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Abstract
We compute the non-zero temperature conductivity of conserved flavor currents in conformal field

theories (CFTs) in 2+1 spacetime dimensions. At frequencies much greater than the temperature, ~ω �
kBT , the ω dependence can be computed from the operator product expansion (OPE) between the

currents and operators which acquire a non-zero expectation value at T > 0. Such results are found to

be in excellent agreement with quantum Monte Carlo studies of the O(2) Wilson-Fisher CFT. Results for

the conductivity and other observables are also obtained in vector 1/N expansions. We match these large

ω results to the corresponding correlators of holographic representations of the CFT: the holographic

approach then allows us to extrapolate to small ~ω/(kBT ). Other holographic studies implicitly only

used the OPE between the currents and the energy-momentum tensor, and this yields the correct leading

large ω behavior for a large class of CFTs. However, for the Wilson-Fisher CFT a relevant “thermal”

operator must also be considered, and then consistency with the Monte Carlo results is obtained without a

previously needed ad hoc rescaling of the T value. We also establish sum rules obeyed by the conductivity

of a wide class of CFTs.
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I. INTRODUCTION

Conformal field theories (CFTs) constitute the best characterized quantum systems without

quasiparticle excitations. Their non-zero temperature dissipative dynamics can be treated by

extensions of Boltzmann-like approaches designed for quasiparticle dynamics;1 the Boltzmann ap-

proach is difficult in general, thus limited in practice. Much additional insight can be gained from

a modern perspective based upon holographic ideas,2 which does not assume a quasiparticle de-

composition of the spectrum at any stage. CFTs are also important as models of quantum critical

points in condensed matter, notably for the superfluid-insulator transition of bosons in a periodic

potential in two spatial dimensions.3–5

In recent work by three of us,2 we computed the T > 0 conductivity of a lattice model for this

superfluid-insulator transition using quantum Monte Carlo simulations; after carefully taking the

T → 0 limit of the lattice model, we obtained the T > 0 conductivity of a conserved current of the

CFT, and this was compared with the predictions of a semi-phenomenological holographic theory.

The latter theory included terms up to four derivatives in the metric and a gauge field conjugate to

the conserved current. We found consistency between the two approaches after an ad hoc rescaling

of the temperature between the two methods. Related T > 0 results were obtained in Ref. 6 and

7, T = 0 results are in Refs. 8 and 9, and the effects of disorder were considered in Ref. 10 and 11.

The present paper will significantly improve on our previous analysis by using more specific

field-theoretic information on the CFTs under consideration. We will work mainly with the 2+1

dimensional CFT with O(N) symmetry described by the Wilson-Fisher fixed point, and determine

the conductivity of the conserved O(N) current. We will compute the operator product expansion

(OPE) of the current operators in terms of other operators of the CFT, and use this to constrain

the high frequency behavior of the conductivity. We find excellent agreement of such results

with Monte Carlo studies of the O(2) model upon taking into account a scalar field conjugate to a

relevant perturbation of the CFT. Next, we will connect the high frequency behavior to holography,

and use it to make predictions for the conductivity at lower frequencies without an ad hoc rescaling

of temperature.

From a broader perspective, our analysis shows how the finite temperature properties of CFTs

can be analyzed by systematically including the influence of low dimension operators to constrain

the short-time behavior, and then using holography to extrapolate to longer times. In theories

with quasiparticles, the extrapolation from short to long times is generally made via the Boltzmann

equation; here, we argue that the corresponding extrapolation for CFTs without quasiparticles can

be made by a combination of the OPE with holography.

We present here the structure of the high frequency, or short time, behavior of the conductivity

as given by the OPE for a general CFT in 2+1 dimensions. With spacetime co-ordinates (τ, x, y),

the conductivity is related to the two-point correlator of a conserved current Jx (we suppress indices

of global flavor symmetries). We work in the Euclidean time signature, and then the conductivity

2



is
σ(iωn)

σQ
= − 1

ωn
〈Jx(ω)Jx(−ω)〉T + a possible contact term , (1)

where ω ≡ (ωn, 0, 0), and in some cases a diamagnetic ‘contact’ term may be present @(this is the

case for the O(N) model); here ωn refers to Matsubara frequencies which are integral multiples

of 2πT , but the conductivity is defined at all ω by analytic continuation. To make contact with

the condensed matter literature, we have explicitly displayed a factor of the quantum unit of

conductance

σQ =
(e∗)2

~
, (2)

where e∗ is the effective charge of the carriers (e∗ = 2e for the superfluid-insulator transition of

Cooper pairs); the ratio σ/σQ is then a dimensionless function whose values we will present here.

Note that, in the condensed matter literature (e∗)2/h = 2πσQ is often used as a definition of the

quantum unit of conductance.

The OPE specifies the behavior of the product of a pair of operators when they approach

the same point in spacetime: the product is replaced by a sum over the operators of the CFT

with universal coefficients.12,13 These OPE coefficients ultimately allow one to compute all local

correlators of the CFT at T = 0. At T > 0, the OPE expansion is applicable for times |t| < ~/(kBT )

(we will set ~ = kB = 1 in subsequent expressions), but cannot be used directly for longer times

which are naturally sensitive to the global topology of spacetime, and in particular to the periodic

boundary conditions along the Euclidean temporal direction. For our purposes, it is useful to

work in frequency space, and to express the OPE as the product of 2 operators when they carry a

common large Euclidean frequency. One of our primary results is the following OPE of the product

of 2 currents

lim
|Ω|�p

Jx(ω)Jx(−ω + p) = −|Ω|σ∞ δ(3)(p)− C
|Ω|∆−1

O(p)

+
CT
Ω2

[
Txx(p)− Tyy(p)− 12γ(Txx(p) + Tyy(p))

]
+ · · · , (3)

where ω ≡ (Ω, 0, 0), with Ω being the imaginary frequency at T = 0, and p is a fixed 3-momentum

with p ≡ |p|. The structure of this OPE was deduced by computing correlators of the operators

on the left-hand-side with those on the right-hand-side using the 1/N expansion of the O(N)

model; it is also consistent with correlators deduced from holography. Taking an expectation of

the above equation at any temperature will lead to both sides being proportional to δ(3)(p). Here

σ∞ is limiting value of the conductivity obtained as T → 0, O is a possible scalar operator in the

OPE with scaling dimension ∆, Tµν is the energy-momentum tensor, and C, CT , and γ are OPE

coefficients.

The terms in Eq. (3) involving the energy-momentum tensor have been implicitly included in

previous studies.2,14,15 In the holographic approach, these terms arise from the coupling, γ, of

the Weyl tensor to the gauge flux;14,16 the value of γ obeys the exact bound14,15 |γ| ≤ 1/12.
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It is also interesting to note the resemblance of the energy-momentum terms in Eq. (3) to the

Sugawara construction17,18 of the energy-momentum tensor from the OPE of currents in CFTs in

1+1 dimension; indeed, the term proportional to γ is Txx + Tyy = −Tττ , the Hamiltonian density.

We can use Eq. (3) to determine the frequency dependence of the conductivity at finite tem-

perature in the regime ~|ωn| � kBT , where ωn is the Matsubara frequency (we will henceforth set

~ = kB = 1). We simply evaluate the expectation value of the right-hand-side in an equilibrium

thermal ensemble defined by the CFT, and indeed we have only displayed terms in Eq. (3) which

have a non-zero expectation value at T > 0. By this method we obtain from Eqs. (1) and (3)

σ(iωn)

σQ
= σ∞ + b1

(
T

ωn

)∆

+ b2

(
T

ωn

)3

+ · · · , ωn � T , (4)

where the dimensionless numbers b1, b2 are related to the OPE coefficients C and CT respectively.

This expression shows that the term associated with the operator O is important when there is a

scalar operator with a scaling dimension ∆ < 3. For the O(N) Wilson-Fisher CFT there is indeed

such an operator: it is the “thermal” operator Og, whose introduction breaks no symmetry and

drives the CFT into a non-critical state. We note that the label “thermal” descends from critical

phenomena terminology, and is not meant to imply that Og introduces a non-zero T ; such an

operator has a coupling g in the action, and g has to be tuned to a critical value g = gc to realize

the CFT. The operator Og has scaling dimension ∆ which takes the value

∆g = 3− 1/ν , (5)

where ν is the correlation length exponent. For N = 2, we have ν ≈ 2/3, and so the O = Og term

in Eqs. (3) and (4) is more important than that due to the energy-momentum tensor, at least at

large ωn.

The previous analysis2 did not allow for an operator O with ∆ < 3. Indeed, there is no such

operator for numerous physically interesting CFTs involving Dirac fermions coupled to gauge fields,

including QED3. For these CFTs, the analysis of Ref. 2 can be used without modification. However,

for O(N) Wilson-Fisher CFT, it is necessary to extend the analysis to include the relevant operator

Og; such an extension was briefly noted in Ref. 19, but its consequences were not appropriately

analyzed. After such an extension here, we find excellent compatibility between Monte Carlo,

operator product expansions, and holography, without any ad hoc rescaling of temperature.

We will begin our analysis by computations in the vector 1/N expansion for the O(N) Wilson-

Fisher CFT in Section II. With many details relegated to the Appendix, we obtain results for

OPE coefficients and thermal expectation values. Section III presents our Monte Carlo results on

the N = 2 Wilson-Fisher CFT, and compares them with the 1/N expansion. Section IV turns to

holography: by matching the large frequency behavior with the Monte Carlo results, we are able

to extrapolate to low frequency properties of the conductivity. Section V presents a few results for

CFTs with Dirac fermions. Finally, in Section VI we use the OPE analysis to prove conductivity
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sum rules.

We close this introduction by summarizing our notations for the operators under consideration

in Table I, as they appear in Sections II-IV.

O ∆O ` 〈O〉T Holographic dual

φα (1 + η)/2 0 0 −
Og ∼ φ2

α 3− 1/ν 0 BT 3−1/ν ϕ

Jµ 2 1 0 Aµ
Tµν 3 2 HµνT

3 gµν

TABLE I. Main operators of the CFT describing the O(N) Wilson-Fisher CFT in 2+1 dimensions. ∆O, `

are the scaling dimension and spin of the operators, respectively. The properties of the conserved current

Jµ (with flavor index suppressed) and energy-momentum tensor Tµν are general for any CFT in 2+1

dimensions.

