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We analyze the phase diagram associated with a pair of magnetic impurities trapped in a super-
conducting host. The natural interplay between Kondo screening, superconductivity and exchange
interactions leads to a rich array of competing phases, whose transitions are characterized by dis-
continuous changes of the total spin. Our analysis is based on a combination of numerical renor-
malization group techniques as well as semi-classical analytics. In addition to the expected screened
and unscreened phases, we observe a new molecular doublet phase where the impurity spins are
only partially screened by a single extended quasiparticle. Direct signatures of the various Shiba
molecule states can be observed via RF spectroscopy.

PACS numbers: 75.30.Hx, 33.15.Kr, 75.30.Et, 74.25.Ha, 64.60.ae

In an ordinary metal, the celebrated Kondo effect de-
scribes the scattering of conduction electrons due to mag-
netic impurities. Below the so-called Kondo temperature
(Tk) [1], the magnetic moment of a single impurity be-
comes screened by the electrons [2], leading to its dissolu-
tion and hence, the formation of a Fermi liquid state [3].
This simple picture can fail when one considers a finite
density of impurities. In particular, conduction-electrons
mediate RKKY exchange interactions, I, between the im-
purities and in the limit, I 2 Tk, such interactions can
lead to the emergence of either magnetically ordered or
spin glass states [4, 5]. Much of our understanding of
this phase transition owes to detailed studies of the two-
impurity Kondo model [6, 7].

Extending the two-impurity calculations to the case
of a superconducting host represents an interesting and
active challenge [8-17]. On the one hand, the interplay
of superconductivity and magnetic moments can lead to
the emergence of exotic phases and excitations. Recent
results have suggested the possibility of emergent Ma-
jorana edge modes at the ends of a magnetic impurity
chain situated on the surface of an s-wave superconduc-
tor; in this system, topological superconductivity arises
from the formation of a spin-helix as a result of the un-
derlying RKKY interaction [18-20]. On the other hand,
the presence of magnetic impurities breaks time-reversal
symmetry and gradually leads to the destruction of su-
perconductivity. This breakdown occurs through the ap-
pearance of proliferating mid-gap states (so-called Shiba
states), as first observed by Yu, Shiba and Rusinov [21-
23]. In particular, within a simple classical calculation,
they demonstrated that a magnetic impurity can bind
an anti-aligned quasiparticle, yielding a sub-gap bound
state of energy ¢ = A — Ej, where A represents the su-
perconducting gap and FEj the binding energy [24-26].

As the binding energy FEj increases (e.g. as a function
of increasing exchange coupling), the bound state en-
ergy eventually crosses zero, signifying a parity-changing
phase transition.
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FIG. 1. Two magnetic impurities placed on a supercon-
ducting surface. RF fields can be used to produce transitions
between various molecular states and manipulate them.

With certain modifications, this classical picture re-
mains qualitatively valid even for quantum mechanical
spins [15, 27-31]. Taking into account quantum fluc-
tuations, the aforementioned parity-changing transition
occurs at a critical point, (A/Tk )., when the supercon-
ducting gap becomes comparable to the Kondo temper-
ature [2]. For an S = 1/2 impurity, the spin is essen-
tially free for A/Tx > (A/Tk). and the associated mid-
gap Shiba state remains unoccupied. In this ’free spin’
regime, the ground state has spin S¢ = 1/2. In the op-
posite limit, when A/Tx < (A/Tk)., the impurity spin
becomes screened by a bound quasiparticle; more specifi-
cally, the mid-gap Shiba state becomes occupied and this
quasiparticle spin forms a singlet with the impurity spin,
leading to an Sg = 0 ground state. This phase transition
has recently been observed in mesoscopic circuits, where
the strength of the exchange interaction can be tuned by



means of a pinch-off gate electrode [32, 33].

In this Letter, we use a combination of numerical renor-
malization group methods and semi-classical analytics to
study quantum phases of two magnetic impurities in a su-
perconductor. We first identify all possible phases, and
construct the superconducting analogue of Doniach’s fun-
damental phase diagram [34]. To this end, we demon-
strate the existence of bound ‘molecular’ quasiparticle
states, delocalized between the magnetic impurities, and
also elucidate a novel singlet state with two bound quasi-
particles. We explore and characterize the experimental
signatures of the phase transitions between all observed
phases, and demonstrate the presence of multiple Shiba
states and universal weight jumps in the STM spectrum.

