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We report a novel quantum phase transition between orbital-selective Mott states, with different localized
orbitals, in a Hund’s metals model. Using the density matrix renormalization group, the phase diagram is
constructed varying the electronic density and Hubbard U , at robust Hund’s coupling. We demonstrate that this
transition is preempted by charge fluctuations and the emergence of free spinless fermions, as opposed to the
magnetically-driven Mott transition. The Luttinger correlation exponent is shown to have a universal value in
the strong-coupling phase, whereas it is interaction-dependent at intermediate couplings. At weak coupling we
find a second transition from a normal metal to the intermediate-coupling phase.

PACS numbers: 71.10.Fd, 71.10.Hf, 71.27.+a, 71.30.+h

Introduction.—Hund’s metals (HM) are strongly interact-
ing quantum states with bad metallic properties, where elec-
tronic correlations are dominated by the Hund’s coupling J
and not by the Hubbard repulsion U . HM are stable in in-
termediate coupling regimes, within two energy scales [1–3].
A weak-coupling scale signals a transition from a bad to a
coherent metal, i.e. a Fermi liquid (FL). The second (strong-
coupling) characteristic energy separates the incoherent metal
from an ordered phase [1–6]. HM display a variety of phe-
nomena: mass enhancement [1], orbital selectivity [7, 8], sup-
pression of orbital fluctuations [8], emergence of local mo-
ments [4], and non-Fermi liquid (NFL) physics [1–3].

Early work unveiled the freezing of local moments and
power-law behavior in the electronic self-energy, using dy-
namical mean-field theory (DMFT) applied to a three-orbital
Hubbard model [4]. A related orbital-dependent power law
in the self-energy and optical conductivity was reported
in DFT+DMFT studies [2]. These results were discussed
in the context of iron-chalcogenide and ruthenate super-
conductors suggesting that these materials are governed by
Hund’s physics [3, 9–11]. Using effective low-energy Kondo
Hamiltonians with orbital degrees of freedom, the FL-NFL
(coherent-incoherent) transition observed in those compounds
was explained [2, 5, 6, 12].

The orbital-selective Mott phase (OSMP) is an example
where Hund physics plays a crucial role. The OSMP is a
bad metal where Mott insulator (MI) and normal metal co-
exist, leading to a NFL [3, 9]. This exotic behavior is due
to the orbital-decoupling effect induced by J , suppressing or-
bital fluctuations. In the low-energy sector, the OSMP is de-
scribed by a double-exchange model: a ferromagnetic Kondo
lattice with band interactions [9, 12, 13], which displays NFL.
The conditions for a stable OSMP have been thoroughly dis-
cussed using several techniques [3, 8, 14–20].

Studies of the magnetic order in the OSMP have shown a
tendency to ordered phases like paramagnetism (PM), ferro-
magnetism (FM), antiferromagnetism (AFM) [21], and block
states (FM clusters coupled AFM). One of the properties of

the OSMP state recently explored are its magnetic and charge
orders: block states and FM were found in the spin sector and
short-range order in the charge sector [13].

The OSMP has an associated orbital-selective Mott tran-
sition to a MI. This transition was first proposed to explain
the coexistence of metallic and magnetic behavior in ruthen-
ates [7]. The origin of the orbital-selective Mott transition is
mainly related to a strong J and its band-decoupling effect [8];
however, crystal-field splitting [22] and unequal bandwidths
are other factors that may lead to orbital differentiation and
an orbital-selective Mott transition, in systems poorly hy-
bridized. These findings were considered in the context of
iron-based superconductors [3, 8, 9, 13, 22–30].

In this paper we explore the influence of carrier doping and
U on an OSMP, employing a three-orbital Hubbard model and
the density matrix renormalization group (DMRG) [31–33].
Our main result is the discovery of a formerly unknown quan-
tum phase transition (QPT) between OSMPs (OSMP QPT)
with different localized orbitals. We argue that this QPT is
preceded by charge fluctuations and not magnetic fluctua-
tions, and by the appearance of spinless fermions establishing
a qualitative difference with the Mott transition. Calculations
of the Luttinger liquid correlation exponent show a universal
behavior in the strong-U OSMP. We also find a small-U QPT
between a normal metal and an OSMP. This physics could
be realized in heavy fermion and iron-based compounds with
tendencies to Hund’s metallicity.

