
This is the accepted manuscript made available via CHORUS. The article has been
published as:

Phase diagram of electron-doped dichalcogenides
M. Rösner, S. Haas, and T. O. Wehling

Phys. Rev. B 90, 245105 — Published  1 December 2014
DOI: 10.1103/PhysRevB.90.245105

http://dx.doi.org/10.1103/PhysRevB.90.245105


Phase Diagram of Electron Doped Dichalcogenides

M. Rösner,1, 2, ∗ S. Haas,3 and T. O. Wehling1, 2

1Institut für Theoretische Physik, Universität Bremen, Otto-Hahn-Allee 1, 28359 Bremen, Germany
2Bremen Center for Computational Materials Science,

Universität Bremen, Am Fallturm 1a, 28359 Bremen, Germany
3Department of Physics and Astronomy, University of Southern California, Los Angeles, CA 90089-0484, USA

(Dated: November 10, 2014)

Using first principle calculations, we examine the sequence of phases in electron doped dichalco-
genides, such as recently realized in field-gated MoS2. Upon increasing the electron doping level, we
observe a succession of semiconducting, metallic, superconducting and charge density wave regimes,
i.e. in different order compared to the phase diagram of metallic dichalcogenides such as TiSe2.
Both instabilities trace back to a softening of phonons which couple the electron populated conduc-
tion band minima. The superconducting dome, calculated using Eliashberg theory, is found to fit
the experimentally observed phase diagram, obtained from resistivity measurements. The charge
density wave phase at higher electron doping concentrations as predicted from instabilities in the
phonon modes is further corroborated by detecting the accompanying lattice deformation in density
functional based supercell relaxations. Upon charge density wave formation, doped MoS2 remains
metallic but undergoes a Lifschitz transition, where the number of Fermi pockets is reduced.

I. INTRODUCTION

Several materials including graphene or transition
metal dichalcogenides can be prepared at monolayer
thickness.1 Because of their low effective dimensionality,
there is a lack of screening in these materials, and in addi-
tion the band structure shows strong van Hove singulari-
ties. This can lead to strong enhancements of scales and
result in competing instabilities, such as superconduc-
tivity (SC) and charge density wave (CDW) phases.2,3

For example, based on Eliashberg theory it has been ar-
gued that by doping the structurally related graphene up
to its van Hove singularity, the effective electron-phonon
coupling can be greatly enhanced, leading to supercon-
ducting transition temperatures potentially as high as
30K.4 Thereby, the quasi-two-dimensional structure of
these compounds allows for a high degree of control via
tuning knobs such as pressure, strain, doping and adsor-
bates, but it also makes these materials more vulnerable
to the effects of impurity disorder.
The generic phase diagram of the metallic transi-

tion metal dichalcogenides features a CDW regime at
and close to half-filling, which upon hole doping or ex-
erting external pressure is suppressed by a competing
SC instability.5,6 For example, pristine 1T-TiSe2 under-
goes a CDW phase transition at approximately 200K.7

Upon hole doping via Cu intercalation8 or application
of pressure9 this phase is suppressed and replaced by
competing SC order with transition temperatures ∼ 2-
5K, leading to a phase diagram topology akin to the
high-Tc cuprates, with CDW taking the place of the an-
tiferromagnetic insulator regime in the cuprates. This
succession of phases can be modeled by combining first
principle calculations with Eliashberg theory, based on
a phonon mediated pairing mechanism.10 Furthermore,
since these materials are quasi-two-dimensional, it can
be expected that other low-energy modes, such as plas-
mons, are present and may contribute to the formation

