
This is the accepted manuscript made available via CHORUS. The article has been
published as:

Universal Knight shift anomaly in the periodic Anderson
model

M. Jiang, N. J. Curro, and R. T. Scalettar
Phys. Rev. B 90, 241109 — Published 12 December 2014

DOI: 10.1103/PhysRevB.90.241109

http://dx.doi.org/10.1103/PhysRevB.90.241109


Universal Knight shift anomaly in the Periodic Anderson model

M. Jiang1,2, N.J. Curro,1 and R.T. Scalettar1
1Physics Department, University of California, Davis, California 95616, USA and

2Department of Mathematics, University of California, Davis, California 95616, USA

We report a Determinant Quantum Monte Carlo investigation which quantifies the behavior of the
susceptibility and the entropy in the framework of the periodic Anderson model (PAM), focussing on
the evolution with different degree of conduction electron (c) -local moment (f) hybridization. These
results capture the behavior observed in several experiments, including the universal behavior of the
NMR Knight shift anomaly below the crossover temperature, T ∗. We find that T ∗ is a measure of
the onset of c-f correlations and grows with increasing hybridization. These results suggest that the
NMR Knight shift and spin-lattice relaxation rate measurements in non-Fermi liquid materials are
strongly influenced by the temperature-dependence of the c-f kinetic energy. Our results provide
a microscopic basis for the phenomenological two-fluid model of Kondo lattice behavior, and its
evolution with pressure and temperature.
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Heavy-fermion materials have attracted considerable
attention over the past two decades because of their
unusually large effective masses arising from strong
electron correlations [1, 2]. These materials, which
typically contain either Ce, Yb, U or Pu ions, exhibit
complex behaviors arising from the interplay between
localized and itinerant electrons. In some cases these
interactions lead to ordered ground states such as
superconductivity, antiferromagnetism, or more exotic
“hidden” order [3, 4]. In other cases the strong
correlations lead to a breakdown of conventional Fermi-
liquid theory in proximity to a quantum phase transition
[5–7]. The recent discovery of the CeMIn5 (M = Rh,
Ir, or Co) class of heavy fermions, which exhibit a
broad spectrum of unusual ground states accompanied
by quantum criticality and non-Fermi liquid behavior,
has highlighted the continued need to develop a general
understanding of the phase diagram of heavy fermions,
as well as a requirement to discern what behaviors are
universal rather than material-specific [8–10].

Among various experimental techniques used to
investigate heavy fermion materials, nuclear magnetic
resonance (NMR) plays a central role [11]. Because
the hyperfine coupling between nuclear and electron
spins introduces an additional local effective field at the
nucleus, NMR allows one to probe the relative shift
of the nuclear resonance frequency compared with the
same nucleus in isolation. In a normal Fermi liquid,
the Knight shift is given K = Aχ0/h̄γµB, where χ0

is the Pauli susceptibility proportional to the density
of states at the Fermi level, so that K ∝ AN(0) is
temperature independent. On the other hand, this
scenario fails to describe the non-Fermi liquid behavior in
the normal state of heavy fermion materials, in which the
magnetic susceptibility χ usually increases strongly with
decreasing temperature. Below a particular crossover
temperature T ∗ ∼ 10 − 100 K, the Knight shift K is
no longer proportional to the magnetic susceptibility,

reflecting the onset of hybridization or lattice coherence
between conduction electron and the local moment f-
electrons. This Knight shift anomaly has been detected
in all heavy fermion materials that have been measured,
including the CeMIn5 family, CeCu2Si2, UPt3, and
URu2Si2 [12, 13].

A variety of different hypotheses have been put forward
to explain the origin of the Knight shift anomaly, which
either argue that the hyperfine interaction acquires a
temperature dependence due to Kondo screening [15], or
attributes the effect to different occupations of crystal
field levels of the 4f(5f) electrons in these materials [16].
However, if the hyperfine coupling has much larger energy
scale than the Kondo and/or crystal field interactions it
is challenging to reconcile that they should give rise to
the dramatic changes observed experimentally [17].

Recent progress has emerged in the context of a two-
fluid model, in which localized f -electron spins and
itinerant conduction electron spins interact with the
nuclear spins via two different hyperfine couplings [18,
20–23]. The two-fluid picture has attracted much
interest as a promising phenomenological model of
several heavy-fermion behaviors, but a connection of the
predictions of this theory to a microscopic many-body
Hamiltonian is needed to provide a more comprehensive,
and quantitative understanding.

