et al.21 showed that, at least in the limit of small undercoolings, µ is in

fact proportional to the diffusivity. The authors speculate that there is a change in atomic

attachment mechanism in the high and low undercooling limits.

In this paper, we derive an expression for µ within the framework of Ginzburg-Landau

(GL) theory. The analytical expression for µ is explicitly shown to depend on equilibrium

density wave profiles that vary with crystal orientation. Hence, like the MC theory, the

present TDGL theory predicts the anisotropy of µ. This is in contrast to previous theoret-

ical studies based on dynamical density functional theory of freezing that provide a more
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realistic description of the crystal density field by including higher order reciprocal lattice

vectors, but have not explicitly treated the dependence of the crystallization rate on crystal

orientation22–25. Like the MC theory, GL theory is rooted in a density wave picture of the

solid-liquid interface structure and considers a minimal set of RLV to represent the crystal

density field. However a non-trivial difference between the two theories is that the MC the-

ory is linearized around the liquid state and hence neglects the nonlinear interaction between

different density waves. The anisotropy of µ arises solely in this theory from the orientation

dependence of the exponential decay rate into the liquid of non-interacting density waves.

In contrast, GL theory captures the nonlinear interaction between different density waves

through the inclusion of cubic and quartic terms in the GL expansion of the free-energy den-

sity in density wave amplitudes. Consequently, the resulting expression for µ derived here

in the GL framework depends explicitly on the interacting nonlinear density wave profiles

through the entire solid-liquid interface region and, as a result, µ has a different anisotropy

than that predicted by the linearized MC theory15,16.

We carry out our analysis for the bcc-liquid interface whose equilibrium properties, in

particular the excess free-energy of the interface γsl and its anisotropy, have been modeled

previously by GL theory26,27. This equilibrium theory is extended to a non-equilibrium situ-

ation in the standard framework of the time-dependent GL (TDGL) theory. We incorporate

a thermodynamic driving force proportional to the undercooling and a free-energy dissipa-

tion time scale that is related, as in the MC theory, to the inverse half-width of the dynamic

equilibrium structure factor. The kinetic coefficient µ is calculated explicitly for (100), (110)

and (111) interfaces using parameters obtained from MD simulations for the Fe EAM po-

tential developed by Mendelev et al.28 and the results are compared to the predictions of

MD simulations using this potential10,12 and the MC theory.

We note that the general methodology developed here to derive an expression for the

kinetic coefficient within a TDGL framework applies directly to amplitude equations for

elemental systems29–33 and binary alloys34,35 derived from the phase-field-crystal (PFC)

model36–39. As shown previously by Wu and Karma32 in a study of the equilibrium bcc-

liquid interface, the set of amplitude equations derived from the PFC model only differs from

the set derived from GL theory in the coefficients of nonlinear terms that couple different

density waves. In the amplitude equations derived from the PFC model, all coefficient of

nonlinear terms are uniquely determined by the nonlinear form assumed for the free-energy
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density in the PFC model from which the amplitude equations are derived. In contrast,

in the versions of GL theory of Refs.26,27, those coefficients are determined by the ansatz

that all geometrically distinct closed polygons with the same number of sides corresponding

to RLV have equal weight. In principle, the weight of closed polygons in reciprocal space

can be derived if higher order n-point correlation functions are provided. However, this

information is difficult to obtain. If one assumes that higher order correlation functions are

constant, then one recovers the nonlinear coefficients in the amplitude equations derived

from the PFC model32,40. Differences in coefficients obtained from an amplitude expansion

of the standard PFC model and this ansatz were found to have only a small effect on the

prediction of γsl and its anisotropy for the bcc-liquid interface32. However, more generally,

the formalism developed in the present work should prove useful in the development of PFC

formulations and amplitude equations that model different kinetic anisotropies for different

crystal structures.

We first write down the TDGL model of crystallization and then use this model to derive

an analytical expression for the kinetic coefficient. We detail the procedure for a specific

choice of orientation and state the results for other orientations. Next, we present a method

to compute the relaxation time of density waves in the liquid that is a key kinetic input

parameter for both the MC and GL theories. We then compare the predictions of GL

theory to the predictions of the linearized MC theory and previous MD simulation studies.

II. TIME-DEPENDENT GINZBURG-LANDAU MODEL

To construct a TDGL model of crystallization kinetics for the bcc-liquid system, we start

from the expression for the excess free-energy ∆F for the solid-liquid system in equilibrium

relative to the liquid free energy. Under the assumption that the density wave amplitude
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varies slowly on the scale of the lattice spacing, this excess has the form27:

∆F ≈ n0kBT

2

∫

d~r

(

∑

i,j

1

S(| ~Ki|)
uiujδ0, ~Ki+ ~Kj

+ b
∑

i

ci

∣

∣

∣

∣

dui

dz

∣

∣

∣

∣

2

− a3
∑

i,j,k

cijkuiujukδ0, ~Ki+ ~Kj+ ~Kk

+ a4
∑

i,j,k,l

cijkluiujukulδ0, ~Ki+ ~Kj+ ~Kk+
~Kl

)

, (3)

The ui’s denote the amplitudes of density waves corresponding to the RLV with the smallest

magnitude | ~Ki| in the truncated expansion of the number density

n(~r, t) = n0



1 +
∑

~Ki

ui(~r, t)e
i ~Ki·~r + . . .