II. O(N) CFT

The theory of primary interest to us is described by the partition function for a O(N) vector

field φα, α = 1, . . . , N ,

Z =

∫
Dφα exp

(
−
∫
x

[
1

2
(∂φα)2 +

v

2N

(
φ2
α −N/g

)2
])

, (6)

where
∫
x
≡
∫
d3x is the integral over 2+1 dimensional spacetime, v parametrizes the quartic

non-linearity, and g is the tuning parameter across a quantum phase transition between phases

where O(N) symmetry is broken and present. We have written this field theory in a somewhat

unconventional notation to facilitate a 1/N expansion; to the extent possible, we follow the notation

in Ref. .20 In the limit v →∞ this theory reduces to the O(N) non-linear sigma model. However,

it is a subtle matter to identify the thermal operator in the strict v =∞ theory, as was discussed

in Ref. .20 We will therefore keep v finite for now, but will shortly indeed take the v → ∞ limit

when it no longer interferes with the scaling limit.

We will primarily be interested in the conductivity of this theory at the quantum critical point

g = gc as a function of frequency, ω, and absolute temperature T . Without loss of generality, we

focus on one of the conserved O(N) currents of this theory,

Jx = φ1∂xφ2 − φ2∂xφ1 . (7)

The computationally challenging regime is at low frequencies |ω| � T , where we have the dis-

sipative dynamics of the CFT relaxing to thermal equilibrium. However, controlled and reliable

studies are possible at high frequencies ω � T . In this section, we will present the results of a

1/N expansion of the behavior of the conductivity in this ω � T regime using the OPE in Eq. (3).
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The leading term in Eq. (3) is given by the constant σ∞ which has been computed earlier. For

completeness, we note its value in the 1/N expansion21,22 for the theory Z

σ∞ =
1

16

(
1− 1

N

64

9π2
+O(1/N2)

)
. (8)

The terms in Eq. (3) involving the energy-momentum tensor have been discussed previously in

different formulations.2,14,15 We can use holography to compute the 3-point correlator between Jx,

Jx, and Tµν as described in Ref. ,15 and then deduce the structure of the OPE: this computation in

described in Appendix A. We can also compute the same 3-point correlator in the 1/N expansion

as described in Ref. ,15 and again obtain Eq. (3) with specific values of the OPE coefficients: this

is also described in Appendix A. The 1/N expansion for γ for the theory Z is15

γ = − 1

12
+O(1/N) . (9)

Similarly, the 1/N expansion for CT is

CT =
4

N
+O(1/N2) . (10)

For the O(N) field theory in Eq. (6), there is a relevant scalar operator O which we denote Og
because it is generated by tuning g away from the quantum critical point. This is the operator

Og ∼ φ2
α with scaling dimension in Eq. (5).

We will compute the OPE coefficient of Og in the 1/N expansion of Z. An important subtlety

arises in the definition of Og in such an expansion, as we now describe. The scaling limit of the

large N expansion also involves taking the limit23 v → ∞ in the action in Eq. (6). But in this

limit, we see from Eq. (6) that φ2
α = N/g, a constant. Consequently, the correspondence Og ∼ φ2

α,

assumed in Ref. 19, does not define an appropriate non-constant thermal operator at v = ∞. A

proper definition of Og requires a more careful analysis of the N → ∞ and v → ∞ limits.20 We

decouple the quartic term in Z by a Hubbard-Stratonovich field λ̃ and write

Z =

∫
DφαDλ̃ exp

(
−1

2

∫
x

[
(∂φα)2 +

i√
N
λ̃
(
φ2
α −N/g

)
+
λ̃2

4v

])
. (11)

It is the field iλ̃ which we will identify with the operator Og. This identification is motivated

by the following identities between the one- and two-point correlators of φ2
α and λ̃ (which can be
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obtained by taking appropriate functional derivatives of source terms)20

〈
φ2
α(x)

〉
=
N

g
+ i

√
N

2v

〈
λ̃(x)

〉
;〈

φ2
α(x)φ2

β(0)
〉
−
〈
φ2
α(0)

〉2
=
N

v
δ(3)(x)− N

4v2

[〈
λ̃(x)λ̃(0)

〉
−
〈
λ̃(0)

〉2
]
. (12)

So up to unimportant additive terms, the correlators of φ2
α are equal to those of (

√
N/(2v))iλ̃. As

reviewed in Ref. ,20 the correlators of iλ̃ have a sensible scaling limit in a theory in which we take

the v →∞ limit already in the action in Eq. (11). So we identify Og ∼ iλ̃, and then set v =∞ in

subsequent computations. Note, however, that Eqs. (12) become trivial at v =∞, and so v has to

be kept finite only in deducing the correlators of φ2
α. Specifically, we define the “thermal” operator

by

Og(x) = Cλ iλ̃(x) , (13)

where the cutoff-dependent constant Cλ will be chosen so that the two-point correlator of Og is

normalized as

〈Og(p)Og(−p)〉 − 〈Og〉2 = −16p3−2/ν . (14)

The pre-factor of 16 is chosen for convenience in the 1/N expansion: we find in Appendix B that

Cλ = 1 at N = ∞. With these definitions and normalizations, we can compute the value of the

OPE coefficient Cg: we find in Appendix B that

Cg =
1

4
√
N

+O(1/N3/2) . (15)

With all the ingredients in the OPE at hand, we can proceed to the determination of T > 0

behavior of the conductivity from Eq. (3). For this, we need the expectation values of Og and Tµν
at T > 0: these are determined in Appendix C.

For the operator Og we obtain

〈Og〉T − 〈Og〉T=0 ≡ BT 3−1/ν (16)

with

B =
√
NΘ2

[
1− 1.8914

N
+O(1/N2)

]
, (17)

where

Θ ≡ 2 ln

(√
5 + 1

2

)
. (18)

In Eq. (16), we note that we have subtracted the T = 0 expectation value, which is non-universal

and finite in the field theory Eq. (6). This subtraction can be seen as defining the scaling operator

of the IR fixed point CFT, in which the expectation values at zero temperature vanish. For the
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purposes of comparing with our Monte Carlo results, it useful to express this result in a form that

is independent of our arbitrary normalization of Og in Eq. (14). We take the Fourier transform of

Eq. (14) to real space to obtain

〈Og(x)Og(0)〉 ≡ A

x6−2/ν
(19)

with

A = − 27−2/νΓ(3− 1/ν)

π3/2Γ(−3/2 + 1/ν)
. (20)

From Eqs. (20) and (17) we can construct the universal ratio which is independent of the normal-

ization convention of Og:

Υ =

√
A

B
=

4

πΘ2
√
N

[
1 +

0.8941

N
+O(1/N2)

]
. (21)

This ratio will be compared with quantum Monte Carlo results for N = 2 in Section III; its value

will also be useful in the holographic analysis in Section IV.

For the T > 0 expectation value of the energy-momentum tensor, we have for any CFT

〈Txx〉T = 〈Tyy〉T = −1

2
〈Tττ 〉T = HxxT

3 , (22)

@which corresponds to the pressure of the CFT. We have implicitly subtracted from these ex-

pectation values their T = 0 value; Hxx is a universal number characterizing the CFT. This

equation manifestly shows the tracelessness of Tµν in a CFT, which holds at finite temperature.

The computation in Appendix C shows that in the large-N limit of the O(N) model

Hxx = @
ζ(3)

2π

(
4N

5
− 0.3344

)
. (23)

Collecting our results, we can now insert Eqs. (16) and (23) into Eq. (3) and obtain the large

frequency behavior of the conductivity in the O(N) CFT:

σ(iωn)

σQ
= σ∞ + Cg B

(
T

ωn

)3−1/ν

+ 24 CT γ Hxx

(
T

ωn

)3

+ · · · . (24)

Note that this is the result for Euclidean frequencies ωn � T . We show in Appendix C that the

result agrees precisely with explicit computation of the conductivity in the N =∞ theory, which

appears in Eq. (C21). The result Eq. (24) shows that the combination CgB is also independent of

the normalization convention of Og.
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The analytic continuation iωn → ω + i0+ of Eq. (24) to real frequencies ω � T yields:

σ(ω/T )

σQ
= σ∞ + b1

[
Re(i∆g) + i Im(i∆g)

](T
ω

)∆g

− i b2

(
T

ω

)3

+ · · · , (25)

where ∆g = 3 − 1/ν. We note that for finite N > 1, the scaling dimension ∆g is not an integer,

making both the real and imaginary parts of σ(ω/T ) to scale like (T/ω)∆g at large ω/T . For

instance if we set ν = 2/3, this yields ∆g = 3/2, thus Im(i3/2) = −Re(i3/2) = 1/
√

2. In contrast,

the N = ∞ limit is special because ∆g is an integer, 2, and thus only the real part scales like

(T/ω)2, while the imaginary part decays faster, i.e. as (T/ω)3. In the case of CFTs that do not

have a scalar operator with scaling dimension ∆ < 3 in the JJ OPE, the real and imaginary parts

of the conductivity at asymptotically large and real frequencies behave differently. The imaginary

parts decays as (T/ω)3 due to the energy-momentum tensor, while the real part decays faster

due the presence of other operators. This is the case for certain CFTs involving Dirac fermions

discussed in Section V. It is also the case for the holographic models previously considered,14,16 as

shown in Ref. .24

III. QUANTUM MONTE CARLO

In order to perform efficient Quantum Monte Carlo simulations of Eq. (6) for N = 2 it is useful

to introduce a simple lattice model in the same universality class. For this purpose we use a

quantum rotor model defined in terms of phases θ~r living on the sites, ~r, of a two-dimensional

square lattice:

Hqr =
U

2

∑
~r

1

2

(
1

i

∂

∂θ~r

)2

− µ
∑
~r

1

i

∂

∂θ~r
−
∑
〈~r,~r′〉

t cos(θ~r − θ~r′) . (26)

Here −i∂/∂θ~r is usually identified with the angular momentum of the quantum rotor at site ~r,

which is the canonical conjugate of θ~r. However, it can also be viewed as the deviation from an

average (integer) particle number and this model is therefore in the same universality class as the

Bose Hubbard model. The on-site repulsive interaction, U , then hinders large deviations from

the mean particle number while t characterizes the hopping between nearest neighbor sites. For

completeness, we include a chemical potential µ although the case of integer filling that we focus

on here corresponds to µ = 0.