It is well known that much of heavy fermion
physics can be captured by the Kondo lattice model
and/or periodic Anderson model (PAM) [24] in which
a lattice of f-electron local moments is embedded
into a background of conduction electrons. As
the hybridization between conduction and localized f-
electrons, repulsive interaction Uf for localized moments,
and the temperature are varied, there is a competition
between singlet formation by the Kondo effect and
antiferromagnetism favored by the Ruderman-Kittel-
Kasuya-Yosida (RKKY) interaction [25]. It is natural
to consider whether these microscopic models might also
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be used to understand the Knight shift anomaly.
We employ the PAM to investigate the Knight shift

anomaly observed in NMR studies of several heavy
fermion materials. The Hamiltonian reads:

H = − t
∑

〈ij〉,σ

(c†iσcjσ + c†jσciσ)− V
∑

iσ

(c†iσfiσ + f †
iσciσ)

+ Uf

∑

i

(nf
i↑ −

1

2
)(nf

i↓ −
1

2
) (1)

where c†iσ(ciσ) and f †
iσ(fiσ) are creation(destruction)

operators for conduction and local electrons on site i
with spin σ. nc,f

iσ are the associated number operators.
Here the chemical potential and f electron site energy
µ = Ef = 0, and both bands are individually half-
filled. t is the hopping between conduction electrons
on near neighbor sites 〈ij〉 of a square lattice, Uf

the local repulsive interaction in the f orbital and
V the hybridization between conduction and localized
electrons. t = 1 sets the energy scale. Results shown
here are for a 2D square lattice but are qualitatively
unchanged in 3D, as discussed below and in [26].
The PAM exhibits two distinct low temperature

magnetic phases [27]. For small V , local f moments
couple antiferromagnetically via an indirect RKKY
interaction mediated in the conduction band. At large
V , conduction and local electrons lock into independent
singlets, and a paramagnetic spin liquid ground state
forms. This reflects a competition between the RKKY
and Kondo energy scales, ∼ J2/W and ∼ We−W/J ,
respectively, with J ∼ V 2/Uf and W the bandwidth.
We solve the PAM and address the Knight shift

anomaly problem by using Determinant Quantum
Monte Carlo (DQMC) [28]. In this method, a path
integral expression is written for the quantum partition
function Z = Tr exp (−βH ), the interaction term

nf
i↑n

f
i↓ between localized f electrons is isolated, and

then mapped onto a coupling of the f electron spin
with a space and imaginary-time dependent auxiliary
(“Hubbard-Stratonovich”) field Siτ (n

f
i↑−nf

i↓). After this
replacement, which treats the interaction energy without
approximation [29], the fermionic degrees of freedom can
be integrated out analytically. The result is an exact
expression for Z and operator expectation values for
spin, charge, and pairing correlation functions in terms
of integrals over the field configurations {Siτ}. Summing
these correlation functions over different spatial and
imaginary-time separations yields the magnetic and
superfluid susceptibilities, and the charge compressibility
which signal the onset of different ordered phases. For
the half-filled case of Eq. 1, the sampling is over a
positive-definite weight [30], and expectation values can
be obtained to low temperatures.
In the two-fluid theory [13, 18] the nuclear

moment ~I experiences hyperfine interactions with both
the conduction and localized electron spins ~Sc
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FIG. 1: (Color online) Evolution of the three components of
the uniform (q = 0) magnetic susceptibility with temperature
T (main panels) and inter-orbital hybridization V (insets).
At weak V , the conduction and local f electrons decouple,
exhibiting Pauli and Curie behavior respectively. All three
susceptibilities fall as V increases and Kondo singlets form,
becoming small and temperature independent in the vicinity
of the AF-singlet transition at (V/t)c ∼ 1.2 (vertical dashed
line in panel (c) inset). See [25]. Here the on-site repulsion
of the local orbital is Uf = 4 and the lattice size is 12 ×

12. (Discussion of finite size effects is contained in the
Supplemental Materials.)
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via Hhyp =