of the SC condensate.6,11

In this paper, we focus on the phase diagram of elec-
tron doped dichalcogenides. Since these materials do not
show an electron/hole symmetry it is a priori not known
which phases will arise and how they compete with each
other. Indeed, we find a different topology in the elec-
tron doped regime, thus leading to an interesting set of
predictions that can be experimentally tested. Without
loss of generality, we focus on the much studied com-
pound MoS2 because there already is a wealth of data
available which allows to scrutinize our approach. Bulk
MoS2 is a layered transition-metal dichalcogenide with
an indirect band gap, whereas monolayer MoS2 is a di-
rect band gap semiconductor.12,13 Its conduction and va-
lence bands are dominated by the d-orbitals of the Mo
atoms.14 Electron doping of thin-flake MoS2 has recently
been achieved by means of combined liquid/solid high-
capacitance gates, leading to effective 2D carrier den-
sities of up to n2D ≈ 1.5 × 1014 cm−2. Such dop-
ing by field effect gates allows us to access larger car-
rier concentrations compared to chemical substitution,
without substantially deforming the lattice.15 A field-
doping-induced superconducting dome was found with
onset at n2D = 6.8 × 1013 cm−2 and peak with maxi-
mum Tc = 10.8K at n2D = 1.2 × 1014 cm−2.15,16 Us-
ing density functional theory calculations, it has been
shown that this superconducting dome is consistent with
electron-phonon coupling that is doping-dependent due
to the change of Fermi surface topology when negative
charge carriers are introduced.17 Here, we push this anal-
ysis further and deliver a quantitative description of the
superconducting dome and identify a competing CDW
phase which occurs at higher doping concentrations. Al-
though this kind of competition is known in the hole
doped regime, it is interesting that the CDW phase ex-
ists in the electron doped regime as well. In this case
the Fermi surface topology is totally different and thus
the behavior of the newly found CDW phase is differ-
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ent from the corresponding phase in the hole doped case:
Electron doped MoS2 remains metallic after CDW for-
mation. While it may turn out to be difficult to achieve
such high doping concentrations in MoS2 experimentally
by back gating,15 this prediction is a generic feature, and
thus should hold for other electron doped dichalcogenides
as well. Example systems for observing the CDW phase
predicted here include chemically doped MoS2, as e.g.
realized by alkali deposition/intercalation.18

II. METHODS

We use the VASP19,20 and Quantum Espresso21 Pack-
ages for the density functional theory (DFT) based self-
consistent evaluation of the electronic and phononic band
structures. Electron doping x (in electrons per primitive
MoS2 unit cell) or n2D = x/A (in electrons per cm2, A is
the area of the unit cell) is realized by introducing addi-
tional electrons along with a compensating jellium back-
ground. Care is taken such that no unphysical low energy
states are introduced by the positive background charges.
The electron-phonon coupling matrix elements are calcu-
lated using the Phonon package of Quantum Espresso35,
and the superconducting properties based on Eliashberg
theory are obtained via postprocessing.22,23 In particular,
the Eliashberg spectral function,

α2F (ω) =
1

2πN(ǫF )

∑

qν

δ(ω − ωqν)
γqν
~ωqν

, (1)

is evaluated from the electronic density of states at the
Fermi level N(ǫF ), the phonon frequencies ωqν and the
line widths γqν which contain the electron-phonon cou-
pling matrix elements.23 The superconducting transition
temperatures can then be estimated using the Allen-
Dynes formula,22

Tc =
~ωlog

1.2
exp

[

−1.04(1 + λ)

λ(1 − 0.62µ∗)− µ∗

]

, (2)

where

λ = 2

∫

dω
α2F (ω)

ω
(3)

is the averaged electron-phonon coupling constant,

ωlog = exp

[

2

λ

∫

dω α2F (ω)
log(ω)

ω

]

(4)

is the logarithmic averaged typical phonon frequency and
µ∗ is the effective Coulomb pseudopotential. The newly
found emerging CDW at higher electron concentrations
is identified by (i) the occurrence of an unstable phonon
mode, (ii) by spontaneous deformation of the honeycomb
lattice, as well as (iii) by comparison of energies of the de-
formed lattice with the unperturbed lattice36. For these
calculations two different unit cells are used. To cal-
culate the phonon dispersion as well as the correspond-
ing electron-phonon coupling matrix elements used in the

Eliashberg formalism we use a primitive 1× 1 unit cell of
MoS2. Since these calculations will predict an unstable
phonon mode at Brillouin zone M points (see results be-
low), we perform relaxations of a 2 × 1 supercell, which
is commensurate with the resulting CDW and which can
host the corresponding lattice deformations. The CDW
formation energy discussed below is defined by

△ECDW =
E2×1 − ECDW

2×1

2
, (5)

where E2×1 is the total energy of the relaxed 2 × 1 unit
cell preserving the 1×1 symmetries (i.e. just doubling of
a 1× 1 primitive cell with relaxed S atoms) and ECDW

2×1 is
the corresponding energy of the fully relaxed 2 × 1 unit
cell which is able to incorporate the CDW.

III. RESULTS

Similar to other dichalcogenides, the low-energy prop-
erties in MoS2 are dominated by minima in the conduc-
tion band at Brillouin zone points K and Σ, which have
predominantly Mo dz2 -orbital character (at K) as well
as Mo dxy- and dx2

−y2-character (at Σ).12 Upon elec-
tron doping, the Σ valley moves towards lower energies,
whereas the K valley is less affected (see inset of Fig. 1).17

The doping levels shown here correspond to the metal-
lic regime, the SC phase, and the CDW phase. These
instabilities are discussed in more detail below.