As discussed in Ref. 2, it is possible to directly simulate Eq. (26) using quantum Monte Carlo

(QMC) techniques. However, it is useful to further simplify the model by employing the Villain

approximation25 where the cos θ term is replaced by a sum of periodic Gaussians centered at 2πm

(where m is an integer): exp(t∆τ cos(θ)) ' exp(t∆τ)
∑

m exp(−1
2
t∆τ(θ − 2πm)2), preserving the

periodicity of the Hamiltonian in θ. A standard Trotter decomposition can then be performed
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where βU , is divided into Lτ slices of size ∆τ = βU/Lτ . One then arrives at a model defined in

terms of an integer-valued current J = (Jτ , Jx, Jy) with Jτ the angular momentum (or particle

number) living on the links of a 2 + 1 dimensional discrete lattice of dimensions L×L×Lτ :21,26,27

ZV ≈
∑
{J}

′
exp

− 1

K

∑
(τ,~r)

(
1

2
J2

(τ,~r) −
µ

U
Jτ(τ,~r)

) . (27)

Here Lτ∆τ takes the place of the dimensionless inverse temperature βU and varying K is analogous

to varying
√
t/U in the quantum rotor model. We stress that, the

∑′ denotes the fact that the

summation over J is constrained to divergence-less configurations making the summation over

the integer valued currents highly non-trivial to perform. In deriving the Villain model a fixed

∆τ = 1/K is used. Despite the fixed, rather large, value of ∆τ , the Villain model has several

significant advantages. Most notably, it is explicitly isotropic in space and time. Secondly, very

efficient Monte Carlo algorithms have been developed for the Villain model28,29 as well as for

the quantum rotor model. Here we use directed Monte Carlo techniques as described in Ref. 29.

The location of the QCP is also known, Kc = 0.3330671(5).2,7 Further details of the numerical

calculations are given in Appendix D.

In the condensed matter literature the quantum of conductance is usually defined as (e∗)2/h

(for carriers of charge e∗), however, here we use a slightly different definition of σQ = (e∗)2/~ that

is also widely used. In terms of σQ, the frequency dependent conductivity of the Villain model can

then be calculated by evaluating (ωn are the Matsubara Euclidean frequencies)

σ(iωn)

σQ
=

1

Ld−22πn

〈∣∣∣∣∣∣ 1L
∑
(τ,~r)

eiωnτJx(τ,~r)

∣∣∣∣∣∣
2〉

, (28)

which is dimensionless in d = 2. Here n is an integer labeling the (dimensionless) Matsubara

frequency ωn/ωc = 2πn/Lτ . We note that this expression is explicitly independent of the imaginary

time discretization ∆τ even though ωn is measured in units of ωc = U/∆τ and any residual

dependence of σ(iωn) on ∆τ is therefore usually ignored.

The conductivity at the QCP has previously been studied.21,26,27 The first attempts at calcu-

lating the universal T → 0 limit of the conductivity6 appeared significantly later and the first

large scale numerical calculations of this quantity have only very recently been performed2,7 due

to their extremely demanding nature. Here we re-analyze the numerical results of Ref. 2 in order

to test the analytical result, Eqs. (4) and (24). The T → 0 extrapolated QMC results for the

conductivity are shown in Fig. 1 along with our fit. For a discussion of the numerical details of the

T → 0 extrapolation we refer to the supplementary material of Ref. 2 as well as to Appendix D.

Performing the T → 0 extrapolation for large values of n is significantly more difficult than at

small values of n. We have therefore limited the values of n that we use in the fit to n = 1, . . . , 7
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0.36

0.37

0.38

0.39

0.40 Fit: 0.3605+0.053/n1.533-0.01/n3

QMC Villain Model

2⇡
�
(i
!

n
)/
�

Q

n = !n/(2⇡T )

QMC Villain Model

Fit : 0.3605 + 0.054/n1.533 � 0.01/n3

FIG. 1. QMC results (open circles) at Kc = 0.3330671 with µ = 0 for the frequency dependent

conductivity σ(iωn). All results have first been extrapolated to L → ∞ and subsequently to T → 0

(Lτ → ∞). The solid blue line shows a fit to the QMC data for n = 1, . . . , 7 of the form 2πσ/σQ =

0.3605 + 0.054/n1.533 − 0.01/n3 with n = ωn/(2πT ) the Matsubara index. The dashed blue line is the

continuation of the fitted form to n > 7.

where we have the highest confidence in the T → 0 extrapolated QMC results. For these values

of n we obtain remarkably good agreement between the fit and the QMC results. Furthermore, as

can be seen, the fit works very well also for n > 7. We note that, even though values of n = 1 . . . 7

used in the fit in Fig. 1 may appear rather small, they correspond to values of ωn/T ≥ 2π where

Eqs. (4) and (24) should be applicable. Inserting appropriate powers of 2π, the fit in Fig. 1 can be

converted to a fit to Eq. (4) and we find fitted values of σ∞, ν, b1, and b2 as follows

2πσ∞ = 0.3605(3)

ν = 0.68(3)

b1 = 0.143(5)

b2 = −0.4(1) , (29)

where we only quote statistical errors arising from the fit. We comment on these values in turn:

• The value of 2πσ∞ is in excellent agreement with existing results.2,7,9 Comparing with the

large N result in Eq. (8), the N = ∞ value is 0.39, while the 1/N corrected expression

evaluated at N = 2 yields 0.25.

• Our fit in Fig. 1 provides a value for ν that is consistent with the much more precise estimate

obtained in Fig. 2 (see below) as well as with previous numerical studies.30–32
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FIG. 2. QMC results (open circles) at Kc = 0.3330671 for 〈Og〉 in the limit L→∞ as a function of Lτ .

The solid red line indicates a fit to the QMC data of the indicated form.

• For b1, we can only compare with the N =∞ result obtained in Section II. From Eqs. (24),

(15) and (17), or equivalently from Eq. (C21), we obtain b1 = Θ2/4 = 0.23.

• Our fits to b2, the coefficient of the (T/ωn)3 term, are not accurate. But the presence of

a negative b2 can be reliably confirmed. Comparing with the N = ∞ results of Section II,

from Eqs. (24), (9), (10) and (23), or equivalently from Eq. (C21), we obtain b2

∣∣
N=∞ = −1.2.

@ Using the 1/N correction for the pressure coefficient Hxx, Eq. (23), we get b2 ≈ −0.97.

Both the 1/N expansion and QMC simulations suggest a negative γ for the O(2) CFT, which

differs from the positive value extracted via the “holographic continuation” analysis done in

Ref. 2. The new holographic analysis performed in this work is consistent with a negative

value of γ, because it incorporates the relevant scalar operator Og.

Next we turn to correlations of the “thermal” operatorOg. For the Villain model, it is convenient

to define this operator by

Og(τ, ~r) =
1

2
J2

(τ,~r) −
µ

U
Jτ(τ,~r) . (30)

By suppressing winding number fluctuations in the spatial directions and using system sizes with

spatial dimensions L > Lτ
7 it is possible to effectively calculate 〈Og〉 in the limit L → ∞ with

finite Lτ . Our results are shown in Fig. 2. An extraordinary good agreement with the analytical

expression Eq. (16) is evident. The fit shown in Fig. 2 immediately yields

ν = 0.6714(10) , (31)
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FIG. 3. QMC results (open circles) at Kc = 0.3330671 for 〈Og(0)Og(τ)〉Lτ − 〈Og〉2Lτ in the limit L→∞
as a function of the imaginary time, τ . Results are shown for different values of Lτ . The dashed red line

indicates the Lτ →∞ limit of 〈Og(0)Og(τ)〉Lτ − 〈Og〉2Lτ → 0.0122τ−(6−2/ν) with ν = 0.6714.

in excellent agreement with other recent estimates30–32 confirming that ν is slightly larger than

2/3. In fact, the precision at which ν can be determined from 〈Og〉 makes this a promising venue

for a future high precision determination of ν. Furthermore, from Fig. 2 we find that the coefficient

B in Eq. (16) is

B = 0.0940(6). (32)

Recall that the value of B by itself is non-universal, and depends upon the microscopic choices

we made in the definition in Eq. (30); however we will combine it below with another observable

to obtain a normalization-independent number. For further analysis, it is also useful to note the

non-universal value:

〈Og〉Lτ→∞ = 0.0770595(5). (33)

Next, we turn to the two-point correlation function of Og. Due to the space-time isotropy of the

Villain model, it has the same behavior along the spatial and temporal directions. However, for

convenience we focus on the temporal correlations. As before we perform calculations effectively

in the L → ∞ limit with a finite Lτ . Our results are shown in Fig. 3. The data for individual

values of Lτ are first fit to the form A
[
τ−(6−2/ν) + (Lτ − τ)−(6−2/ν)

]
+〈Og〉2Lτ for τ > 6. This yields

values of A that are close to independent of Lτ and we estimate:

A = 0.0122(15) . (34)
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The variations in ν in the fits are small, ν = 0.671 − 0.675, and consistent with the value of ν

obtained above, Eq. (31). Furthermore, the fitted values for 〈Og〉2Lτ are consistent with the actual

calculated values of 〈Og〉Lτ and clearly approach 〈Og〉2Lτ→∞ as determined from Eq. (33).

Finally, we can combine our computations of the one-point and two-point correlators of Og to

obtain a universal number which is independent of the precise definition of Og and the microscopic

details of the action. This is the ratio Υ defined in Eq. (21), and the present Monte Carlo studies

yield:

Υ =

√
A

B
= 1.18(13). (35)

Almost all of the uncertainty in this result arises from the uncertainty in the determination of A

which is difficult to calculate with high precision. This result for Υ is in reasonable agreement

with the 1/N expansion results in Eq. (21), where we have the N = ∞ value Υ = 0.97, and the

1/N corrected value at N = 2 of Υ = 1.41.

We have also performed simulations directly of Eq. (26) which does not involve the Villain

approximation. In this case it is considerably harder to obtain high precision numerical data,

however, our preliminary results indicate a value of Υ in very good agreement with the above

results for the Villain model.

IV. HOLOGRAPHY

We have so far obtained systematic results for the conductivity in the high frequency regime

|ω| � T . We also obtained quantum Monte Carlo results at the discrete Matsubara frequencies

ωn = 2nπT , where n is a non-zero integer. As we noted in Section I, we will now turn to holography

to perform the analytic continuation to all Minkowski frequencies.

For the contributions of the energy-momentum tensor terms in Eq. (3), such an analysis has

already been carried out in Ref. .2 So we turn to the extension needed to include the contribution

of a scalar operator O.

For the present purposes, the operator O is any operator in the OPE which obeys the analogs

of the Eqs. (16) and (19)

〈O(x)O(0)〉 =
A

x2∆
, T = 0;

〈O〉T − 〈O〉T=0 = BT∆, (36)

which define the normalization independent universal ratio Υ ≡
√
A/B.