 , (4)

and have the limits ui = us (ui = 0) in the solid (liquid). Since the reciprocal lattice of bcc

is fcc, there are twelve | ~Ki|’s of equal magnitude pointing in 〈110〉 directions. S(K) denotes

the liquid structure factor and C(K) refers to the Fourier transform of the direct correlation

function C(|~r − ~r′|) and C ′′(K) ≡ d2C(K)/dK2. The coefficients of the gradient square

terms are determined by comparison of the form (3) and the expression for the free-energy

of an inhomogeneous liquid, yielding b = −2C ′′(| ~Ki|) and ci = (K̂i · n̂)2/427. The coefficients

a3 and a4 are determined in the same way as in Shih et al.26 and Wu et al.27 from the the

two equilibrium conditions that the solid and liquid phases must have equal free energies at

the melting point and the equilibrium state of the solid is a minimum of free-energy. These

two conditions yield the values a3 = 2a2/us and a4 = a2/u
2
s where a2 = 12/S(| ~Ki|). In

addition, the aforementioned ansatz that all closed polygons of ~Ki’s with the same number

of sides have equal weight yields the constants cijk = 1/8 and cijkl = 1/27. The effect of the

fractional density change on interfacial properties is neglected in the present calculations.

If one considers the miscibility gap, it is equivalent to rescaling the quartic coefficient a4
26.

The equilibrium density wave profiles would be slightly modified due to a small fractional

density change which results in slight changes in kinetic coefficients.

Furthermore, we assume the reciprocal lattice vectors do not change across the solid-

liquid interface. The effect of the expansion of the lattice spacing is a higher order effect

in a multiscale expansion that treats the ratio of the lattice spacing to the spatially diffuse
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width of the atomically rough solid-liquid interface (the liquid correlation length) as a small

parameter. In a previous amplitude equation analysis32, it has been shown that the lattice

spacing is a constant across the interface to lowest order in this small parameter. Therefore,

the small variation of the lattice spacing across the interface that is present in a real system

does not influence the kinetic coefficient in GL theory.

It is important to note that in the absence of knowledge of higher order correlation

functions there is no general way to determine the weight for each closed polygon. Thus we

simply assume that geometrically distinct polygons (i.e., exclude repetitive polygons) have

equal weight. However, if one assumes that Fourier transforms of higher order correlation

functions are constant, then all polygons (including repetitive polygons) contribute equally

in the free energy and this yields cijk = 1/48 and cijkl = 1/540 as shown in the PFC

calculations32,40. It is straightforward to examine the relation between these normalization

constants. For example, there are 27 geometrically distinct 4-side polygons. Out of these

27 polygons, 6 of them contain twice the same RLVs (e.g., [110], [1̄1̄0], [110], [1̄1̄0]), and 21

of them contain 4 different RLVs (e.g., [110], [11̄0], [1̄10], [1̄1̄0]). Thus if we choose to count

all repetitive polygons, the number of 4-side polygons is 4!/(2!2!)× 6 + 4!× 21 = 540 (since

there are 4!/(2!2!) ways to rearrange RLVs for the 6 polygons that contain twice the same

RLVs and 4! ways for each of the 21 polygons that contain four different RLVs).

To incorporate a driving force for crystallization in the model, we expand the free energy

difference between the solid and liquid phases near the melting point in the form

FS(T )− FL(T ) = (SS − SL)(T − Tm) = L
T − Tm

Tm

, (5)

where we have used the thermodynamic relation dF = −SdT and L denotes the latent

heat of melting per atom. Furthermore, we add this driving force by assuming that this

free-energy difference varies proportionally to the density wave amplitude through the solid-

liquid interface region. This yields the expression for the free-energy of the two-phase system

outside of equilibrium

∆F ′ = ∆F + n0kBTm

∫

d~r
∑

i

1

12

ui − us

us

L

kBTm

T − Tm

Tm

. (6)

The linear approximation of the driving force term was used originally by Langer to formulate

a phase-field model for the solidification of a pure substance41. One can also use a nonlinear

interpolation function 4(ui/us)
3 − 3(ui/us)