We consider an s-wave superconductor with Hamilto-
nian,

dk

coupled, via exchange, to two identical spin 1/2 magnetic
impurities of spin S; and S,

[Z §kcleckg + (ACLTCJLM + h.c.)]

J J
Hi, = 5 S1o g1 + 5 Syulon . (1)

Here, 11 and 5 are the field operators at the impurity
positions. We note that this Hamiltonian captures the
essential physics of two experimental systems: (1) mag-
netic impurities placed on a superconducting surface (see
Fig. 1) [24, 26, 35] and (2) double dot devices attached
to superconductors (e.g. as recently used for Cooper pair
splitting) [36, 37]. To study the ground state and ex-
citation spectrum of Hr = Hpcs + Hing, we map the
problem to a double superconducting chain, and analyze
it via Wilson’s numerical renormalization group (NRG)
method [6]. Details of our NRG calculation are provided
in the Supplementary Material [38].

We observe that Hp conserves both parity, P, and
total spin, S. In a superconductor, the pairing terms
imply that charge is typically only conserved modulo 2.
However, for A = 0 and in the presence of particle-hole
symmetry, the Wilson chain possesses a hidden SU,(2)
charge symmetry [6] analogous to that of the Hubbard
model [39]. For a half-filled cubic lattice, this charge sym-
metry is generated by the operators, Q, = (QT+Q7)/2,

1

Qy = Q" —Q)/2, Q@F = 1%, [ (e — 1),

where QT = [ %CLTC;LM and Q— = (Q*)" [40).
Although this symmetry is strictly broken for A # 0, a
hidden U.(1) symmetry remains, leading to a conserved
pseudo-charge, Q [38, 41]. Physically, this pseudo-charge
can be viewed as the generator of rotations along the su-
perconducting order parameter. For the remainder of the
text, we will utilize these three quantum numbers (P, S
and Q) to classify the eigenstates of the Hamiltonian.

Our NRG calculations reveal the existence of five com-
peting subgap Shiba-molecule states, as depicted in Ta-
ble I. For large values of A, both of the impurity spins are
essentially free. They can form a singlet state (Sp) with
spin S = 0, parity P = —, and pseudocharge Q =0,0ra
a triplet state (7p) with S =1, P = 4, and Q = 0. Simi-
lar to the single impurity case, one can also create a single
(antiferromagnetically) bound quasiparticle. However, in
the Shiba molecule case, this quasiparticle is delocalized
between the two impurities and can form either a bond-
ing (D4) or antibonding state (D_) of spin S = 1/2,
parity P = +, and pseudo-charge Q = 1. Finally, it is
also possible to induce the binding of two quasiparticles,
one to each of the impurities. In this case, one finds a
singlet state (S;) with pseudocharge Q = 2. The parity
of this state is, rather counterintuitively, P = —, owing
to the fermionic nature of the bound quasiparticles.

State (S,Q, P)
So $8-948% (00
To $$ (1,0,+)
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TABLE I. Shiba molecular bound states and their quantum
numbers. Small spins represent quasiparticles bound to the
(large) impurity spins.

The competition between these five states leads to a
rich Shiba molecule phase diagram. A heuristic under-
standing of this diagram can be gained by comparing the
relative strengths of superconductivity, exchange, and
Kondo screening. In analogy to the single impurity case,
the ratio A/Tk characterizes the competition between
superconductivity and Kondo screening. For A/Tk > 1,
Kondo screening is heavily suppressed and the magnetic
moments remain unscreened. The two impurities do how-
ever couple to each other via the Fermi sea of conduction
electrons. For processes involving quasiparticle excita-
tions close to the Fermi energy, this coupling is charac-
terized by the overlap S of the two waves created at the
impurity locations. For a three dimensional free elec-
tron system, S = Sink(iig%%% where R = |R; — Ry is the
separation between the impurities and kz the Fermi mo-
mentum. This overlap S is also responsible for the hy-
bridization of the Shiba states at sites 1 and 2, and thus
for the splitting between the bonding and antibonding
states (Dx).

The impurity spins also interact via RKKY exchange I,
which depends on high-energy electron-hole excitations;
thus, the coupling I ought be considered as an indepen-
dent parameter, determined by the precise band shape
and the energy dependence of the exchange coupling, J.