Now take the holographic dual of the same CFT in AdSD+1 and the corresponding boundary

operatorO(x) is represented by a bulk scalar field ϕ(x, ũ); here ũ represents the emergent direction,

and the AdSD+1 metric is L2(dx2+dũ2)/ũ2 (L is the AdS radius). In the conventional normalization
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for the bulk scalar, the two-point correlator of O is15

〈O(k)O(−k)〉 = −(2∆−D)
Γ(1−∆ +D/2)

Γ(1 + ∆−D/2)

(
k

2

)2∆−D

(37)

This translates in real space to

〈O(x)O(0)〉 =
π−D/2(D − 2∆)Γ(∆)Γ(1−∆ +D/2)

Γ(D/2−∆)Γ(1 + ∆−D/2)

1

x2∆
(38)

For holography to reproduce the T > 0 expectation values of the CFT with the same universal

constant Υ, we conclude from Eq. (36) that

〈O〉T − 〈O〉T=0 =
1

Υ

[
π−D/2(D − 2∆)Γ(∆)Γ(1−∆ +D/2)

Γ(D/2−∆)Γ(1 + ∆−D/2)

]1/2

T∆. (39)

Again using the standard AdS/CFT dictionary, we conclude that the bulk scalar must behave as

(note that the metric is not modified at T > 0 near the boundary ũ→ 0):

ϕ(x, ũ→ 0) =
ũ∆

(2∆−D)
(〈O〉T − 〈O〉T=0)

=
1

Υ(2∆−D)

[
π−D/2(D − 2∆)Γ(∆)Γ(1−∆ +D/2)

Γ(D/2−∆)Γ(1 + ∆−D/2)

]1/2

(ũ T )∆. (40)

The N = 2 Wilson-Fisher theory has ∆ = ∆g given by Eq. (5) with ν = 0.67155(27);30 so 2∆−D =

3− 2/ν ≈ 0.02 is nearly zero. Fortunately, the coefficient in Eq. (40) has a finite limit (≈ 0.28/Υ)

as ∆→ D/2.

We now turn to deducing the consequences of the condensate of ϕ in Eq. (40) at T > 0.

Following the notation of Ref. 19, it is convenient to introduce the dimensionless co-ordinate u,

and the length scale r0 by

u =
ũ r0

L2
, r0 =

4πTL2

3
. (41)

Then the T > 0 AdS4-Schwarzschild metric is

ds2
Sch =

r2
0

L2u2

[
−f(u)dt2 + dx2 + dy2

]
+
L2du2

u2f(u)
, (42)

where

f(u) = 1− u3 . (43)

This spacetime is asymptotically (u→ 0) AdS4, with negative cosmological constant ∝ −1/L2, and

contains a planar black hole with horizon at u = 1. We simplify notation for the near-boundary
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behavior of the field ϕ in Eq. (40) by defining

ϕ(u→ 0) = au∆ + · · · , (44)

where the dots represent terms that decay faster as u→ 0, and a is determined by the definitions

above. The field ϕ will couple to the bulk gauge boson, Aµ, dual to the current of the CFT like a

dilaton, leading to the gauge action

S =

∫
d4x
√−gSch

{
− 1

4g2
4

[1 + αϕ(u)]FabF
ab

}
, (45)

where Fab = ∂aAb − ∂bAa, g4 is the bulk gauge charge, and the coupling α is proportional to the

OPE coefficient C in Eq. (3). As we shall see, the ωn � T asymptotic behavior of the conductivity

of the corresponding boundary CFT is

σ(iωn)

σQ
= σ∞ + b1

(
T

ωn

)∆

+ · · · , (46)

where the dots denote subleading terms. The coefficient b1 is as defined in Eq. (4), and it is

proportional to the coupling α in Eq. (45). As inputs to the holographic computation we will not

use the values of α and C, but directly fit the value of b1 to the Monte Carlo results in Eq. (29).

Let us now determine the relation between b1 and a, α. In the Au = 0 gauge, the equation of

motion which follows from Eq. (45) for the transverse component of the gauge field, Ay, (choosing
~k along the x-direction) is

(
(1 + αϕ)fA′y

)′ −w2 (1 + αϕ)

f
Ay = 0 ; w ≡ 3ωn

4πT
, (47)

where we have defined ( )′ = ∂u( ), and the rescaled imaginary frequency w. We note that w is

defined for any value, not only at the discrete Matsubara frequencies. The function f(u) appears in

the metric, and was defined in Eq. (43) (the results in this section hold for all f(u) = 1−up + · · · ,
with p ≥ 1, so that the boundary metric is AdS4). To determine the power law 1/ω∆

n in Eq. (46),

we can easily make use of the analysis of Ref. ,24 which relies on the contraction map method

employed in Ref. .33 Here, we wish in addition to determine the coefficient b1. This can be done

perturbatively in α, as we now show. It will be advantageous to change the holographic coordinate

from u to z: dz/du = 1/f(u), i.e. z(u) =
∫ u

0
dū/(1 − ū3). Note that for u ≈ 0, z reduces to

u. Given the standard AdS/CFT prescription, the solution to Eq. (47) can be parameterized as

Ay = e−wz + αÃ, with Ã satisfying a Dirichlet condition at z = 0(= u). To leading order in α, Ã

obeys

∂2
z Ã−w2Ã = we−wz∂zϕ . (48)
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This equation can be solved by using a Green’s function,

G(z, z̄) = − 1

w

(
sinh(wz)e−wz̄ θ(z̄ − z) + z̄ ↔ z

)
, (49)

where ∂2
zG−w2G = δ(z − z̄). The current-current correlation function is then given by

〈Jx(w)Jx(−w)〉T =
1

g2
4

∂uAy(u = 0) = −w

g2
4

(
1 + α

∫ ∞
0

dz e−2wz∂zϕ+ · · ·
)
. (50)

Using the asymptotic behavior for the scalar profile, Eq. (44), we obtain:

σ(iw)

σQσ∞
= − 1

w
∂uA(u = 0) (51)

= 1 + αa
Γ(∆ + 1)

2∆

1

w∆
+ · · · , for w� 1 . (52)

Comparing to Eq. (46) we find that we can indeed match the finite temperature CFT results, as

long as

b1 = σ∞ α a
Γ(∆ + 1)

2∆

(
4π

3

)∆

. (53)

As a check, we can compare this result with the WKB analysis24 done for the asymptotic behavior

of σ with a holographic model containing the term γL2CabcdF
abF cd. For the AdS4-Schwarzschild

metric, this term is also of the form given by Eqs. (44) and (45), with α a = 4γ and ∆ = 3, which

is the scaling dimension of the energy-momentum tensor. Then the result above agrees with the

WKB analysis:24 b1/σ∞ = 3γ × (4π/3)3.

We are now ready to use this relation in conjunction with simplest finite-temperature holo-

graphic model to determine the charge diffusion constant and the conductivity at zero frequency.

Here, it must be kept in mind that we are not including the long-time tails which were discussed

in earlier work.2 The full frequency dependence of the conductivity is discussed in Section IV B.

A. Holographic model for charge diffusion and conductivity

We shall proceed by examining the simplest holographic ansatz which models a CFT at finite

temperature while reproducing its UV behavior. For this we simply assume that the u → 0

behavior of the scalar profile in Eq. (44) holds all the way up to the horizon at u = 1. Such

an ansatz connects naturally to the previous holographic analyses14,16,19 that considered a four-

derivative term coupling the Weyl tensor to two field strengths, γL2CabcdF
abF cd: for the AdS4-

Schwarzschild metric, this term has a u3 dependence for all u, both near the boundary u → 0,

and near the horizon u → 1. We mention that in principle a more detailed holographic analysis

can be performed, where one determines the dilaton profile ϕ(u) self-consistently with the metric.
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It would be interesting to study the resulting IR behavior. We leave this for future investigation,

and proceed with our physically motivated ansatz, which, as we shall see, captures many essential

features.

The charge diffusion constant for the background in Eq. (45) is well known and is given, for

example in:14,34

D =
3

4πT
[1 + αϕ(1)]

∫ 1

0

du
1

1 + αϕ(u)
. (54)

Working perturbatively in α the above equation for the diffusion constant becomes

D ≈ 3

4πT

[
1 + α a

∆

∆ + 1

]
=

3

4πT

[
1 +

b1

σ∞

∆

Γ(∆ + 2)

(
3

2π

)∆
]
. (55)

From the last equality, we note that the growth of b1 with ∆ must be very rapid in order for an

operator with large scaling dimension to make an important contribution to the charge diffusion

constant, otherwise that operator will decouple. A similar statement can be made about the d.c.

conductivity:

σ(0)

σQ
=

1

g2
4

[1 + αφ(1)] =
1

g2
4

(1 + αa) , (56)

= σ∞ +
b1

Γ(∆ + 1)

(
3

2π

)∆

. (57)

@Before discussing the relevance of this analysis to generic CFTs, we point out an important

caveat. Namely, that for generic CFTs we expect the conductivity to diverge logarithmically in

the small frequency limit ω/T → 0 due to long-time tails. @This classical effect leads to the slow

decay of correlators of conserved currents at long times; see the discussion in Refs. 2,19 for further

details. Such long-time tails do not occur in the tree-level (or classical) holographic models that

we consider due to an implicit limit of infinite number of CFT fields. @Our holographic analysis

therefore cannot describe the conductivity of the O(2) CFT when ω � T . (We point out that

holography can capture long-time tails if 1/N quantum corrections are taken into account.35) To

circumvent the need to refer to long-time tails, one could replace the statements about ω = 0,

such as Eq. (57), by equivalent statements at small but finite frequencies, say on the order of the

temperature. The analysis above becomes more involved but we expect similar conclusions for the

holographic model under consideration.

In a typical CFT once temperature is turned on there will be an infinite number of operators

which will obtain expectation values proportional to the temperature to the appropriate power.

@The large-frequency behavior of various correlators is thus expected to receive contributions

from an infinite number of such operators, which appear in the corresponding OPE. In other

words, we expect generically that the true holographic background should contain additional fields

with profiles that are needed to reproduce higher order terms in the OPE at large Euclidean
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frequencies. Naively, one would expect that for real frequencies far below the temperature, all

such operators should become important in determining low energy quantities such as charge

diffusion (where the OPE badly diverges). However, the holographic model suggests that high

scaling dimension operators decouple rapidly if their OPE coefficient does not grow factorially. In

that case, the diffusion constant and d.c. conductivity can be well described with only the lowest

dimension operators. If, on the other hand, the OPE coefficients grow rapidly, compensating for

the suppression factors found above, the holographic background can deviate considerably from the

naive AdS4-Schwarzschild form. In fact, higher spin fields in the bulk @(corresponding to higher

spin CFT operators) can become important, spoiling the simple background-metric description.