4, instead of the linear function (ui − us)/us, to
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model the variation of the driving force through the spatially diffuse solid-liquid interface

region. This nonlinear function has the advantage that it maintains the amplitudes of density

waves constant in the solid (ui = us) outside of equilibrium. However, an explicit calculation

shows that the expression for the kinetic coefficient is identical if the linear or the nonlinear

function is used to model the driving force. This follows physically from the fact that the

kinetic coefficient is defined as the coefficient of proportionality between the crystal growth

rate and driving force in the vanishing undercooling limit. As a result the expression for

the kinetic coefficient only depends on gradient square terms involving equilibrium density

wave profiles. This sum is proportional to the rate of interface dissipation in the vanishing

undercooling limit and is independent of the form of the linear interpolation function used

to model the driving force. We therefore only present here the derivation of the kinetic

coefficient for the linear interpolation function. The normalization constant 1/12 in the

driving force term ensures that for bcc lattices the bulk energy difference between solid and

liquid has the correct temperature dependence imposed by Eq. (5).

Next, we assume that the evolution of the order parameters ui is governed by an equation

of the standard TDGL form

τ
∂ui

∂t
= − 1

n0kBT

δ∆F ′

δui
, (7)

where the kinetic time scale τ is fixed by the requirement that density waves in the liquid

should relax on a time scale τL(| ~Ki|) corresponding to the inverse half-width of the dynamical

structure factor S(| ~Ki|, ω). This requirement is satisfied by the choice

τ = τL(| ~Ki|)/S(| ~Ki|). (8)

With the above choice, the TDGL equation (7) reduces in the liquid to τL(| ~Ki|)∂tui = −ui

due to the cancellation of the factor of 1/S(| ~Ki|) on both sides of the equation.

III. ANALYTICAL CALCULATION OF THE KINETIC COEFFICIENT

To derive an expression for the kinetic coefficient, we look for a steady-state propagating

solution of the TDGL equation that corresponds to planar crystallization fronts moving

at constant velocity V . Those solutions have the general form ui(~r, t) = ui(n̂ · ~r − V t)

where n̂ is the crystal growth direction normal to the solid-liquid interface. To analyze

those solutions, we transform Eq. (7) to a moving frame translating at velocity V along the
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normal direction through the coordinate transformation z = n̂ · ~r− V t, which yields the set

of coupled nonlinear ordinary differential equations

−V τ
dui

dz
= − 1

n0kBT

δ∆F ′

δui

, (9)

for the time-independent profiles ui(z). For a given direction of the interface n̂, an analytic

expression for µ can be obtained by looking for solutions of Eq. (9) in the limit of small

driving force where V ∼ ∆T and the propagating density wave profiles deviate only slightly

from the stationary equilibrium profiles for V = 0. In this limit, the problem of finding

solutions to Eq. (9) can be transformed into a linear problem by linearizing Eq. (9) around

the equilibrium profiles, i.e. by substituting ui(z) = ui0(z) + ui1(z) + . . . where ui0(z)

denote the stationary equilibrium profiles and ui1(z) denote small linear perturbations of

those equilibrium profiles due to interface motion. An expression for µ is then readily

obtained from the solvability condition of finding the solutions ui1(z) to a set of coupled

linear differential equations with some non-constant coefficients that depend on the ui0(z)

profiles. This procedure is a straightforward generalization of the standard procedure used

to derive an expression for the interface kinetic coefficient in the standard single order

parameter phase-field model of crystal growth (e.g., see42). We carry out this calculation

explicitly below for the three low index crystal faces generally considered in characterizing

the anisotropy of interface properties in fcc- and bcc-forming systems.

To start, we use the results of previous work on capillary anisotropy for bcc-liquid

interfaces27. This analysis shows that the amplitudes of density waves can be categorized

into different groups according to the relative orientations of different principal RLV. Those

orientations determine the values of K̂i · n̂ and hence the coefficients of the square gradient

terms appearing in the GL free-energy functional (3) as summarized in Table I for the three

crystal faces considered. To exemplify our calculation in detail, we choose the (110) crystal

face for which the amplitude of propagating density waves are denoted as u, v, and w with

corresponding values of (K̂i · n̂)2, 1/4, 1, and 0, respectively.