The competition between RKKY and Kondo screening is
characterized by the ratio, I/Tk [42].
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FIG. 2. NRG-determined phase diagram for S = 0.1 as
function of I/Tx and A/Tx. The background colors indi-
cate regions with S = 1 (light maroon), S = 1/2 (white) and
S = 0 (blue) ground states. The blue dashed line separates
the regions with Sy (light blue) and Sy (dark blue) ground
states. All phase transitions are first order, except the blue
dashed line, which becomes a smooth cross-over in the ab-
sence of electron-hole symmetry. The observed first order
transitions are in contrast to the quantum phase transitions
observed in the two-channel and two-impurity Kondo models
(whose quantum critical point is indicated by the blue star),
where local correlation functions exhibit critical behavior with
a non-trivial exponent.

Phase Diagram — The phase diagram obtained via
NRG is shown in Fig. 2. We identify four distinct regions,
each corresponding one of the states in Table I:

(1) For large values of A/Tk, the impurities are free
and the ground state is a molecular triplet (Tp) for I <0
and a molecular singlet (Sp) for I > 0. As expected, this
molecular singlet phase is also observed for I > Tk, A
and extends down to the A = 0 axis.

(2) In the Kondo singlet region (Ss2), |I|, A < Tk, one
recovers strong Kondo correlations, wherein the two im-
purity spins are basically individually screened by quasi-
particles. For perfect electron-hole symmetry this re-
gion is separated from (1) by a first order phase tran-
sition (blue dashed line in Fig. 2), corresponding to
both a pseudo-charge jump from Q=0toQ = 2 as
well as a Sy — S5 singlet-singlet level crossing. When
electron-hole symmetry is broken, the transition becomes
a smooth cross-over.

(3) Along the A = 0 line, the known phase diagram
of the two impurity (normal metal) Kondo model is re-
covered [5]. Here, a quantum critical point (blue star)
separates the molecular singlet from the Kondo singlet
region. For any finite A, the spectrum is gapped, and
this critical point turns into the aforementioned first or-
der transition line.

The nature of the Kondo singlet phase at A = 0 grad-
ually changes as one moves toward large, negative ex-
change interactions. In particular, for —I > Ty, the two
impurity spins are first bound into a molecular triplet,
which is then screened in the even and odd channels at
(typically) two different Kondo temperatures. This pic-
ture survives for small but finite A, although strictly
speaking, there is no true Kondo effect for any finite
gap; nevertheless, one can still screen the impurity spins
for A <« Txg and a Kondo anomaly is generally ob-
served in the tunneling spectra at intermediate energies,
AKw<K TK

En/A

FIG. 3. Evolution of the bound states as function of A/Tx
for RKKY couplings I/Tx = —0.58 and an overlap parameter
S = 0.1 and corresponds to the black dashed line in Fig. 2.
One observes a phase transition from the individual singlet
state (S2) into the molecular doublet phase (Dy) and then
another transition to the molecular triplet phase (Tp). The
effective RKKY interaction can be extracted as the splitting
between the Sy and Ty states: Ieg = E's, — E1,. We can also
estimate the effective hopping te.g as the separation between
the two molecular doublet states, D4.

(4) Finally, and most strikingly, for S # 0 a new
S = 1/2 phase emerges for A ~ Tk and I ~ 0. We term
this phase the molecular doublet (Dy). It can be under-
stood as follows: For A > Tk each of the two spins can
bind a single excited quasiparticle. For § = 0 the energy
of these bound states are identical; however, for S # 0
these states can hybridize to form molecular bonding and
antibonding states Dy. As one decreases the ratio A /T,
the energy of the D states moves towards zero until D
first crosses (zero) and becomes the ground state. This
transition is accompanied by a charge-parity flip and a
spin transition from S = 1 — 1/2. Further decreasing
A/Tk lowers the energy of the two-bound-quasiparticle
state until a second charge parity transition to the S5
singlet occurs. These level crossings and the evolution
of the excitation spectrum along the vertical dash-dotted
line in Fig. 2 is shown in Fig. 3. Interestingly, an anal-
ogous doublet phase is found when considering the full
Anderson model [43].