In such a situation, one would question not only the photon equation of motion Eq. (45) but also

the boundary conditions used for the bulk modes at u = 1. Thus, a natural conjecture is that it is

precisely for theories where the OPE coefficients do not grow considerably that finite temperature

can be modeled with a horizon. In those theories, the leading correction to the low frequency

conductivity should come from the lowest dimension operator, as we have considered.

B. Comparing holography with quantum Monte Carlo

We now solve the equation of motion for Ay, Eq. (47), in order to study the full frequency

dependence of the conductivity, especially for real frequencies. We solve the differential equation

numerically with in-falling boundary conditions at the horizon.14 The solution can be obtained in

the full complex plane of frequency. In particular, we can compare the holographic result with

QMC data2 for the O(2) quantum critical theory, which is obtained for imaginary frequencies

ωn ≥ 2πT , as shown in Fig. 4(a). Most notably, we observe in Fig. 4(a) that the holographic

result fits the QMC data without the need of a temperature rescaling. A rescaling was needed

previously2,7 because the holographic theory used then had the scaling dimension fixed to ∆ = 3,

i.e. the dimension of the energy-momentum tensor. In contrast, when the dimension is chosen to be

that of the thermal operator ∆ = ∆g = 3− 1/ν ≈ 1.5, as expected from the OPE analysis above,

a good fit results without the need for an ad hoc rescaling. This fitting effectively determines

the values of b1 and aα. We can now use these values to determine the conductivity along the

Minkowski frequency axis, and this leads to our main result in Fig. 4(b).

We emphasize that certain qualitative features obtained using the previous holographic approach

(which required rescaling) remain unchanged with our new result, namely:

• particle-like conductivity,

• similar pole structure, i.e. quasinormal spectrum (shown in Fig. 5),

• validity of sum rules;19,33 see Section VI.

The first two statements are related because a particle-like conductivity follows from the presence

of a pole on the negative imaginary-frequency axis, as shown in Fig. 5. We note that such a purely
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FIG. 4. a) Holographic fit (line) to Quantum Monte Carlo data for the conductivity of a model in

its O(2) quantum critical regime (dots). The holographic parameters are: ∆ = 3/2, aα = 0.6. b)

The corresponding conductivity on the real (Minkowski) frequency axis (solid line). The dashed line

corresponds to the holographic fit obtained in Ref. ,2 where an ad hoc rescaling of temperature was

needed.

damped pole for σ(ω/T ) was found in the O(N) CFT at large-N by including 1/N effects.19,36

In contrast, a vortex-like response would have a zero on the imaginary axis; see Fig. 7 for two

explicit examples. This purely damped pole dictates the “topology” of the full pole/zero spectrum

as the poles and zeros appear in an alternating fashion. Mathematically, it follows because the

sign of the scalar coupling α dictates the presence of a particle-like (α > 0) or vortex-like (α < 0)

conductivity for any allowed ∆.
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FIG. 5. The location of the small-frequency poles (crosses) and zeros (circles) of the holographic

conductivity σ(ω) in the complex frequency plane. The parameters used are the same as those use to fit

the O(2) QCP, see Fig. 4. The dominant, purely damped pole is denoted by D-QNM, where QNM stands

for quasinormal mode.

V. FERMIONIC CFTS

We briefly discuss extension to CFTs with Dirac fermions. A large class of such CFTs differ

crucially from the O(N) CFT by the absence of any scalar operator O in the JJ OPE with scaling

dimension ∆ < 3. Consequently, the leading term in the large ω dependence of the conductivity

in Eqs. 3 and (4) is just given by that from the OPE with the energy-momentum tensor. And such

terms were implicitly accounted for in the previous holographic studies.2,14

The basic point is already evident from the CFT of free (two-component) Dirac fermions. The

Lagrangian is

L = ψ̄iγµ∂µψ , (58)

where γν are the Euclidean gamma matrices γ†ν = γν satisfying the Clifford algebra {γµ, γν} = 2δµν .

The conserved U(1) current is Jµ = ψ̄γµψ. The integral expression for the finite-T conductivity

can be simply obtained:

σ(iωn)

σQ
=

1

ωn
T
∑
νn

∫
d2~k

(2π)2

1

ε2k + ν2
n

[
4k2

x + ω2
n

ε2k + (νn + ωn)2
− 4k2

x

ε2k + ν2
n

]
, (59)
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where νn = πT (2n+ 1) and εk = k. This leads to the following high frequency behavior ωn � T :

σ(iωn)

σQ
=

1

16
− T

2πωn

∑
m=1

(−T 2

ω2
n

)m
sm (60)

=
1

16
+

3ζ(3)T 3

πω3
n

− 180ζ(5)T 5

πω5
n

+O((T/ωn)7) , (61)

where sm = (22m− 1)(2m)! ζ(2m+ 1), and ζ is the Riemann zeta function. We refer the reader to

Appendix E for further details on the calculation.

The most notable feature of Eq. (61) is the absence of the (T/ωn)2 term (found in Eq. (C21) for

the N = ∞ O(N) model), and the presence of a leading (T/ωn)3 term. The latter corresponds

to the term associated with the energy-momentum tensor in Eq. (3), and we show in Appendix E

that the coefficient of (T/ωn)3 in Eq. (61) is consistent with the value of the OPE coefficient CT .

Such a (T/ωn)3 term is clearly generic to all CFTs.

The absence of a scalar operator with ∆ < 3 is also easily understood. A likely candidate

for a scalar is ψ̄ψ, but such a mass term for Dirac fermions breaks both time-reversal and parity

symmetries in 2+1 dimensions; this is the case even if such a mass term acquires an expectation

value only at finite temperature. It is now also clear that such a scalar is also absent in interacting

CFTs in which the Dirac fermions are coupled to gauge fields (such as QED3), at least in the

context of the 1/Nf expansion,37–39 where Nf is the number of flavors of Dirac fermions. If the

CFT has both Dirac fermions and elementary scalar fields φα (as in the Gross-Neveu model), then

in general an operator O ∼ φ2
α with ∆ < 3 will be generated at T > 0 unless this is protected by

additional symmetries, such as supersymmetry.

VI. SUM RULES

The asymptotic behavior of the conductivity derived from the current-current OPE can be used

to establish the finite-T conductivity sum rules recently put forward:19,24,33∫ ∞
0

dω[Reσ(ω/T )− σ(∞)] = 0 , (62)∫ ∞
0

dω

[
Re

{
1

σ(ω/T )

}
− 1

σ(∞)

]
= 0 . (63)

The second sum rule19 is the S-dual or particle-vortex dual of the first one. An essential ingredient

for the sum rules to be valid is that the integrand must be integrable. Assuming this holds, one

can extend the integration to be from −∞ to +∞, since in both cases the argument is even.

Eq. (62) can then be proven by performing a contour integration in the upper complex half-plane,

where σ(z) is analytic by virtue of the retardedness of the current two-point function. A similar

argument holds for Eq. (63), as we explain in Section VI C.

22



Our main objective is thus to show that the integrand decays sufficiently fast as ω/T →∞. This

is precisely the regime where our OPE analysis applies. As we discussed above, see Eq. (3), the

operator with the smallest scaling dimension and finite thermal expectation value appearing in the

current-current OPE dictates how fast Reσ(ω/T )−σ(∞) vanishes. Along the imaginary axis, the

decay is (T/ωn)∆, where ∆ is the dimension of the operator in question. Non-scalar operators, i.e.

with a finite spin ` > 0, such as the energy-momentum tensor (` = 2) cannot cause any problems

at large frequencies because their scaling dimension is guaranteed to be sufficiently large, being

bounded from below by unitarity: ∆`>0 ≥ ` + 1, for CFTs in 2+1D. For instance, the energy-

momentum tensor saturates the ` = 2 bound yielding a (T/ωn)3 contribution to the conductivity

on the imaginary axis. This term does not even contribute to Reσ at real frequencies, which is of

interest for the sum rule. In contrast, scalar operators (` = 0) have the potential of making the

integrand of Eq. (62) non-integrable because of the weaker lower bound, ∆`=0 ≥ (D− 2)/2 = 1/2.

However, in all the CFTs known to the authors, the scalars appearing the JJ OPE have sufficiently

high scaling dimension to ensure that the sum rule Eq. (62) is well-defined. As it is difficult to

make rigorous statements in general, we focus on the two families of CFTs discussed above.

A. O(N) model

For the O(N) vector model, the leading operator in the JJ OPE is the thermal operator Og
discussed above. It has scaling dimension ∆g = 3 − 1/ν. We thus need ∆g > 1, i.e. ν > 1/2, for

the sum rule to be well-defined. Now, for N = 2, it is known from Monte Carlo that ν is slightly

greater than 2/3. Also, there is strong numerical and analytical evidence that ν increases with N ,

until it reaches the exact value ν = 1 at N = ∞. We thus conclude that the conductivity of the

O(N) CFT decays sufficiently fast for the sum rule to hold for all N > 1. When N =∞, the decay

is (T/ω)2 on the real axis, since ∆g

∣∣
N=∞ = 2. In that case, the sum rule, Eq. (62), was previously

shown to hold by two of us.19

B. Fermionic CFTs

For the free Dirac CFT, we have shown that the leading operator that appears in the JJ OPE

is the energy-momentum tensor, which has dimension ∆ = 3, ruling out potentially dangerous

scalars. An explicit analysis19 has indeed shown that the sum rule holds. This is also the case for

interacting CFTs in which Nf Dirac fermions are coupled to gauge fields (at least in the context

of the 1/Nf expansion). These theories are thus expected to satisfy the sum rule Eq. (62).
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C. Dual sum rule

The dual sum rule, Eq. (63), follows from the sum rule for σ Eq. (62) for two reasons: 1) the large-

frequency asymptotics of 1/σ are the same as those of σ on the imaginary axis; 2) σ(z) has no zeros

in the upper half-plane. The first point can be easily seen by inverting σ(iωn) = σ∞+b1(T/ωn)∆ +

· · · , and keeping the leading high-frequency term. It thus shows that if Reσ(ω/T ) − σ(∞) is

integrable as ω/T →∞, then Re[1/σ(ω/T )]− [1/σ(∞)] also is. The second point follows from the

analyticity of σ(z) in the upper half-plane. It can be seen using the spectral representation of the

current-current correlator.