Model and method.—The model used in our study is a one-
dimensional three-orbital Hubbard Hamiltonian. The details
of the model were given elsewhere [34], but here we briefly
describe its main features. The Hamiltonian is divided as
H = Hkin + Hint. The kinetic energy, Hkin, includes hop-
ping among orbitals γ and an orbital-dependent crystal-field
splitting term. The interacting part, Hint, is composed of the
intra- (U ) and inter-orbital (U ′) Coulomb repulsions, the FM
Hund’s coupling (J), and the pair-hopping term [35].

The parameters in Hkin were chosen to mimic the band
structure of the iron-based compounds [36]. We fix the ratio
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FIG. 1. DMRG phase diagram of the three-orbital model varying
U/W and n, at J/U = 1/4 for a 72-orbital lattice. The phases
are labeled as: metal (M), Mott insulator (MI), and orbital-selective
Mott phase (OSMP). In the OSMPs, block/incommensurate (B/IC)
magnetism and ferromagnetism (FM) are separated by a dashed line.
The quantum phase transitions are separated by the full lines.

J/U = 1/4, a prototypical value used in the study of multi-
orbital systems, and explore the phase diagram by changing
the electronic filling in the range 3 6 n 6 5 and varying
U . The total bandwidth is W = 2.45 eV. Our conclusions
are drawn from DMRG calculations of the orbital occupa-
tion number nγ , the magnetic moment 〈S2〉, the charge N(q)
and spin S(q) structure factors, and the orbital-dependent Lut-
tinger liquid parameterKγ . The truncation error was< 10−4;
finite-size effects in the phase diagram are small [34].

Results.—We calculated the phase diagram of our multi-
orbital model varying U and n [37]. The phase diagram is
shown in Fig. 1. At integer n and U/W & 1, a MI with AFM
is found (thick bars). For all values of n and U/W . 1, a PM-
M state is observed. Now one of the main results of our work:
at intermediate and strong U , we detect phases with similar
characteristics to those of the OSMP; specifically, three types
of OSMPs are uncovered. (i) At intermediate U we observe
an OSMP with two metallic (itinerant) and one localized or-
bitals (OSMP1). (ii) At strong coupling and dependent on n,
we unveil two new types of OSMPs. For 3 < n < 4 the
OSMP is characterized by the coexistence of one metallic and
two localized orbitals (OSMP2). By contrast, for 4 < n < 5
we observe an OSMP with one itinerant, one filled, and one
localized orbitals, which translates to an effective two-orbital
OSMP with one metallic and one MI orbitals (OSMP3).

The OSMP states display a nontrivial magnetic ordering:
fully saturated FM is found in all of them, and block or in-
commensurate magnetism is seen in the OSMP1 and OSMP2
phases. Magnetic order was previously overlooked in mean-
field studies of the OSMP; however, DMRG allows to address
issues of order. Moreover, though it is not explicitly shown,
we have found regions of phase separation, where AFM and
FM coexist, near n = 3 and 5. The magnetic orders reported
in this work agree with those found in previous studies of the
two-dimensional double-exchange model, which is the low-
energy effective model of the OSMP [38–40], providing a
connection with long-range ordered systems.
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FIG. 2. Orbital occupation number, nγ (open symbols), and mean
value of the total spin squared, 〈S2〉 (closed symbols), vs. U/W , at
J/U = 1/4 for (a) n = 3.25 and (b) n = 4.5. 〈S2〉2 is the magnetic
moment for γ = 2. The different phases are marked by vertical
dashed lines. Notice the formation of a robust magnetic moment and
a fairly U -independent nγ in the OSMP region.

The emergence of different OSMPs can be deduced by
monitoring the orbital occupation, nγ , vs. U/W (shown in
Fig. 2 for n = 3.25 and 4.5). In the small-U region nγ ex-
hibits a normal metal. As U/W is increased n2 locks to one,
signaling the appearance of a MI in such orbital at intermedi-
ate coupling, while the other orbitals remain itinerant. This is
the OSMP1 state shown in Fig. 1. Upon further increase of
U two different states develop depending on n. As shown in
Fig. 2(a) at n = 3.25, n1 also localizes leaving only one or-
bital (γ = 0) metallic; this is the OSMP2 state shown in Fig. 1.
At n = 4.5, plotted in Fig. 2(b), n1 becomes doubly occupied,
making it an inert orbital and inducing an OSMP with one lo-
calized and one itinerant orbitals: this is the large-U OSMP3
state shown in Fig. 1. One remarkable feature of the OSMP
is that nγ is U -independent, but dependent on J , and strongly
orbitallly differentiated. The existence of the OSMP is further
confirmed by the calculation of Kγ (see Fig. 3) [34].