The existence of this novel molecular doublet phase



can also be probed and confirmed in a semi-classical
calculation where one extends the original Yu-Shiba-
Rusinov calculation to the case of two classical mag-
netic impurities. Each magnetic impurity binds a Shiba
state with wavefunction ¢g,(r) ~ e /<1520l and en-
ergy Fgn = A;—gi, where ( is the coherence length,
B = tan(d) = JSNym/2 and Ny is the density of states
at the Fermi energy. Utilizing a two-impurity Green’s
function calculation [44, 45], we compute the energies
of the hybridized Shiba bound states as poles of the T-
matrix [38]. Picking two values of kpR (corresponding to
ferromagnetic and anti-ferromagnetic exchange) we plot
the bound-state energies as a function of 8 (Fig. 4). In
each case, hybridization causes a single bound state to
first cross Fg, = 0 leading to the formation of the molecu-
lar doublet phase. The second bound-state crossing then
yields the transition to either the triplet Kondo phase
(I < 0) or the Kondo singlet phase (I > 0).
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FIG. 4. Semi-classical molecular doublet phase transitions.
(a) For kr R ~ 4.1, the RKKY exchange is negative and the
bound state energies are shown as one increases § = JNS7/2.
At B =~ 0.86, the first bound state crosses zero and a charge-
parity transition from the molecular triplet phase to the dou-
blet phase occurs. At 8 = 1.3, the second bound state crossing
leads to the triplet Kondo phase. (b) Analogous semi-classical
results for kp R =~ 2.6 where the exchange is positive.

Tunneling RF Spectroscopy — The most direct ob-
servation of the various molecular Shiba states can be
achieved by combining RF spectroscopy with transport
measurements. To this end, we determine the tun-
neling spectrum of the Shiba molecule by computing
the spectral density of the so-called composite fermion,
Fy = S; - o¢;. In the molecular triplet phase (Tp)
both D, and D_ are visible in the tunneling spectrum
and, correspondingly, a double mid-gap STM resonance
is predicted (see Fig. 5). The dominant obstacle to ob-
serving such a resonance arises from thermal broaden-

ing; indeed, the first such measurements of Mn and Gd
impurities [46] on a single-crystal lead superconductor
at ~ 4K were unable to resolve individual Shiba res-
onances [24]. Recently however, multiple Shiba states
were detected for Mn impurities on a superconducting
Pb surface [25, 47]. Operating at even lower tempera-
tures (~ 500mK) the linewidth is reduced considerably
to &~ 0.14meV, significantly smaller than the supercon-
ducting gap, App, = 1.55meV. Such estimates are consis-
tent with recent results which utilize a superconducting
Niobium tip to explicitly resolve multiple Shiba scatter-
ing channels [26, 48]. Even lower temperatures, in the
range of T~ 20mK, can be attained in mesoscopic cir-
cuits, where multiple Shiba states have also been recently
resolved [49].

Applying an additional RF field with a frequency
matched to the Ty — Sy transition (AE = hv) allows one
to populate the Sy state [50]. In this case, the So — Dy
transitions also become active and visible (Fig. 5), while
the tunneling gap shifts from A — A — AFE. In this way,
one can detect the excited state Sy and its energy by
investigating the RF-radiation-induced transport signal.

The transitions between the various phases and the
corresponding STM spectra should also be observable in
double-dot spin-splitter devices. In particular, the tun-
neling dI/dV spectra can be accessed by observing the
transport with normal electrodes attached. Similar to
the case of a simple magnetic impurity, by approaching
the phase boundaries between (D, S2) or (D4, Tp), a
single midgap excitation should get ‘soft” and cross zero.
Interestingly, the strength of the corresponding tunneling
resonance displays a universal jump at these transitions,
2 — 1 and 3 — 2, respectively; this robust jump owes to
a change in ground state degeneracy [32].

As a possible application, one can consider using the
singlet states Sy and Sy as a quantum bit. These states
are protected by the superconducting gap and, being sin-
glets, they are insensitive to magnetic noise (including
the hyperfine field of nearby nuclear moments) [51]. To
have a direct transition between these states, both parity
and particle-hole symmetry must be broken sufficiently
strongly; this can be achieved by placing a single poten-
tial scatterer near one of the magnetic impurities, as may
be possible in STM-type experiments [24, 26, 48].
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FIG. 5. STM spectrum of one atom of the Shiba molecule in
the molecular triplet (Tp) phase. The D, and the D_ states
can both be observed as subgap Shiba transition lines (see
top). Upon irradiation with a frequency matching the Tp —
So transition hv = AFE (right panel), two additional subgap
lines appear, and the gap shifts to lower values (bottom).
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