In Appendix F, we explicitly verify that the dual sum rule Eq. (63) is respected by both the

O(N) model in the N =∞ limit, and by the Dirac CFT. These constitute the first non-holographic

checks.

VII. CONCLUSIONS

Our paper has used the operator product expansion to obtain insight into the frequency de-

pendence of the quantum-critical conductivity near the superfluid-insulator transition in 2 spatial

dimensions at non-zero temperatures; more generally, our results apply to conformal field theories

in 2+1 dimensions.

At frequencies ω � T , we found that the conductivity had contributions ∼ (T/ω)∆, where ∆

is the scaling dimension of any operator appearing in the OPE of two currents that acquires a

non-zero expectation value at T > 0. For the CFT describing the superfluid-insulator transition,

the smallest such ∆ is that associated with the “thermal” operator φ2
α (where φ1 + iφ2 is the

complex superfluid order parameter), and this has scaling dimension ∆g = 3− 1/ν, where ν is the

correlation length exponent. The next allowed operator is the energy-momentum tensor, which

has ∆ = 3. The contribution of the energy-momentum tensor is the leading term for CFTs which

don’t have allowed “thermal” operators, which includes wide classes of CFTs with Dirac fermions.

We computed the OPEs (and associated frequency dependence of the conductivity) of the φ2
α

operator, and of the energy-momentum tensor, for the O(N) CFT using the vector 1/N expansion.

These results, and prior computations for the O(N) CFT, were found to be in excellent agreement

with quantum Monte Carlo simulations.

We then addressed the question of extending these ω � T results to smaller ω. For all non-zero,

Euclidean Matsubara frequencies, the low frequency conductivity can be obtained in a controlled

manner using the vector 1/N expansion. However, this expansion fails for small real Minkowski

frequencies,1 and physically motivated resummations are required. For quantum systems with

quasiparticle excitations, the low frequency behavior is conventionally obtained by the Boltzmann

equation. For strongly interacting CFTs without quasiparticles, we have advocated2 holographic

methods. Here, we used the large ω behavior obtained from the OPE to determine the structure

of the holographic theory, and then solved the classical holographic theory to obtain the desired
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small ω dependence of the conductivity. In this holographic mapping, we truncated the the OPE to

the leading “thermal” operator, and presented evidence that the contributions of high dimension

operators can be suppressed even at low frequencies.

Finally, we noted how conductivity the sum rules in Eqs. (62,63) can be established from infor-

mation on the operator product expansion.
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Appendix A: Correlators of the energy-momentum tensor

Ref. 15 obtained a number of results for the 3-point correlator between the energy-momentum

tensor and the conserved O(N) current. This appendix will translate those results into the form

required for the OPE in Eq. (3).

1. O(N) model

First, we consider the correlators of the O(N) theory in Eq. (6) at its critical point for N =∞.

The 2-point correlator of the energy-momentum tensor is

1

N
〈Tµν(k)Tρσ(−k)〉 =

k3

512

(
δµρδνσ + δνρδµσ − δµνδρσ + δµν

kρkσ
k2

+ δρσ
kµkν
k2

−δµρ
kνkσ
k2
− δνρ

kµkσ
k2
− δµσ

kνkρ
k2
− δνσ

kµkρ
k2

+
kµkνkρkσ

k4

)
. (A1)
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For the 3-point TJJ correlator, from the results of Ref. 15 we obtain

lim
|ω|�p

〈Jx(ω)Jx(−ω + p)Tµν(−p)〉 = contact terms +
Oµν(p)

ω2
+ · · · , (A2)

where ω = (ω, 0, 0). Some non-zero values of Oµν are

Oττ = 0 , Oxx = |ω1|3/64 , Oyy = −|ω1|3/64 , for p = (ω1, 0, 0);

Oττ = 0 , Oxx = 0 , Oyy = 0 , for p = (0, px, 0);

Oττ = −|py|3/64 , Oxx = |py|3/64 , Oyy = 0 , for p = (0, 0, py);

Oτx = −|p|3/(64
√

2) , for p = (p, p, 0); (A3)

To convert this information into an OPE, we need the two-point correlation matrix of the diagonal

components of Tµν which we define as C{µν}(p) = 〈Tµµ(p)Tνν(−p)〉. From Eq. (A1) we obtain

C{µν}(p) =
N |p|3
512

 0 0 0

0 1 −1

0 −1 1

 , for p = (p, 0, 0), (A4)

and similarly for other orientations.

Now we assume the OPE

lim
|ω|�p

Jx(ω)Jx(−ω − p) =
∑
µ

Bµ
Tµµ(p)

ω2
+ · · · (A5)

Then from Eqs. (A3,A4,A5) we have the constraints

N

512
(Bx −By) =

1

64
N

512
(Bτ −By) = 0

N

512
(Bτ −Bx) = − 1

64
. (A6)

From the last constraint in Eq. (A3) we have

N

512
√

2
(−Bx −Bτ + 2By) = − 1

64
√

2
. (A7)

So a consistent solution (up to the vanishing trace) is

Bτ = 0 , Bx =
8

N
, By = 0 . (A8)
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So we have our main result for the OPE of the O(N) model

lim
|ω|�p

Jx(ω)Jx(−ω − p) =
8

N

Txx(p)

ω2
+ · · · . (A9)

From Eq. (3), and using γ = −1/12,15 this leads to the value of CT in Eq. (10).

2. Fermions

Next, we consider a theory of 2-component Dirac fermions with Nf flavors, each with the

Lagrangian in Eq. (58). The 2-point correlator of the energy-momentum tensor has the same form

as Eq. (A1)

1

Nf

〈Tµν(k)Tρσ(−k)〉 =
k3

256

(
δµρδνσ + δνρδµσ − δµνδρσ + δµν

kρkσ
k2

+ δρσ
kµkν
k2

−δµρ
kνkσ
k2
− δνρ

kµkσ
k2
− δµσ

kνkρ
k2
− δνσ

kµkρ
k2

+
kµkνkρkσ

k4

)
. (A10)

For the 3-point TJJ correlator, the results of Ref. 15 take the form in Eq. (A2) with the following

values of Oµν

Oττ = 0 , Oxx = |ω1|3/64 , Oyy = −|ω1|3/64 , for p = (ω1, 0, 0);

Oττ = |px|3/64 , Oxx = 0 , Oyy = −|px|3/64 , for p = (0, px, 0);

Oττ = 0 , Oxx = 0 , Oyy = 0 , for p = (0, 0, py);

Oτx = −|p|3/(32
√

2) , for p = (p, p, 0) . (A11)

Now the constraints are

Nf

256
(Bx −By) =

1

64
Nf

256
(Bτ −By) =

1

64
Nf

256
(Bτ −Bx) = 0 . (A12)

From the last constraint in Eq. (A11) we have

Nf

256
√

2
(−Bx −Bτ + 2By) = − 1

32
√

2
(A13)
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So a consistent solution (up to the trace) is

Bτ = 0 , Bx = 0 , By = − 4

Nf

(A14)

Then we have the main result for the OPE of the fermion theory

lim
|ω|�p

Jx(ω)Jx(−ω − p) = − 4

Nf

Tyy(p)

ω2
+ · · · . (A15)

From Eq. (3), and using γ = 1/12,15 this leads to

CT =
2

Nf

. (A16)

3. Holography

Using a holographic theory with Einstein-Maxwell terms along with a coupling γ to the Weyl

tensor, the results of Ref. 15 translate to the following correlators (up to an overall normalization

dependent upon Newton’s constant)

lim
|ω|�p

〈
Jx(ω)Jx(−ω − p)

(
Txx(p)− Tyy(p)

)〉
=
|p|3/2
4ω2

, p = (p, 0, 0)

lim
|ω|�p

〈
Jx(ω)Jx(−ω − p)

(
Tyy(p)− Tττ (p)

)〉
= −(1 + 12γ)|p|3/2

8ω2
, p = (0, p, 0)

lim
|ω|�p

〈
Jx(ω)Jx(−ω − p)

(
Txx(p)− Tττ (p)

)〉
=

(1− 12γ)|p|3/2
8ω2

, p = (0, 0, p) (A17)

We note that the above results are entirely consistent with the O(N) model (N →∞) results for

γ = −1/12, and with the free fermion results for γ = 1/12, just as expected. For a general CFT,

proceeding as in the previous subsections, we obtain Eq. (3).

Appendix B: Correlators of the O(N) model at T = 0

1. Two-point function of Og

The T = 0 correlators of Z in Eq. (11) have been evaluated at some length in Ref. ,20 including

the two-point correlator of Og. We recall here the needed results.

The computation proceeds by expanding about the large N saddle point of Eq. (11) after setting

v = ∞. We denote the saddle point value of iλ̃ as
√
Nr, and the fluctuation about the saddle

point as iλ:

λ̃ = −i
√
Nr + λ. (B1)
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The equation determining the value of r is

1

g
=

∫
p

1

p2 + r
. (B2)

The quantum critical point has r = 0 at T = 0, and so it is g = gc where

1

gc
=

∫
p

1

p2
. (B3)

A standard 1/N expansion then yields the 2-point correlator of λ as20

Gλλ(p) = 16p− 512

N

∫
k

1

k|k − p| +
256p

N

∫
k

1

(p · k)

[
1

|k − p| −
1

|k + p|

]
+

512

N

∫
k

(p · k)

pk2|p− k|

= 16p− 128

Nπ2
(2Λ− p) +

256p

Nπ2
ln

(
Λ

p

)
+

256p

3Nπ2

(
ln

(
Λ

p

)
+

1

3

)
= −256Λ

Nπ2
+ 16p

[
1 +

64

3π2N

(
ln

(
Λ

p

)
+

11

24

)]
; (B4)

the last line above corrects a typographical error in the last line of Eq. (B14) of Ref. .20 Here Λ is

a relativistic hard-momentum cutoff. The scaling dimension of λ is the same as that of φ2
α, which

is 3− 1/ν, and so using Eqs. (14,13) we verify that we have at order 1/N

Gλλ(p) ∼ constant +
16

C2
λ

p3−2/ν , (B5)

with the exponent ν given by

ν = 1− 32

3π2N
+O(1/N2), (B6)

and

Cλ = Λ1−1/ν

(
1− 44

9π2N
+O(1/N2)

)
. (B7)

2. Three-point function

To determine the OPE coefficient Cg in Eq. (3) we compute the associated 3-point correlator, as

in Eq. (A2). At leading order in 1/N , this is given by the Feynman graph in Fig. 6, and leads to

〈Jx(ω)Jx(−ω + p)Og(−p)〉 =
32p√
N

∫
d2~k

4π2

∫ ∞
−∞

dε

2π

4k2
x

(ε2 + k2)2((ε+ ω)2 + k2)

=
4p√
N |ω|

, (B8)

@where we have retained only the leading term in the p→ 0 limit. Using Eq. (14), we then obtain
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Jx Jx

�

FIG. 6. Feynman graph for the computation of Cg, Eq. (B8). The full line is the φα propagator, and the

dashed line is the λ propagator.