A. Metallic and Superconducting Phase
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Figure 1: (Color online) Acoustic part of the phononic band
structure of MoS2 for electron doping concentrations x =
0.025 (blue), x = 0.100 (green), and x = 0.150 (red), corre-
sponding to the metallic, superconducting and charge density
wave regimes respectively. The inset shows the conduction
bands of the corresponding electronic band structures (Fermi
levels are indicated by dashed lines, ticks are separated by
100meV). The phononic band structures are completed by
several doping levels in between the range of x = 0 to x = 0.15
(grey).
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Figure 2: (Color online) (a) Phonon density of states and
(b) Eliashberg function of MoS2 in the SC phase for different
doping levels. The inset in (b) shows the evolution of λ(x)
and ωlog(x) (using a Gaussian smearing of δ = 0.005 Ry),
determining Tc(x).

The acoustic parts of the phonon dispersions of MoS2
are shown for the same electron doping concentrations
in Fig. 1. Similar to graphene, pristine MoS2 has one
quadratic and two linear acoustic phonon branches which
become rather flat at the Brillouin zone boundary (i.e.
between K and M) with phonon energies in the range of
∼ 180 − 240 cm−1. Upon doping, the acoustic in-plane
branches soften.24 The parabolic out-of-plane phonons
are odd under mirror transformation with respect to the
Mo plane and do not couple the conduction band minima
at K and Σ. There is thus no Kohn anomaly (or related
phenomena) leading to softening of these phonons upon
electron doping. As we will see below, the softened re-
gions of the acoustic branches dominate the formation
of the SC condensate, with ωtyp ∼ 2πkBTc. At a criti-
cal electron concentration xc ∼ 0.14 one of the acoustic
modes develops an instability at the M point, indicating
the onset of a CDW regime. At this point the phonon
frequency of this mode becomes imaginary (Fig. 1).10

This behavior is reminiscent of TiSe2, where a CDW-SC
transition can be tuned by pressure or Cu intercalation.9

However, the CDW regime in TiSe2 already occurs in
its pristine state, and is suppressed by pressure or hole-
doping, giving way to SC, whereas the sequence of phases
we observe in MoS2 is reversed.
Let us now turn our focus toward the SC regime at

intermediate doping levels. We examine the lattice dy-
namics encoded in the phonon density of states and the
Eliashberg function. The phonon density of states (Fig.
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Figure 3: (Color online) Temperature-doping phase diagram
of MoS2. Circles belong to the left axis (K) and squares to
the right (◦). Green lines are obtained from first principle cal-
culations combined with Eliashberg theory and show the SC
critical temperature for different Coulomb pseudopotentials
(using a Gaussian smearing of δ = 0.005 Ry). Black circles
are experimental data.15 Also shown is the lattice distortion
angle α (red squares) and the energy gain upon CDW forma-
tion ∆ECDW in K (blue circles) .

2 (a)) has a rich peak structure, with the largest contri-
butions stemming from the regions where the phonon
dispersion flattens, leading to characteristic van Hove
enhancements. While the high-energy optical branches
(∼ 300 − 500 cm−1) lead to the strongest peaks in the
phonon density of states, it turns out that they do not
contribute significantly to the formation of the SC con-
densate. The SC response encoded in the Eliashberg
function is dominated by the softened acoustic phonon
branches around the M and K points. The correspond-
ingly enhanced low energy phonon DOS is inherited by
the Eliashberg function (Fig. 2 (b)), which includes
weighting by the electron-phonon coupling matrix ele-
ments as well as inverse phonon energies.
As the acoustic phonon mode with minimum at the

M point softens, the evolution of the Eliashberg function
displays a maximum integrated intensity at x = 0.125.
However, this concentration does not correspond to max-
imum of Tc(x) since the interplay of the effective coupling
λ(x) and ωlog(x) has to be considered. As it can be seen
in the inset of Fig. 2 (b) ωlog(x) decreases while λ(x)
increases with increasing doping. An optimal proportion
is reached at x ≈ 0.11 leading to a maximum of Tc.
Thus, the combined evolution of λ(x) and ωlog(x) is