We write down explicitly Eq. (9) for the three order parameters u, v and w

−4V τ
du

dz
= −

(

1

2
fu + 2C ′′(| ~K110|)(K̂u · n̂)2

d2u

dz2
+ 4α

)

−V τ
dv

dz
= −

(

1

2
fv +

1

2
C ′′(| ~K110|)(K̂v · n̂)2

d2v

dz2
+ α

)

(10)

−V τ
dw

dz
= −

(

1

2
fw +

1

2
C ′′(| ~K110|)(K̂w · n̂)2d

2w

dz2
+ α

)

,
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where we have defined the dimensionless parameter

α =
L(T − Tm)

12uskBT 2
m

(11)

that measures the departure from equilibrium and used the shorthand notation of partial

derivatives of the bulk free-energy density f at equilibrium (defined as ∆F = n0kBT
∫

d~rf(u, v, w))

with respect to the order parameters fu ≡ ∂f/∂u, fv ≡ ∂f/∂v, and fw ≡ ∂f/∂w. As out-

lined earlier, we now expand the moving profiles for a temperature slightly below the melting

point around the equilibrium profiles at the melting point in the form u = u0 + u1 + . . . ,

v = v0+ v1+ . . . , and w = w0+w1+ . . . where u0, v0 and w0 denote the equilibrium profiles

that are solutions of Eq. (10) for V = α = 0 and u1, v1 and w1 denote the perturbation of

those profiles due to interface motion below the melting point. Linearizing Eq. (10) around

the stationary equilibrium profiles, we obtain a set of coupled linear equations for u1, v1 and

w1. It is convenient to write those linearized equations in the matrix notation

LU = F, (12)

where we have defined

L =











fuu + 4Du fuv fuw

fvu fvv +Dv fvw

fwu fwv fww +Dw











, (13)

and

Di ≡ C ′′(| ~K110|)(K̂i · n̂)2
d2

dz2
(14)

U =











u1

v1

w1











, F = 2











4V τ du0

dz
− 4α

V τ dv0
dz

− α

V τ dw0

dz
− α,











. (15)

TABLE I. Classifications and the values of square gradient term ci for different orientations of bcc

crystal interfaces.

100 110 111

(K̂i · n̂)2 0 1/2 1/4 1 0 0 2/3

Number of ~Ki’s 4 8 8 2 2 6 6

ci = (K̂i · n̂)2/4 0 1/8 1/16 1/4 0 0 1/6
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TABLE II. Values of input parameters from MD simulations with interatomic EAM potential for

Fe from MH(SA)210,28 and resulting coefficients used in GL theory. The value of τL is computed

using the method described in section IV.

n0 (Å−3) a2 b (Å2) τL (ps) us | ~Ki| (Å−1) ξb (Å) L (eV/atom) Tm (K)

MD [MH(SA)2] 0.0765 3.99 20.81 0.57 ± 0.05 0.72 2.985 3.96 0.162 1772

A solvability condition for the existence of a solution to this inhomogeneous linear problem

can be readily obtained by noting two properties of the linear operator. First, owing to the

translational invariance of the TDGL equation, the right column vector function U0 with

components du0

dz
, dv0

dz
, and dw0

dz
is a solution of the homogeneous linear problem LU0 = 0,

which can be seen explicitly by differentiating Eq. (10) at the melting point (V = α = 0)

with respect to z. Second, the operator L is self-adjoint so that left zero-modes are identical

to right zero-modes. This implies that, for any U , L satisfies the property (UT
0 , LU) =

(UT , LU0) = 0 where UT
0 is the transposed left row vector function UT

0 = (du0

dz
, dv0

dz
, dw0

dz
)

and (g, h) =
∫ +∞

−∞
dz g · h denotes the inner product of a left row vector function g and

a right column vector function h. The first equality (UT
0 , LU) = (UT , LU0) can be easily

verified using the fact that L is a symmetric matrix and integrating by parts twice over z

the diagonal second derivative terms; boundary terms vanish owing to the property that

spatial derivatives of u0, v0 and w0 vanish at z = ±∞. The second equality (UT , LU0) = 0

follows from the first property LU0 = 0. Hence, for Eq. (12) to have a non-trivial solution,

we must have (UT
0 , F ) = (UT

0 , LU) = (UT , LU0) = 0, yielding the solvability condition

(UT
0 , F ) =

∫

∞

−∞

dz 2V τ

{[

4

(

du0

dz

)2

+

(

dv0
dz

)2

+

(

dw0

dz

)2
]

− 2α

[

4
du0

dz
+

dv0
dz

+
dw0

dz

]}

= 0. (16)

Setting the boundary conditions for a solid-liquid system u0(−∞) = v0(−∞) = w0(−∞) = 0

and u0(∞) = v0(∞) = w0(∞) = us, the density wave velocity V can be further simplified

into (here the subscript of V indicates the crystal face normal (110) specific to this case)

V110 =
12αus

τ

[

∫

∞

−∞

dz 8

(

du0

dz

)2

+ 2

(

dv0
dz

)2

+ 2

(

dw0

dz

)2
]

−1

. (17)

The growth velocity for other crystal orientations can be computed using the same analysis

with references to different sets of density wave amplitudes and square gradient terms listed
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in Table I. It is clear that the kinetic anisotropy of the solid-liquid interface is a result of

different density waves profiles for different crystal orientations. The kinetic coefficient µ is

obtained accordingly by dividing the growth velocity by the undercooling,

µ =
12αus

τ(T − Tm)