Eq. (15).

Appendix C: Correlators of the O(N) model at T > 0

An extensive study of the T > 0 correlators of the O(N) CFT was provided in Ref. 40 using the

1/N expansion. Here we present the extensions needed for our purposes.

The first step in the 1/N expansion is the determination of the saddle-point value of iλ̃. Solving

the extension of Eq. (B2) at T > 0 and g = gc now yields40

r = Θ2T 2 , (C1)

where Θ is given in Eq. (18).

For the computation of 〈Og〉T at T > 0, we need the following polarization functions, defined

in Ref. ,40 which determine the propagator of λ:

Π(q, εn) = T
∑
ωn

∫
d2~k

4π2

1

(k2 + ω2
n + Θ2T 2)((~k + ~q)2 + (εn + ωn)2 + Θ2T 2)

=
1

8(q2 + ε2n)1/2
+

(2ε2n − q2)Θ3T 3

(q2 + ε2n)3

(1− 6Ξ)

3π
+O

(
T 5

(q, εn)6

)
Π(0, 0) =

√
5

8πΘT

Π2(q, εn) = T
∑
ωn

∫
d2~k

4π2

1

(k2 + ω2
n + Θ2T 2)2((~k + ~q)2 + (εn + ωn)2 + Θ2T 2)

= Π(0, 0)
(q2 + ε2n)

(q2 + ε2n)2 + 4Θ2T 2ε2n
+O

(
T 3

(q, εn)6

)
(C2)

where

Ξ =
1

Θ3

∫ ∞
Θ

dx
x2

ex − 1
. (C3)
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From these ingredients, a perturbative expansion from the T > 0 version of the action in Eq. (11)

yields20,40

〈Og〉T = Cλ
√
N

[
Θ2T 2 − 2

N

1

Π(0, 0)

∫
d2q

4π2
T
∑
εn

Π2(q, εn)

Π(q, εn)
+O(1/N2)

]
(C4)

From Eq. (C2) we can extract out the portion of integral which has a quadratic ultraviolet diver-

gence

1

Π(0, 0)

∫
d2~q

4π2
T
∑
εn

Π2(q, εn)

Π(q, εn)
=

∫
d2~q

4π2
T
∑
εn

[
Π2(q, εn)

Π(0, 0)Π(q, εn)
− 8

(q2 + ε2n)1/2

]
+

∫
d2~q

4π2
T
∑
εn

8

(q2 + ε2n)1/2
(C5)

Examination of the subleading terms from Eq. (C2) now shows that the first integral in Eq. (C5)

only has a logarithmic dependence upon the upper cutoff, and there is fortunately no ΛT term —

such a term would violate scaling. The second integral in Eq. (C5) is evaluated as∫
d2~q

4π2
T
∑
εn

8

(q2 + ε2n)1/2
=

∫
d2~q

4π2

∫
dε

2π

8

(q2 + ε2)1/2
+ 2

∫
d2~q

4π2

∫ ∞
q

dω

π

8√
ω2 − q2

1

(eω/T − 1)

=

∫
d3p

8π3

8

p
+

∫ ∞
0

dω

π

8ω

π(eω/T − 1)

=
4Λ2

π2
+

4T 2

3
. (C6)

The 4T 2/3 term can also be obtained by zeta-function regularization in which we replace
√
q2 + ε2n

by (q2 + ε2n)s and analytically continue to s = 1/2. We numerically evaluated the first integral in

Eq. (C5) by the methods of Ref. ,40 using a cutoff ε2n + q2 < Λ2, and obtained∫
d2~q

4π2
T
∑
εn

[
Π2(q, εn)

Π(0, 0)Π(q, εn)
− 8

(q2 + ε2n)1/2

]
= −Θ2T 2

(
16

3π2
ln

(
Λ

T

)
+ 0.74145

)
(C7)

From Eqs. (C4), (C6), and (C7) we obtain the needed expectation value

〈Og〉T − 〈Og〉T=0 = T 3−1/νΛ1/ν−1Cλ
√
NΘ2

[
1− 1.3961

N
+O(1/N2)

]
. (C8)

Using the value of Cλ in Eq. (B7) we see that Eq. (C8) is independent of Λ and universal; it leads

to Eq. (16).
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1. Thermal average of Txx

Next, we turn to the determination of the expectation value of the energy-momentum tensor,

Tµν . @Specifically we focus on 〈Txx〉T , which gives the pressure of the CFT. The final results are

Eqs. C17 and C18. We begin by the computation in the N =∞ limit, in which case the pressure

is given by the average of ∂xφα∂xφα, and leads to

〈Txx〉T
N

= T
∑
ωn

∫
d2~k

4π2

k2
x

(ω2
n + k2 + r)

=

∫
d2~k

4π2

k2

2

[
nB(
√
k2 + r)√
k2 + r

+
1

2
√
k2 + r

]

=
1

4π

∫ ∞
√
r

dε(ε2 − r)nB(ε) +

∫
d2~k

4π2

k2

4
√
k2 + r

=
1

4π

∫ ∞
√
r

dε(ε2 − r)nB(ε) +
r3/2

12π
(C9)

= @
2ζ(3)

5π
T 3 , (C10)

where r = Θ2T 2 as specified in Eq. (C1), nB(ε) is the Bose function. We have used zeta function

regularization in the last step, which is equivalent to subtracting the VEV, 〈Txx〉T=0. @We now

provide details on how to evaluate the integral in Eq. (C9) to obtain Eq. (C10). Scaling out the

temperature, the integral reduces to:∫ ∞
Θ

dz(z2 −Θ2)nB(Tz) = Γ(3) Li3(1/φ2) + 2ΘΓ(2) Li2(1/φ2) , (C11)

where Γ(z) is the gamma function, and Lin(z) the polylogarithm. We recall that Θ = 2 lnφ, where

φ = (1 +
√

5)/2 is the golden ratio. The values of the dilogarithm and trilogarithm evaluated at

1/φ2 are known (see Ref. 41 and references therein):

Li2(1/φ2) =
π2

15
− (lnφ)2 ; (C12)

Li3(1/φ2) =
4ζ(3)

5
− 2π2

15
lnφ+

2

3
(lnφ)3 . (C13)

Substituting these in Eq. (C11), we obtain the final result Eq. (C10).

a. Relating the pressure to the free energy

The pressure of a CFT can also be determined from its free energy. The free-energy density

F = −(lnZ)/V of a CFT in D spacetime dimensions, where V is the volume of the system and
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Z the partition function, is given by41

F = FT=0 −
Γ(D/2)ζ(D)

πD/2
c̃ TD . (C14)

The universal constant was found41 to be c̃ = 4N/5 in the N = ∞ limit of the O(N) CFT at

D = 2+1, so that F −FT=0 = −(2ζ(3)/5π)NT 3. (In contrast, c̃ = N for N free scalars.) We note

that the absolute value of this quantity is precisely equal to the pressure found above. This is not

a coincidence, given the relation between the densities of the free energy and the energy, 〈Tττ 〉T ,

of a CFT:42

〈Tττ 〉T − 〈Tττ 〉T=0 = (D − 1)(F − FT=0) , (C15)

= −(D − 1)
Γ(D/2)ζ(D)

πD/2
c̃ TD . (C16)

Using the traceless of the energy-momentum tensor, we find that the pressure is exactly as found

above, namely

〈Txx〉T − 〈Txx〉T=0 =
ζ(3)

2π
c̃ T 3 , (C17)

with c̃ = 4N/5 in the N =∞ limit. In fact, the 1/N correction to c̃ is known40

c̃ =
4N

5
− 0.3344 . (C18)

This leads to the refined estimate Hxx ≈ 0.24 for the O(2) CFT.

2. Conductivity

Finally, we determine the large frequency behavior of the conductivity by direct evaluation at

N =∞. The conductivity at a Matsubara frequency ωn is

σ(iωn)

σQ
= − 4

ωn
T
∑
εn

∫
d2~k

4π2

k2
x

ε2n + k2 + r

(
1

(εn + ωn)2 + k2 + r
− 1

ε2n + k2 + r

)

= − 2

ωn

∫
d2~k

4π2
k2

(
1 + 2nB(εk)

εk(ω2
n + 4ε2

k)
− 1

4ε3
k

− [nB(εk)]
2

2Tε2
k

− (1 + εk/T )nB(εk)

2ε3
k

)
, (C19)
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where εk =
√
k2 + r. After a change of variables of integration we obtain our key result for the

large ωn expansion of the conductivity:

σ(iωn)

σQ
= − 1

πωn

∫ ∞
√
r

dε ε(ε2 − r)
(

1 + 2nB(ε)

ε(ω2
n + 4ε2)

− 1

4ε3
− [nB(ε)]2

2Tε2
− (1 + ε/T )nB(ε)

2ε3

)
(C20)

=
1

16
+

1

ωn

(√
r − 2T ln(e

√
r/T − 1)

2π

)
+

r

4ω2
n

+
1

ω3
n

(
−2r3/2

3π
− 2

π

∫ ∞
√
r

dε (ε2 − r)nB(ε)

)
+O(1/ω4

n). (C21)

Note that for the value of r in Eq. (C1), the coefficient of 1/ωn vanishes, as it must for agreement

with Eq. (3). The remaining terms in Eq. (C21) also agree precisely with Eq. (24) after insertions

of the values of the OPE coefficients and T > 0 expectation values summarized in Section II.

Appendix D: Numerical Simulations

We summarize some of the details of the numerical simulations along with the extrapolation

procedures needed to analyze the results. Further details can be found in the supplementary

material of Ref. 2.