Figure 2 also displays the magnetic moment 〈S2〉 vs. U .
In the metallic region we find a small 〈S2〉 as expected for a
PM. In contrast, the OSMPs present a robust moment; this
is true regardless of the value of the doping in the region
3 < n < 5. The presence of a robust moment is a typical
feature of the OSMP. The value of 〈S2〉 can be understood by
considering the one-body contribution of each orbital. In the
OSMP2, the occupations (in terms of holes because the sys-
tem is above half-filling) are n0 = 0.75, n1 = n2 = 1 giving
an effective Seff ≈ 1.375 or 〈S2〉 = 3.266 which is fairly
close to the actual value 3.3125. The same argument holds
for n = 4.5, where Seff ≈ 1.313 which is to be compared
with 1.375. These results agree nicely with the idea of the
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FIG. 3. Orbital-dependent Luttinger correlation exponent, Kγ , vary-
ing U/W , for several fillings n and J/U = 1/4. Note the the ex-
istence of orbital-selective incompressible states (Kγ = 0). The
discontinuities correspond to quantum phase transitions.

orbital-decoupling effect of J .
Assuming that the OSMP metallicity can be described by

the universality class of the Luttinger liquid, we have calcu-
lated the correlation exponent, Kγ , which completely charac-
terizes this theory. Figure 3 shows the orbital-dependent Kγ

as a function of U/W for several n. To avoid subtleties in
the interpretation of Kγ , we have set the orbital hybridiza-
tion to zero in Hkin [34]. In the metallic region, we find that
Kγ is strongly orbital dependent (Fig. 2). This tendency is
caused by the fact that by changing U/W the filling nγ ef-
fectively changes as well, in a similar way as K depends on
n for the single-orbital Hubbard model [41, 42]. By further
increasing U , a critical line is crossed (K2 = 0) signaling an
incompressible state (MI); on the other hand, the metallic or-
bitals become more correlated: KM

γ > KOSMP
γ . With further

increasing U , the second OSMP (for n 6= 4) or the MI (for
n = 4) is reached, where K1 = K2 = 0, K1 → 1/2 and
Kγ = 0, respectively. The presence of discontinuities in Kγ

are the result of different QPTs to different OSMPs.
Note that in the metallic region we found 1/2 < Kγ < 1,

resembling results for the standard Hubbard model [41, 42].
In contrast, in the strong-coupling OSMP Kγ = 1/2 or
Kγ = 0, which implies the onset of spinless fermions or
an insulator, respectively (see below). One important conclu-
sion can then be drawn from the behavior of Kγ : the strong-
U OSMP belongs to the universality class of free spinless
fermions. Calculating Kγ with the DMRG is a challenging
task because we need the long-range behavior of the correla-
tions, which requires accurate calculations for large systems;
therefore, the value of Kγ calculated here should be consid-
ered as an upper limit to the thermodynamic value.

The origin of the OSMP QPT can be understood by moni-
toring the charge fluctuations across the transition. The total-
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FIG. 4. Total-charge structure factor, N(q), for several n (panels) at
J/U = 1/4. Each panel shows N(q) for different U (color-coded).
Charge fluctuations are suppressed as U/W increases, though not
completely and depending on n. The quantum phase transition be-
tween orbital-selective Mott states is signaled by the onset of free
spinless behavior with an n-dependent effective Fermi momentum.

charge structure factor N(q), for different n and U (color-
coded), is shown in Fig. 4. For noninteger n, a general ten-
dency is observed: as U increases charge fluctuations are
gradually suppressed until U reaches the critical value of the
OSMP QPT, and subsequently N(q) takes the form of free
spinless fermions. On the contrary, for n = 4 where an
orbital-selective Mott transition occurs, charge fluctuations
are completely suppressed as U → ∞. Unlike the Mott tran-
sition where charge fluctuations are almost completely frozen,
in the novel OSMP QPT they still play a key role in describing
the low-energy properties, where a correlated FM Kondo lat-
tice arises as the effective model of the OSMP1, indicating en-
tanglement between charge and spin [12, 13]. It is important
to remark that close to the OSMP QPT magnetic fluctuations
are frozen, whereas for the orbital-selective Mott transition
there is a change from FM to AFM (see Fig. 5).