one reason for the dome-shaped dependence of the SC
transition temperature on the electron doping concentra-
tion, which can be seen in Fig. 3. Here we show experi-
mental data of Ref. 15 along with results of our numeri-
cal simulation for different Coulomb pseudopotentials µ∗.
Besides the coincidence in the position of the maximum
in Tc(x) at x ≈ 0.11 (n2D = 1.2 × 1014 cm−2), we also
note that the computed and experimental SC transition
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Figure 4: (Color online) Manifestation of the CDW in lattice distortion and band structure. (a) Lattice distortion in MoS2,
observed in ab initio calculations via self-consistent relaxation of 2×1 supercells. (b) Influence of lattice relaxation effects on
the band structures of the 2×1 supercells obtained for a doping level x = 0.2. The dxy,dx2−y2 weight of the bands is illustrated
by the (red) width of the bands. The middle panel shows the effect of homogeneous outward relaxation of the S atoms on
the conduction band minima as observable from comparison of the MoS2 structure with S positions according to undoped
(pristine) and homogeneously relaxed x = 0.2 system. The right panel shows the comparison of supercell band structures for
homogeneously relaxed MoS2 and MoS2 featuring the CDW (fully relaxed) at x = 0.2. (c) Comparison of band topologies
involved in the CDW formation in TiSe2 and MoS2. Only in the TiSe2 case, CDW formation can fully gap the Fermi surface.

temperatures are of the same order of magnitude. This
is remarkable, since Eliashberg theory is a rather crude
approximation, which does not account for pair-breaking
effects, such as impurities, incorporates Coulomb interac-
tions only statically as µ∗ and neglects enhanced phase
fluctuations in 2D. It is therefore expected to overesti-
mate Tc(x).

Beside λ and ωlog, the effective Coulomb potential µ∗

could be doping dependent as well, since the Fermi sur-
face will change in size and shape upon electron dop-
ing. To estimate how such a doping dependent µ∗(x)
would affect the superconducting dome, we calculated
Tc in for three different Coulomb pseudopotentials µ∗ =
0.05, 0.15, and 0.25. This range is approximately cen-
tered around µ∗ = 0.13, which has been suggested in
Refs. 17,25. The overall trend of an increasing µ∗ is
obviously a decreasing Tc since the Coulomb repulsion
suppresses the electron pairing. In more detail, we find
a stronger dependence of Tc to µ∗ in the intermediate
doping regime 0.05 < x < 0.75 than for high doping lev-
els. Thereby we see, that for small doping levels a rather
small µ∗ fits the Tc dome quite well, whereas in the high
doping regime a higher value of µ∗ describes the dome
appropriate.

B. Charge Density Wave Phase

The occurrence of SC and CDW phases in TMDCs
is well known.26–29 There are several examples in which
a phase transition between these two states appears or
where CDW and SC phases coexist.26–29 A promient
(and controversially debated30,31) example in this sense
is the CDW/SC phase transition under pressure in 1T-
TiSe2.

10 1T-TiSe2 and electron doped MoS2 have in com-
mon, that their Fermi surface consists of multiple pockets
with different orbital characters. Additionally both sys-
tems share strong electron-phonon coupling, which leads
to the CDW phase and manifests as an unstable acoustic
phonon mode at M in both systems. Nevertheless, there

are crucial differences between these two systems: In
Refs. 10,30,31 the bulk system has been studied, whereas
here the monolayer system is under consideration. Fur-
thermore the Fermi surface topologies differ in the num-
ber of electron/hole pockets (c.f. Fig. 4 c). In bulk
1T-TiSe2 the Fermi surface consists of electron and hole
pockets, while in electron doped monolayer MoS2 there
are electron pockets only. Additionally, orbital charac-
ters near the Fermi level alter between the two materials.
Finally, in monolayer MoS2 there are also phonon modes
at K and in the vicinity of Σ, which soften upon charge
doping, in contrast to 1T-TiSe2.

In order to better understand the nature of the SC-
CDW phase transition in MoS2, we examine the dop-
ing dependence of the M point CDW-induced lattice dis-
tortion α in a 2 × 1 supercell, shown as a red line in
Fig. 3. Here, α is defined as the angle between three
neighboring Mo atoms subtracted by 60◦. For an undis-
torted honeycomb lattice one finds α = 0. By relaxing
the atomic structure of the supercell, we observe α 6= 0
beyond a critical electron concentration of xc ≈ 0.14, as
forces arise due to the unstable M-point phonon mode.
These distortion effects, depicted in Fig. 4 (a), become
more pronounced with increasing electron doping. We
note that in addition to the CDW formation, there is a
further homogeneous outward relaxation of the S atoms
upon electron doping.