~Ii · (A~Sc
i + B~Sf

i ). Here A and B are the associated
hyperfine couplings and include also proportionality
constants γh̄gµB, and ~σ are the Pauli matrices. If the
electronic spins are polarized via an external magnetic
field H, then Sc

i = (χcc +χcf )H and Sf
i = (χcf + χff )H,

so that the magnetic susceptibility and Knight shift are

χ = χcc + 2χcf + χff

K = Aχcc + (A+B)χcf +Bχff +K0 (2)

respectively. K0 is a temperature independent term
arising from orbital and diamagnetic contributions to K.
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FIG. 2: (Color online) Analysis of the Knight shift anomaly.
Left panels are DQMC data for the PAM at V = 1.2
and Uf = 4. Right-hand panels are experimental data on
URu2Si2. Both DQMC and experimental data for T > T ∗

can be fit with a straight line K = Beff χ + K0 eff [32].
Top panels: Susceptibility χ and renormalized Knight shift
K̃ = (K − K0 eff)/Beff as functions of temperature. Above

the coherence temperature, T > T ∗, K̃ tracks χ. Below T ∗,
the Knight shift anomaly is evident in a deviation of K̃ from
χ. The bottom panels show K versus χ with T as an implicit
parameter [19]. The hyperfine couplings A = 0.3, B = 1.0,
and K0 = 0.0.

If A 6= B, the different weights of the three components
of the total susceptibility and their different temperature
dependencies results in a breakdown of the linear relation
between K and χ for T < T ∗.

To quantify the Knight shift anomaly and the
possibility of universal behavior, we obtain, by summing
over appropriately restricted sets of orbitals, the three
components, χcc, χcf , and χff , shown in Fig. 1.
When V is small, the PAM describes noninteracting
conduction electrons decoupled from free moments. At
low temperature, χcc is expected to approach a T -
independent Pauli limit, while χff should have a Curie-
like divergence. This indeed qualitatively describes [31]
the behavior at V = 0.50 and V = 0.75 in panels (a)
and (c). The inter-orbital susceptibility χcf , panel (b), is
negative, reflecting the tendency of the conduction and f
moments to anti-align (which for large V results in singlet
formation). Note that in the singlet phase the local, on-

site contribution to χcf , 〈 ~Sc
i · ~Sf

i 〉, is large. However,
because the singlets are independent on different lattice
sites, the nonlocal contributions 〈 ~Sc

j · ~Sf
i 〉 for i 6= j

are reduced, leading to a small χcf at large V . For
Uf = 4 it is known [25] that the antiferromagnetic to
singlet transition occurs for (V/t) >∼ 1.2. This transition
is reflected in the susceptibility components becoming
temperature independent. (See vertical dashed line in
inset to Fig. 1(c).)

The bottom panels of Fig. 2 show the Knight shift K
as a function of susceptibility χ with T as an implicit
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FIG. 3: (Color online) Knight shift data from DQMC
simulations of the PAM are shown to exhibit a universal
logarithmic divergence with decreasing temperature below T ∗

in the paramagnetic state. QMC data are fitted for a range
of high temperatures with the relation Eq. 3. Universality is
seen both for different V at fixed Uf = 4, as well as for two
values of Uf and near-neighbor (k-dependent) hybridization
Vk( coskx+cosky ). The breakdown of the scaling behavior of
KHF at the lowest temperatures is also seen experimentally
and has been suggested to arise from “relocalization.” See
text for details. We have chosen the hyperfine couplings ratio
A = 0.3, B = 1.0, but the universality is not dependent on
details of the hyperfine coupling values. The dashed line is
given by Eq. 3.

parameter. The strong qualitative similarity between
PAM simulations (left panels) and the experimental data
(right panels) in URu2Si2 [13] is evident. Note the K−χ
plot bends counter-clockwise as T is lowered, however
the magnitude and direction of this effect depends on the
particular magnitudes of the hyperfine couplings, A and
B. Similar plots with different values of V are available
in the supplemental information.
NMR experimental results on several different families

of heavy fermion compounds have revealed that the
contribution to the Knight shift from the heavy
electrons exhibits a universal logarithmic divergence with
decreasing temperature below T ∗ in the paramagnetic
state [12, 13]. The two-fluid model explains this
observation by arguing that the Knight shift component
from hybridized heavy fermions KHF = K − (K0 eff +
Beffχ) is proportional to the susceptibility of the heavy
electron fluid, and can be described empirically as:

KHF(T ) = K0
HF(1− T/T ∗)3/2[1 + ln(T ∗/T )] (3)

where K0
HF and the coherence temperature T ∗ are

material-dependent constants [14]. In Fig. 3 we
demonstrate that the predictions of this two-fluid picture,
and NMR experimental results, can also be captured
in a microscopic many-body Hamiltonian. Specifically,
if we fit our QMC data for the Knight shift K(T ) in
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FIG. 4: (Color online) Evolution of T ∗, TS (the temperature
at which S = ln 2), Tloc and TN with hybridization, V , where
TN is defined as the temperature where the antiferromagnetic
correlation length exceeds the system size (note that TN =
0 in 2D). (Inset) The thermodynamic entropy versus the
temperature for different hybridization strength V (symbols
and colors are defined in Fig. 1). With increasing V , the
temperature at which the entropy decreases to the value ln 2
increases. This is consistent with the expectation that around
the crossover temperature T ∗ the hybridization between
the conduction and localized f-electrons results in coherence
between these degrees of freedom.

the PAM, allowing K0
HF and T ∗ to be free parameters,

we find KHF(T ) is universal over the range 0.2T ∗ <
T < T ∗. Fig. 3 shows a scaling collapse for a range
of conduction-local electron hybridizations V at fixed
Uf = 4 and hyperfine couplings A = 0.3, B = 1.0. This
universality persists when Uf is increased to Uf = 8 and
for a modified form of V in which the local f orbitals
are hybridized with conduction orbitals on neighboring

lattice sites so that V → Vk ( coskx + cosky ). This latter
choice emphasizes the universal scaling is insensitive
to details of the band structure and bandwidth [33].
We have also verifgied that similar collapse behavior is
exhibited for the 3D PAM. These data are shown in the
supplemental materials.

The f electron density of states of the PAM at
half-filling exhibits a sharp Mott transition at low
temperatures[34, 35], a feature not accounted for in
the two-fluid picture. However, for the choices of
hybridization and temperature of Fig. 3, a gap in the
f electron density of states is not present[35], so that
the data lie within the regime where the half-filled PAM
is an appropriate microscopic model. Doping the PAM
would extend this regime of validity but is a challenge for
DQMC simulations.

In addition to the demonstration of universality within
a microscopic model, other features in the model agree
with experimental observations. As shown in Fig.
4, (i) T ∗ increases with increasing V , and (ii) the
scaling behavior of KHF breaks down below a lower
temperature Tloc ∼ T ∗/5. Although this latter behavior
is not fully understood, it has been proposed that it
is associated with the “relocalization” of f -electrons
observed in materials like CePt2In7 whose ground states
are antiferromagnetic [36]. In these materials, the
finite value of KHF at TN suggests that the ordered
local moments remain partially screened, emphasizing a
continued competition between the heavy-fermion Kondo
liquid and a hybridized “spin liquid” with a lattice of
local moments associated with f-electrons [18]. Because
T ∗ is an approximate measure of the onset of coherence
between the itinerant and localized electrons, the two-
fluid theory argues that the entropy at the crossover
temperature T ⋆ approaches ln 2 at this temperature [14].
The inset of Fig. 4 shows the entropy versus the
temperature for different values of the hybridization V ,
and the main panel shows the evolution of T ∗ and TS ,
the temperature at which S = ln 2, as a function of
V . As expected, both temperature scales increase with
increasing V with the same qualitative trend. TS is
lower than T ⋆ in our calculations, because S includes a
background contribution from free conduction electrons.
In future work we intend to develop ways to isolate the
entropy associated with magnetic correlations, and better
test predictions[18] that TS ≈ T ⋆.

Our DQMC simulations of the periodic Anderson
model clearly capture key features found in NMR studies
of heavy fermion materials, and provide a microscopic
basis for the phenomenological two-fluid model. Our
key conclusions are that (i) the temperature evolution
of the susceptibility associated with different orbitals
in this microscopic many-body Hamiltonian results in
the Knight shift anomaly as observed experimentally;
and (ii) the Knight shift results for different choices of
interorbital hybridization and correlation energy in the
localized orbital collapse onto a universal curve. This
latter conclusion is especially intriguing since it suggests
that heavy fermion materials can be described in a
unified way, differing only through a distinct coherence
temperature, T ∗, controlled by the hybridization,
V . Importantly, our results clearly reveal that the
development of the heavy fermion state occurs over a
broad temperature range below T ∗, and also that both
the local f-electrons as well as the itinerant quasiparticles
contribute significantly to the NMR response over a
broad range of hybridization values where non-Fermi
liquid behavior has been observed. Further study of
the spectral function A(ω), are in progress, and, in
particular, whether A(ω) shows any change of behavior
at the coherence temperature, as suggested recently by
scanning tunneling microscopy [37].
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