∫

dz
∑

~Ki

(

dui

dz

)2





−1

=
L

kBT 2
m

S( ~Ki)

τL( ~Ki)





∫

dz
∑

~Ki

(

dui

dz

)2





−1

. (18)

IV. COMPUTATION OF THE LIQUID RELAXATION TIME FROM MOLECU-

LAR DYNAMICS SIMULATIONS

In order to quantitatively compare the GL model with the results from MD simulation

the relaxation parameter τL(| ~Ki|) must be determined for the Fe MH(SA)2 potential. In

principle an MD simulation can be performed to determine the dynamic structure factor

and, as discussed above, the relaxation time can be found from the inverse half-width of

S(| ~Ki|, ω). However, we have utilized an alternative method that provides a more convenient

and more direct computation of τL(| ~Ki|). The MD procedures are as follows.

An 8000 atom simulation cell was melted and subsequently equilibrated for 100 ps at the

melting temperature of MH(SA)2 Fe. During the equilibration the x dimension was held

fixed whereas the other two cell dimensions were allowed to vary, such that the pressure

in the system was maintained at zero. The equilibrated liquid was further equilibrated in

an NVT ensemble where, in addition to the usual interatomic forces, an force of the form

f = a cos(| ~Ki|x) was imposed. Application of the external force results in a one-dimensional

number density profile in the liquid with the desired wavenumber | ~Ki| and the simulation

cell length along the x direction, Lx, was chosen such that a total of 36 number density peaks

are commensurate with the cell dimension (i.e. Lx = 36(2π)/| ~Ki|). The optimal choice of

the force amplitude a results in a number density amplitude that is sufficiently high to be

resolved above the usual thermal fluctuations in density, yet small enough such that the

density profile can be accurately described by the form A(t) cos(| ~Ki|x) + no. By trial and

error we found that a value of 0.06 eV/Å was ideal. The final step of the τL computation

is a short (2 ps) simulation in an NVT ensemble where the external potential is removed.

The exponential decay of A(t) yields directly the relaxation time.
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In the final simulations a standard Nose-Hoover thermostat was employed. However,

considerable care must be taken in choosing a relaxation time for the thermostats. If the

response time is too fast the dynamics of the system may be affected. Also, the one dimen-

sional applied force implies that the momentum of particles in the x direction will not be

equal to that of the other two directions, whereas a Nose-Hoover thermostat acts on the

average momentum of the system. To test these effects a range of thermostat relaxation

parameters from 0.1-1.0 ps were tested. It was found that the results were unchanged for

thermostat settings above 0.5 ps and, due to the fact that the imposed density amplitudes

are small, the overall temperature rise of the system was small. The independence of τL on

the imposed thermostat setting also indicates that similar results would be obtained using

a microcanonical (NVE) ensemble.

Fig. 1 shows the number density profile at two different times during the decay process.

For clarity, only a portion of the simulation cell is plotted along the x direction and the

number density represents the average of five separate runs using different starting config-

urations. The high amplitude profile corresponds to the initial profile established in the

liquid due to the imposed external force and the dashed line shows the best fit to a cosine

function. The lower amplitude curve corresponds to a time of 0.5 ps and the decay in am-

plitude is clearly evident. Fig. 2, plotted on a semi-log scale, illustrates the decay of the

best fit amplitude vs time. The data is well represented by an exponential decay and for

this simulation a relaxation time of τL = 0.58 ps was found. In order to assess the statistical

uncertainty the above procedure was repeated six times and each computation utilized five

different starting configurations for the liquid under an imposed external force. The final

value of the relaxation time was found to be τL = 0.57± 0.05 ps where the error denotes a

95% confidence limit.

V. RESULTS AND DISCUSSION

In this section, we compare kinetic coefficients predicted by the MC theory, the GL theory,

and MD simulations with the MH(SA)2 potential for Fe. The values of input parameters

from MD simulations are listed in Table II. To compare the main result of the last section

Eq. (18) to the prediction of the MC theory15,16, it is convenient to express µ in terms of

14
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FIG. 1. (Color online) The number density in the liquid plotted vs the position x for a portion

of the MD simulation cell. Solid lines are the number densities obtained from the simulation and

the dashed lines are best fits to the function A(t) cos(| ~Ki|x) + no. The difference from the initial

profile (t = 0) and a later snapshot (t = 0.5 ps) illustrates the decay of A(t) with time.
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FIG. 2. (Color online) Semi-log plot of the amplitude A(t) vs. time for a typical MD simulation.

the effective widths ξ ~Ki
of density wave ui-profiles defined by

ξ−1
~Ki

=

∫

dz

(

dui

dz

)2

. (19)

and also introduce explicitly the correlation length of the liquid corresponding to the in-

verse half-width of the liquid structure factor, ξb =
(

−S ′′(| ~Ki|)/2S(| ~Ki|)
)1/2

. Using those

15



definitions, Eq. (18) can be rewritten in the form

µ =
L

kBT 2
m

S( ~Ki)ξb

N1τL( ~Ki)As

, (20)

where

As =
1

N1

∑

~Ki

ξb/ξ ~Ki
(21)

is a dimensionless anisotropy factor that depends on the orientation of the crystal face

through the effective widths of density wave profiles; N1 = 12 is the number of principal

reciprocal lattice vectors for bcc lattices. Remarkably, the expression for µ defined by Eq.