The effects of homogeneous S relaxation and CDW
formation on the electronic structure are illustrated in
Fig. 4 (b) for electron doping x = 0.2.37 In the super-
cell Brillouin zone, the former band minima at K and Σ
are folded almost on top of each other at the supercell
K point. In the absence of a CDW, low-energy states
originating from K and Σ can be distinguished by their
orbital band character. The latter states carry a signif-
icant dxy/dx2

−y2-weight, whereas the conduction band
minimum at K has no such admixture (see Fig. 4 (b)
left panel). The outward relaxation of the S atoms low-
ers dxy/dx2

−y2 -derived states from Σ in energy (Fig. 4
(b) middle panel). With increasing CDW amplitude the
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two bands originating from K and Σ mix, and this hy-
bridization adds to the splitting of the two bands, c.f.
Fig. 4 (b) (right panel). This splitting leads to lowering
of the electronic energy if the Fermi level lies sufficiently
high in the conduction band. The total energy gain upon
CDW formation as function of doping level (△ECDW) is
shown in Fig. 3 (blue line). It illustrates that the CDW
formation energies for x < 0.25 are comparable to typi-
cal Cooper pair condensation energies ∼ 10K (∼ 1meV)
encountered here, and an interesting competition of the
two should emerge.
While the Eliashberg theory of SC order is only appli-

cable as long as the lattice remains stable, it is clear that
the competition of CDW and SC order will in any case
depend on changes of the Fermi surface due to CDW for-
mation. For the perfect crystal (relaxed structure at zero
doping) and a doping level of x = 0.2, two bands would
intersect the Fermi level near the supercell K point, and
there would be thus two Fermi lines around K. Upon
outward relaxation of the S atoms (preserving all lattice
symmetries) and formation of the CDW, we observe a
Lifschitz transition where one of the Fermi pockets dis-
appears, Fig. 4 (b) (middle and right panel). The sys-
tem thus remains metallic in the CDW phase, but the
SC transition temperatures should be reduced due to the
vanishing phase space for inter-pocket scattering. Per-
sisting metallicity in the CDW phase of MoS2 is indeed
ensured by the “topology” of the inter-mixing bands at
K and Σ, Fig. 4 (c). In TiSe2, CDW bands with oppo-
site slope are folded on top of each other, and a gap can
open upon hybridization. However, in MoS2, the slopes
of the backfolded bands have the same sign, and avoided
crossings do not lead to a full gap, but only reduce the
number of Fermi sheets by one.
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Figure 5: (Color online) Lattice distortion angle α upon CDW
formation in dependence of the electron doping for different
lattice constants.

Since it is known, that the energies of the minima in the
conduction band of MoS2 are very sensitive to external
strain32 the before mentioned change in the Fermi surface
topology due to the CDW transition might be sensitive
to strain as well. To analyze this behavior we performed
supercell relaxation calculations for different lattice con-
stants and show corresponding lattice distortions upon

CDW formation in dependence of the electron doping in
Fig. 5. The red curve (a = 3.122 Å) is the same as in Fig.
3. Here we provide the corresponding data for a smaller
(a = 3.110 Å) as well as for two bigger (a = 3.134 Å and
a = 3.146 Å) lattice constants. The differences between
these values are less than 1%. However, as it can be seen
in Fig. 5 the critical concentration for the onset of the
CDW changes from xc ≈ 0.14 to xc ≈ 0.17 upon increas-
ing the lattice constant. This is a change of more than
17%. The behavior at high doping changes as well and
tends to bigger distortion angles with an increasing lat-
tice constant. The competition between the CDW and
the SC phases is therefore sensitive to both, the electron
doping level and external strain.

IV. CONCLUSIONS

Electron doped dichalcogenides feature CDW and SC
instabilities, driven by the softening of an acoustic
phonon mode upon charge doping. Due to the band
topology, the M point CDW cannot fully gap the Fermi
surface of electron doped MoS2. Therefore, CDW and
SC phases may coexist, albeit with reduced SC transition
temperatures. In any case, the SC and CDW instabili-
ties rely on the energy differences between the conduction
band minima at K and Σ. These are highly sensitive to
lattice relaxation, and we speculate that adsorption of
molecular species on MoS2 may be useful for tuning su-
perconducting transition temperatures.
Since MoS2 is optically active, it remains to be seen

whether intense photodoping could be a means to trigger
the CDW or SC instabilities. This would be a rather
unusual effect, since excitations normally suppress order
and have been widely used to melt CDWs.33,34

The competition of CDW and SC phases is common in
metallic transition metal dichalcogenides, such as TiSe2,
NbSe2 and TaS2. All these materials differ, however,
from MoS2 in that the transition metal atoms lack one
(Nb, Ta) or two (Ti) valence electrons in comparison
to Mo. Nevertheless, electron doped MoS2 develops
CDW/SC instabilities as well, although entirely different
bands are involved. The most prominent resulting dif-
ference compared to materials like TiSe2 is the reversed
order in the phase diagram of MoS2.
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