As described in the main text, the numerical simulations are performed using the Villain model25

defined on a 2 + 1 dimensional discrete lattice of dimensions L× L× Lτ with Lτ∆τ = βU :21,26,27

ZV ≈
∑
{J}

′
exp

− 1

K

∑
(τ,~r)

(
1

2
J2

(τ,~r) −
µ

U
Jτ(τ,~r)

) . (D1)

Here the sum,
∑
{J}
′, is over configurations with ∇·J = 0 and for the simulations we perform here

µ = 0. As pointed out above, apart from its simplicity, a significant advantage of this model is its

explicit isotropy in space and time. This isotropy is consistent with the fact that the dynamical

critical exponent, defined through ξτ ∼ ξz, has the value z = 1. When performing finite-size scaling

studies, simulations are therefore always performed with Lτ = cL, with c a constant close to 1. In

our simulations, typically more than 109 Monte Carlo steps are performed for each simulation using

very efficient directed Monte Carlo sampling28,29 allowing us to study systems with up to 320×320

sites with Lτ = 160. For the Villain model the quantum critical point has been determined

with increasing precision2,7,26,28,43 and using histogram techniques we have determined it to be

Kc = 0.3330671(5)2 in agreement with Ref. 7.

In order to compare to the results obtained using the holographic and field-theoretical analysis

it is first necessary to extrapolate our results to the thermodynamic limit, L→∞, while keeping

Lτ constant. This was done using two different methods. First by directly extrapolating results for

several different lattice sizes assuming finite size corrections of the form eaL/Lα, Since the size of the
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system in the temporal direction is kept constant at Lτ it is natural to expect such an exponential

dependence of the finite-size corrections and typically one finds a ∼ 1/Lτ . Alternatively, one can

perform simulations more or less directly in the thermodynamic limit by restricting the simulations

to the zero spatial winding sector7,44 for a single system with L > Lτ . Typically one uses L = 2Lτ .

Note that in this case winding number fluxtuations still persist in the temporal direction. If the

latter procedure is used, results very close to the thermodynamic limit can be obtained in a single

simulation since the main effect of increasing the lattice size in the spatial direction is to suppress

winding number fluctuations in the spatial direction. The results shown in Figs. 2 and Fig. 3 have

been obtained in this way.

Somewhat surprisingly, it turns out that for the conductivity an additional T → 0 (Lτ → ∞)

extrapolation at fixed ωn/T of the L→∞ data is necessary in order to recover the true universal

conductivity in the quantum critical regime. This second extrapolation of the conductivity data for

the Villain model was performed in Ref. 2 with the results shown in Fig. 1. As described in Ref. 2,

in order to perform this second T → 0 extrapolation of the numerical data for the conductivity we

assume corrections to the T → 0 form of the conductivity arise from from the leading irrelevant

operator in the quantum critical regime with scaling dimension w.7,45,46 In the presence of a single

irrelevant operator we assume the general form:

σ(ωn/T, T )/σQ = σT→0(ωn/T )/σQ + f(ωn/T )(T/U)w + g(ωn/T )(T/U)2w + · · · , (D2)

with f and g both scaling functions of argument ωn/T = 2πn. Since ωn/T ≥ 2π, it seems

reasonable to expect that to leading order f(x) and g(x) behave as ∼ xw. Furthermore, for

the Villain model we use the dimensionless inverse temperature U/T = Lτ∆τ and dimensionless

frequency ωn/U = 2πnT/U = 2πn/(Lτ∆τ). It is therefore natural to state the above equation

directly in terms of ωn/U and we arrive at the following form:

σ(n, Lτ )/σQ = σT→0(n)/σQ − a(ωn/U)w + b(ωn/U)2w + · · · , (D3)

with n the Matsubara index and a, b dimensionless constants (independent of ωn) determined in

the fit. Leaving w a free parameter in our fits we find w = 0.877(2). This form is quite close to

the one used in Ref. 7.

A closely related form can be obtained by assuming that the presence of a finite ωn will constrain

the power-law ωwn associated with the irrelevant operator in the following manner:

σ(n, Lτ )/σQ = σT→0(n)/σQ − c(ωn/U)we−d(ωn/U). (D4)

In the absence of more explicit analytical justification, both Eqs. (D3) and (D4) may be seen as

phenomenological and it would be reassuring if the final results did not depend on details of these

forms. Hence, as a consistency check, we have verified that the exponential form in Eq. (D4) yield

almost identical results for the final T → 0 extrapolated conductivity when compared to results
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obtained using Eq. (D3). In the case of Eq. (D4), with c, d fitted constants, we obtain good fits

with w = 0.887(3) in good agreement with the result obtained for w from Eq. (D3).

Appendix E: Dirac fermions

1. Conductivity

We focus on the two-point function of the conserved U(1) current of the Dirac fermion CFT

described by Eq. (58). To simplify the expression for the conductivity, Eq. (59), we perform the

sum using the usual contour integration method to obtain:

σ(iωn)

σQ
=

1

2πωn

∫ ∞
0

dε

{[
1

2
− 2ε2

4ε2 + ω2
n

]
[1− nF (ε)] +

ε

T
[nF (ε)]2eε/T

}
, (E1)

where we have changed variables from |~k| to εk = ε. nF (ε) = 1/[1 + exp(ε/T )] is the Fermi-Dirac

distribution. Some of terms can be integrated to yield the exact result:

σ(iωn)

σQ
=

1

16
+

ln 2

2πωn
− 1

ωn

∫ ∞
0

dε

π

[
1

2
− 2ε2

4ε2 + ω2
n

]
nF (ε) . (E2)

To obtain the asymptotic expansion for σ(iωn) valid at large frequencies ωn � T , we can now

Taylor expand the integrand in powers of 1/ωn. This gives our main result for the asymptotic

behavior of the Dirac fermion conductivity, valid for ωn � T :

σ(iωn)

σQ
=

1

16
− T

2πωn

∑
m=1

(−T 2

ω2
n

)m
(22m − 1)(2m)! ζ(2m+ 1) (E3)

=
1

16
+

3ζ(3)T 3

πω3
n

− 180ζ(5)T 5

πω5
n

+
22680ζ(7)T 7

πω7
n

+O((T/ωn)9) (E4)

where ζ(z) is the Riemann zeta function: ζ(3) ≈ 1.202, etc. We have used the following result∫ ∞
0

dε εpnF (ε) = T p+1(1− 2−p)Γ(p+ 1)ζ(p+ 1) , (E5)

where Γ(z) is the Gamma function. The coefficient of the (T/ωn)3 term agrees with that in Eq. (24)

upon using the value of CT in Eq. (A16), the value γ = 1/12,15 and the value of Hxx in Eq. (E12).
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2. Thermal average of Tµν

The energy-momentum tensor for the free Dirac fermion CFT reads:

Tµν(x) =
1

4
(ψ̄iγν∂µψ − ∂µψ̄iγνψ) + (µ↔ ν) , (E6)

where γν are the Euclidean gamma matrices γ†ν = γν satisfying the Clifford algebra {γµ, γν} = 2δµν .

We Fourier transform to energy-momentum space, using ψ(x) =
∫
k
ψke

ik·x and ψ̄(x) =
∫
k
ψ̄ke

−ik·x,

where
∫
k

=
∫
d3k/(2π)3, which becomes T

∑
νn

∫
d2~k/(2π)2 at finite temperature. We get:

Tµν(p) =

∫
d3xTµν(x)e−ip·x = −1

4

∫
k

ψ̄k[γν(2kµ + pµ) + γµ(2kν + pν)]ψk+p . (E7)

We now take the expectation value, for which we will need the fermion two-point function:

〈
ψ̄kγµψk′

〉
= δ(3)(k − k′)

2kµ
k2

, (E8)

where the factor of 2 comes from the trace tr 1
2
{γµ, γν} = 2δµν . This expression is consistent with

the real space correlator given in Ref. 47,
〈
ψ̄(x)γµψ(0)

〉
= ixµ/(2πx

3). We thus get

〈Tµν(p)〉 = −2δ(3)(p)

∫
k

kµkν
k2

. (E9)

The integral is ultraviolet divergent. However, we are interested in the thermal expectation value

from which Eq. (E9) has been subtracted: 〈Tµν(p)〉T − 〈Tµν(p)〉T=0. This is finite and can be

readily evaluated:

〈Tyy(p)〉T − 〈Tyy(p)〉T=0 = δ(3)(p)

∫ ∞
0

dε

2π
ε2nF (ε) (E10)

= δ(3)(p)
3ζ(3)T 3

4π
, (E11)

which yields

@Hyy =Hxx =
3Nfζ(3)

4π
, (E12)

with Nf flavors.

Appendix F: Dual sum rule

We show that the dual sum rule Eq. (63) is respected by the conductivities of both the O(N)

model in the N =∞ limit and the free Dirac CFT. These constitute the first explicit CFT checks

beyond holography.19 In both cases we must resort to numerical integration to explicitly verify the
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FIG. 7. Real part of the dual conductivity, Re[1/σ(ω/T )], for a) the O(N) CFT in the N = ∞ limit,

b) the free Dirac CFT. Both constitute examples of vortex-like responses; they respect the dual sum rule

Eq. (63).

sum rules.

The conductivity of the O(N) model in the N = ∞ limit is given by Eq. (C20) for imaginary

frequencies. In order to study the sum rule, we must analytically continue the expression to real

frequencies iωn → ω+ i0+. The resulting real part of the inverse conductivity is shown in Fig. 7a.

Since σ is particle-like,19 1/σ is vortex-like. In fact, we find that a zero appears directly at the

origin, 1/σ(0) = 0. This is as expected since the direct conductivity σ has a pole at ω = 0 (leading

to a delta-function in Re σ). At finite and small frequencies, a spectral gap naturally appears for

Re[1/σ] just as for Reσ. It is generated by the thermal mass r1/2 = ΘT , Eq. (C1). The numerical

integration needed to establish Eq. (63) is complicated by the strong divergence of Re[1/σ] seen at

ω = 2r1/2:

∼ Θ(ω − 2r1/2)

(ω − 2r1/2) {ln[r1/2/(ω − 2r1/2)]}2 , (F1)

which is integrable, as it must be for the sum rule to hold. This divergence stems from the zero

of the conductivity, i.e. a vanishing of both the real and imaginary parts, at ω = 2r1/2. This fact

was uncovered in Ref. 19, where it was however erroneously concluded that the dual sum rule is

not respected at N =∞. Here, we have carefully evaluated the integral, after having analytically

computed the contribution near ω = 2r1/2, and found that Eq. (63) holds. This is not surprising

in light of the general arguments given in Section VI.

The conductivity of the Dirac CFT is given by Eq. (E1). The behavior of the inverse conductivity

1/σ is shown for real frequencies in Fig. 7b. Just as for the O(N) model discussed above, we find

that it is vortex-like, and vanishes at zero frequency: 1/σ(0) = 0. The numerical integration can

be performed without difficulties to confirm the validity of the sum rule Eq. (63).
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