(20), which has been derived here formally from GL theory, is identical to the one of the MC

theory. A main difference, however, is that in GL theory, the ui-profiles used to compute

the widths defined by Eq. (19) and hence the anisotropy factor As defined by Eq. (21) are

nonlinear solutions of the equilibrium GL equation, e.g. Eq. (10) for V = α = 0 for the (110)

orientation. The different ui profiles across the solid-liquid interface are nonlinearly coupled

through cubic and quartic terms in the free-energy density and need to be determined

through a numerical solution of the equilibrium GL equations for the different set of ui,

with the set of ui depending on crystal orientation27, e.g. numerically solving Eq. (10) for

u0, v0 and w0 for the (110) crystal face. Numerically computed density wave profiles for

the (100), (110), and (111) crystal faces using input parameters from MD simulations with

MH(SA)2 potential27 are plotted in Fig. 3 (ξb ∼ 3.96Å for this potential). In contrast, in the

calculation of kinetic anisotropy, MC estimate effective widths of density wave profiles using

a truncated density functional theory derived in an earlier paper43. The truncated density

functional theory is a linear theory that predicts density waves profiles near the liquid and

yields

ξ ~Ki
= ξb

∣

∣

∣
K̂i · n̂

∣

∣

∣
(22)

for mixed transverse and longitudinal density waves with finite K̂i · n̂, and

ξ ~Ki
=
(

ξb/| ~Ki|
)1/2

≡ ξT (23)

for transverse density waves with K̂i · n̂ = 0. Then the dimensionless anisotropy factor can

be approximated as

AMC
s (n̂) =

1

N1





∑

T

ξb
ξT

+
∑

N.T.

1
∣

∣

∣
K̂i · n̂

∣

∣

∣



 , (24)
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where the summation is over transverse density waves and non-transverse density waves,

respectively. The dimensionless anisotropy factor estimated by a linear theory exhibits

the ξb dependence through the transverse density waves. Thus the anisotropy in kinetic

coefficient estimated by a linear theory is not universal but depends on the details of the

interatomic potentials. In contrast, the full nonlinear density waves profiles are solved in

GL theory, hence ξ ~Ki
can be evaluated directly using Eq. (19) without any approximations.

It is convenient to express Eq. (19) in terms of the dimensionless length z̃ ≡ z/ξb and the

rescaled amplitude ũi ≡ ui/us,

ξ−1
~Ki

≡ u2
s

ξb
c(K̂i; n̂), (25)

where we define the dimensionless spatial integration of the derivative of density waves

c(K̂i; n̂) ≡
∫

dz̃

(

dũi

dz̃

)2

. (26)

The function c(K̂i; n̂) depends only on the RLV and the interface normal. It can be seen

from Eq. (10) for V = α = 0 that once we introduce above dimensionless length z̃ and

rescaled amplitude ũ, these coupled Euler-Lagrange equations become independent of the

liquid structure factor and give rise to universal nonlinear density wave profiles. Thus the

function c(K̂i; n̂) has a universal value regardless of the details of interatomic potentials.

The universal values of c(K̂i; n̂) are listed in Table III. The dimensionless anisotropy factor

computed by the GL theory is related to these universal values by

AGL
s (n̂) =

u2
s

N1

∑

i

c(K̂i; n̂). (27)

The GL theory predicts that the magnitude of As depends on the solid amplitude square

while the ratio of As for different orientations remains the same.

We compare in the first and the third column of Table IV the ratios of µ values for

different crystal faces predicted by GL and MC theories. The µ values for GL theory are

computed using Eq. (20) with the widths ξ ~Ki
of density profiles (to evaluate As) computed

using Eq. (19) and nonlinear equilibrium profiles shown in Fig. 3 obtained from GL theory.

The µ values for the MC theory are computed using the same Eq. (20) but with the

widths ξ ~Ki
predicted by Eqs. (22) and (23). In addition, we list in the second column the

ratios of µ calculated with GL theory using different ansatz for the weight of polygons that

corresponds to the PFC free energy functional (cijk = 1/48 and cijkl = 1/540). To compare

17



the predictions of the two theories with results of MD simulations for the MH(SA)2 EAM

potential, we list in the fourth column of Table IV ratios of µ values computed using Eq. (20)

of the MC theory with widths ξ ~Ki
extracted from fits of MD-computed equilibrium density

wave profiles to hyperbolic tangent functions of the normal coordinate z10. Finally, in the

fifth column, we list the most accurate predictions to date of ratios of µ values extracted from

nonequilibrium MD simulations for the same MH(SA)2 EAM potential12 (which improve the

values previously reported in10).