The origin of the large-U free-spinless-fermion behavior
is different from that of the standard Hubbard model. For
U → ∞, all the electrons in each orbital, at a given site,
will form unbreakable local triplets freezing charge fluctua-
tions and effectively hopping as spinless electrons implying
spin-charge separation and a drastic change of the screening
properties of the low-energy FM Kondo lattice. The OSMP2
is different from the OSMP1 because the itinerant electrons
do not effectively have spin and there are two orbitals local-
ized. Indeed Anderson and Hasegawa showed that for double-
exchange models with J → ∞ the resulting behavior is that
of spinless particles [43]. Note that the effective Fermi mo-
mentum, keff

F , of the spinless fermions will depend on n. The
resulting keff

F can be extracted from the effective filling of the
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FIG. 5. Total-spin structure factor, S(q), for the same parame-
ters as in Fig. 4. Data sets are color-coded with the corresponding
value of U/W . Magnetic orders found are: ferromagnetism (FM),
block/incommensurate magnetism (B/IC), and for integer n also anti-
ferromagnetism (AFM). The magnitude fluctuations across the phase
transition between orbital-selective Mott states remains largely unaf-
fected showing that the transition is driven by charge fluctuations.

itinerant orbital of the strong-U OSMP. For n = 3.25, γ = 0
is quarter-filled leading to keff

F = π/2; for n = 3.5, γ = 0
is half-filled implying keff

F = π (see Fig. 2). However, in-
commensurate keff

F /π are also possible, and Fig. 4 shows this
for n = 4.58 which translates to keff

F ≈ 0.84π; notice that in
this case is γ = 1 that is responsible for the spinless behavior,
similar to n = 4.5 shown in Fig. 2 [34].

Therefore, contrary to the orbital-selective Mott transition
where the MI is preempted by AFM fluctuations, the OSMP
QPT is preceded by the onset of charge order. Since the
original model includes spinful electrons, the resulting spin-
less behavior corresponds to a nontrivial highly interacting
state. To the best of our knowledge, such example of charge-
fluctuation-enhanced Mott transition has never been reported.

Along with the OSMP QPT, we detected a small-U stage
from normal metal to OSMP. This QPT presents enhancement
of charge and magnetic fluctuations (see Figs. 4 and 5). The
enhancement manifests as peak changes close to the transi-
tion. A similar two-stage evolution from MI to OSMP to nor-
mal metal was reported in studies of chalcogenides [2].

The magnetic states found in Fig. 1 are plotted in Fig. 5,
for the same parameters as in Fig. 4. For n = 4, we found
FM, block, and AFM, as formerly reported [13]. For n 6= 4,
we also found incommensurate magnetism which is character-
ized by peaks at fractional momenta in S(q). As U increases
the general trend consists of moving from a small-U PM to
a block/incommensurate at intermediate U , to a large-U FM
(n 6= 4) or AFM (n = 4). For the metal-OSMP QPT there
is a change from PM to either block/incommensurate or FM.

Thus, this transition is driven by magnetic fluctuations. An en-
tirely different situation is observed in the OSMP QPT, where
S(q) does not change across the transition. We notice that for
n ∼ 4, blocks of two- and three-site FM islands are found.

There is a caveat for the existence of the OSMP QPT: the
presence of a FM state is necessary. Once FM is established
the transition can occur. This can be seen by comparing
n = 3.25, where the transition happens simultaneously with
an incommensurate-FM transition, and n = 3.5 or 4.5, where
for an already existent FM state the transition occurs regard-
less of the magnetic fluctuations. Furthermore, the presence
of phase separation around n & 3 prevents its existence. The
transition reported here is a generalized form of the orbital-
selective Mott transition previously reported [8].

We have confirmed our findings not only for J/U = 1/4
but also for other ratios [34]. The specific critical Uc/W re-
quired for the OSMP QPT are dependent on J/U . Note that
these values are specific to a one-dimensional model with a
specific hopping set. Our goal is to establish, via a generic ex-
ample, that OSMP-OSMP transitions are possible as a matter
of principle, while specific realizations in real materials will
surely require adjusting hoppings and likely dimensionality.

Conclusions.—Using the DMRG, we report a novel QPT
between OSMP states in a Hund’s metals model. We have
shown that this transition is signaled by furnishing of spinless-
fermion behavior meaning that the transition is driven by
charge and not magnetic fluctuations. The Luttinger liquid
correlation exponent shows a universal value in the strong-
U OSMP and a weak interaction-dependent value at inter-
mediate coupling. A small-U transition from normal metal
to OMSP is also found. These two transitions are similar to
those found in realistic models for heavy-fermion and iron-
based compounds.
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