The comparison of the first three columns and the fifth column in Table IV shows that the

GL theory yields overall an improved prediction of the anisotropy of µ. It better predicts

the ratio µ100/µ111 and yields at least the correct ordering µ100 > µ110 even if the ratio

µ100/µ110 departs from the MD value (the ratio µ100/µ110 = 1.06 falls just at the lower end

of the 95 percent confidence interval of the estimated MD value 1.27± 0.11 and has thus a

relatively high probability of being lower than the true MD value). The comparison of the

first and fourth columns indicates that a main contributing factor to this improvement is

the fact that GL theory uses nonlinear density wave profiles with widths that better match

the MD-calculated equilibrium profiles than the width predicted by Eqs. (22) and (23) used

in the linear MC theory.

In addition to the comparison of the anisotropy of kinetic coefficients, we compare the

magnitude of kinetic coefficients predicted by the MC theory, the GL theory, and MD

simulations. The kinetic coefficients are computed using Eq. (20), and the relaxation time

of liquids measured from MD simulation is 0.57± 0.05 ps. The magnitude of µ predicted by

the MC theory is an order of magnitude smaller than that measured from MD simulations,

see Table V. Underestimation for the magnitude of µ by the MC theory is shown in previous

TABLE III. Values of c(K̂i; n̂) and dimensionless anisotropy factors calculated using the MC theory

and the GL theory.

~n (100) (110) (111)

(K̂i · n̂)2 0 1/2 0 1/4 1 0 2/3

c(K̂i; n̂) 0.37 0.28 0.45 0.33 0.23 0.52 0.27

AMC
s (~n) 2.09 2.07 2.33

AGL
s (~n) 0.161 0.173 0.205
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TABLE IV. The anisotropy of the kinetic coefficient for bcc lattices predicted by the present

GL theory that assumes equal weights of geometrically distinct polygons (cijk = 1/8 and cijkl =

1/2726,27) and the GL theory with normalization coefficients derived from the PFC model32 that

is equivalent to counting all repeats of those polygons (cijk = 1/48 and cijkl = 1/540), where

both calculations use the full nonlinear equilibrium density wave profiles shown in Fig. (3), the

Mikheev-Chernov (MC) theory15 with profile widths obtained from a linearized theory near the

liquid (given by Eqs. (22) and (23)), the MC theory with widths of density wave profiles extracted

from MD simulations10, and by nonequilibrium MD simulations12.

GL theory GL theory MC Theory MC Theory MD

(Coef. from Ref.26,27) (Coef. from Ref.32) (Linear theory) (MD Profiles)

µ100/µ110 1.06 1.07 0.99 1.14 1.27 ±0.16

µ100/µ111 1.27 1.39 1.12 1.23 1.26 ±0.12

studies for Fe, Pb, Ni, and Lennard-Jones systems10,13,15,44,45. In contrast, the magnitude

of µ computed by GL theory is comparable with those found in MD simulations, since

the dimensionless anisotropy factor As computed by GL theory is obtained through the

integration of spatial derivative of full nonlinear density waves profiles, see Table III.

Furthermore, the GL theory yields an analytical relation between two important inter-

facial quantities, namely the interfacial energy and the kinetic coefficients, as discussed

below. Under the isotropic approximation, the interfacial energy derived from GL theory

for bcc-liquid interfaces at equilibrium is proportional to the solid amplitude square26,27,

γiso =
n0kBTmu

2
s

6

√

a2b. (28)

The corresponding isotropic density wave profile is

u =
us

2

(

1 + tanh

(√
3z

2ξb

))

, (29)

which gives rise to ξ−1
~Ki

= (
√
3/6)u2

sξ
−1
b and the dimensionless anisotropy factor

As =
ξb
ξ ~Ki

=

√
3

6
u2
s. (30)

Thus the magnitude of µ is proportional to the inverse of u2
s. Since both interfacial energy

and kinetic coefficient are related to the solid amplitude square, we can relate these two

19



-20 0 20

z (Å)

0

0.2

0.4

0.6

0.8

u i

K i = [0 1 1], c i = 0
K i = [1 1 0], c i = 1/8

bcc(100)

(a)

-20 0 20

z (Å)

0

0.2

0.4

0.6

0.8

u i

K i = [0 1 1], c i = 1/16
K i = [1 1 0], c i = 1/4
K i = [-1 1 0], c i = 0

bcc(110)

(b)

-20 -10 0 10 20

z (Å)

0

0.2

0.4

0.6

0.8

u i

K i = [-1 1 0], c i = 0
K i = [1 1 0], c i = 1/6

bcc(111)

(c)

FIG. 3. (Color online) Equilibrium nonlinear density wave profiles across the solid-liquid interface

obtained by GL theory with input parameters from MD simulations with the MH(SA)2 potential

for three crystal faces: (a) (100), (b) (110), and (c) (111).

quantities using Eq. (20), (28), and (30),

µiso =
n0 ξ

2
b L

3τL( ~Ki)Tm

1

γiso
. (31)

The interfacial energy is inversely proportional to the kinetic coefficient, and these two

interfacial quantities are related through bulk liquid properties and latent heat in the GL

theory.
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VI. CONCLUDING REMARKS AND OUTLOOK

The remaining discrepancy between MD simulations and GL theory is likely due to the

over-simplified representation of the crystal density field in terms of the minimal set of

principal RLV, which ignores contributions of higher order reciprocal lattice vectors. In-

terestingly, this representation yields a prediction of the anisotropy of µ in the GL theory

that is independent of details of the interatomic potentials, which only enter in the theory

through the amplitude of density waves in the solid us and liquid structure factor properties.

While those properties influence the magnitude of µ, they do not influence its anisotropy

because the shape of the density wave profiles are independent of us and liquid structure

factor properties up to a common multiplicative factor of the amplitude for all profiles and

up to a common scaling factor of length for all widths, respectively. For the same reason,

the anisotropy of the solid-liquid interfacial free-energy predicted by GL theory was found

previously to be independent of details of interatomic potentials27. For a realistic crystal

density field represented by a large set of RLV, the anisotropy of µ is expected to gener-

ally depend on the interatomic potential as found in several MD studies for different crystal

structures3,8–12,46. Thus extending GL theory to include more reciprocal lattice vectors could

potentially give rise to a better prediction of kinetic anisotropy.

In addition to the anisotropy, another interesting and unexplained aspect of MC theory

is the magnitude of µ. In a previous MD study, Monk et al.11 proposed several techniques

TABLE V. The magnitude of the kinetic coefficient for bcc lattices predicted by the present GL

theory that assumes equal weights of geometrically distinct polygons (cijk = 1/8 and cijkl =

1/2726,27), the Mikheev-Chernov (MC) theory15 with profile widths obtained from a linearized

theory near the liquid (given by Eqs. (22) and (23)), and by nonequilibrium MD simulations12.

The unit of the kinetic coefficient is cm/(s· K).

GL theory MC Theory MD

(Coef. from Ref.26,27) (Linear theory)

µ100 64.68 ± 5.67 4.98± 0.44 78.23 ± 4.47

µ110 60.19 ± 5.28 5.03± 0.44 61.67 ± 4.11

µ111 50.80 ± 4.46 4.47± 0.39 62.08 ± 2.26
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to correctly account for the temperature rise associated with latent release during free so-

lidification MD simulations. The techniques were applied to an EAM model of fcc Ni and

the authors found that the value of µ was approximately a factor of two larger than the µ

computed without the temperature spike correction. If we make the crude assumption that

a similar factor of two can be applied to all previous MD studies (see the summary provided

in Hoyt et al.3), then it appears the MC model underestimates the kinetic coefficient in

fcc crystals by a factor of roughly 3-4. In this comparison various properties of the liquid,

such as the structure function and the relaxation time, were estimated from the hard sphere

system. In the case of MD simulations of bcc Fe, Gao et al.12 have accounted for the effect

of latent heat release and, as summarized in Table V, the value of µ is an order of magnitude

higher than the MC prediction. Here again the kinetic coefficient is found to be about a

factor of two higher than previous MD estimates for Fe10. Therefore it is safe to conclude

that the MC model consistently underestimates the magnitude of the kinetic coefficient,

the deviation is a factor of ∼ 3-4 for fcc and ∼ 10 for bcc. It should be noted, however,

that a preliminary MD study of the bcc elements46, i.e. without an interface temperature

correction, concluded that there is closer agreement with MC theory for the case of Mo and

V than had been observed for Fe, which suggests that details of the interatomic potential

not included in the MC treatment may be playing a role in bcc systems.

To further elucidate the trend of kinetic coefficient with crystal structure and interatomic

potential, a comparison of the GL model developed here to detailed MD simulations of

other bcc, as well as fcc, systems is warranted. This comparison will require to extend

the present calculation to other crystal structures. This should be possible by building on

recent progress to reproduce quantitatively the anisotropy of the fcc-liquid interface with

two different sets of density waves47. Such a comparison will also make it possible to explore

more systematically the inverse relationship between the kinetic coefficient and the interfacial

free-energy predicted by GL theory in this study.
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