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We show that the chiral kagome ice manifold exhibits an anomalous integer quantum Hall effect (IQHE) when
coupled to itinerant electrons. Although electron-mediated interactions select a magnetically ordered ground
state, the full ice manifold can coexist with the IQHE over a range of finite temperatures. The degenerate ice
states provide a natural realization of power-law correlated flux disorder, for which the spectral gap of the system
remains robust. The quantized (up to exponentially small finite-temperature corrections) Hall conductance
persists over a wide range of electron densities due to the disorder-induced localization of electronic states.

PACS numbers: 71.10.Fd, 73.43.-f,75.10.Hk

The integer quantum Hall effect (IQHE) is characterized by
a topological invariant known as the first Chern number1. Be-
sides the well-known two-dimensional (2D) electron gas in
a magnetic field, quantum Hall effect can also emerge spon-
taneously from the interplay of itinerant electrons and local
magnetic moments in the absence of an external magnetic
field2,3. The origin of this phenomenon lies in the Berry
phases imparted to the electrons by magnetic textures with
finite scalar spin chirality χi jk = Si · S j × Sk. Such quantized
Hall conductance can certainly be generated through long-
range noncoplanar magnetic ordering: 〈S j〉, 〈χi jk〉 , 04–11.
Notably, the scalar spin chirality can exist even without long-
range magnetic order: 〈S j〉 = 0 and 〈χi jk〉 , 07,8. Indeed,
for 2D systems, the chiral ordered phase can persist at finite
temperatures (it only breaks a discrete Z2 symmetry), while
magnetic order is destroyed by thermal fluctuations.12

The stability of the Hall conductance in such itinerant mag-
nets is due to a robust locally ordered non-coplanar structure.
While spin waves destroy the long-range magnetic order at fi-
nite temperature (T ), long-wavelength distortions of the spin
texture do not change the Berry flux pattern7. A quantized
Hall liquid, however, can also be stabilized in a state with
strongly disordered Berry fluxes, as we demonstrate for a ge-
ometrically frustrated itinerant magnet. Up to exponentially
small finite-T corrections, an IQHE can coexist with an ex-
tensively degenerate ice manifold of magnetic local moments
in a kagome lattice. This “quantum Hall ice” phase is a proof
of principle for a new state of matter: an integer quantum Hall
liquid coexisting with a classical spin ice. This work is partly
motivated by recent experiments on a metallic spin-ice com-
pound Pr2Ir2O7, which shows an anomalous Hall effect in the
absence of any magnetic ordering13–15.

We show here that itinerant magnets with geometrical frus-
tration provide experimentally relevant examples of correlated
non-Gaussian disorder, which could have profound effects on
the electronic states (such peculiar spin correlations, e.g., can
explain the resistivity minimum of metallic spin ice16,17). De-
spite great theoretical interest in the effects of correlated dis-
order on electron transport, experimental realizations have re-
mained elusive18–21. Moreover, non-Gaussian disorder is ex-
pected to give rise to novel phenomena22 but rarely appears in
nature (disorder from impurities in general have an uncorre-
lated Gaussian distribution).

FIG. 1: (a) The kagome lattice and the Ising axes êi for local mag-
netic moments Si = σi êi. (b) The projection of Si on the plane of
the lattice for a random chiral kagome-ice configuration. Spins with
σ = +1 (σ = −1) are shown in red (blue). (c) Two types of hop-
ping amplitudes in a large-J spinless effective model. (d) The fluxes
in the effective model through the hexagonal plaquettes for the ice
configuration of panel (b) at the special canting angle θ∗.

One special feature of the peculiar power-law correlated
flux disorder, originating from the ice rules, is the robustness
of the spectral gap. Although amorphous solids are known to
exhibit spectral gaps for strong disorder, survival of a spectral
gap is unprecedented for strongly disordered IQHLs23. An-
other interesting feature concerns the properties of the mag-
netic monopoles (plaquettes that violate ice rules). Topo-
logical defects in itinerant magnets are known to exhibit un-
usual phenomena such as charge fractionalization24. Here we
demonstrate that pinned magnetic monopoles25,26 in the quan-
tum Hall ice induce a fluctuating electric dipole in the charge
density of the itinerant electrons.

We consider a kagome-lattice model in which Ising-like
spins are subject to local constraints resembling the Bernal-
Fowler ice rules27. This so-called “kagome ice”28 is an easy-
axis ferromagnet with spins sitting on a two-dimensional net-
work of corner-sharing triangles (Fig. 1). The projections of
the local easy axes êi on the kagome plane form a 120-degree
ordering, while the axes are canted with respect to this plane
by an angle θ. The spin direction is specified by a set of Ising
variables σi as Si = σi êi. The magnetic charges (in natural
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FIG. 2: (Color online) (a) The q = 0 ice state. (b) The
√

3 ×
√

3 ice
state.

units) for every up and down triangles are Q4 = −
∑

i∈4 σi
and Q5 = +

∑
i∈5 σi. The nearest-neighbor ferromagnetic ex-

change between spins Si can be recast into
∑
α Q2

α
28,29, which

penalizes triangles with magnetic charge ±3. It is thus ener-
getically favorable for each triangle to have magnetic charges
±1. This implies the constraint that every triangle has either
two incoming and one outgoing spins or vice versa.

A subset of this kagome-ice manifold, known as the charge-
ordered or chiral kagome ice29,30, has a further constraint that
spins in every up (down) triangle must be 2-in-1-out (1-in-
2-out), i.e. all Q4 = −1 and all Q5 = +129,30. Such con-
figurations may be stabilized by two-body interactions of the
form Q4Q5, long-range dipolar interactions29,30, or alterna-
tively in spin-ice pyrochlores subject to a magnetic field in
the [111] direction31,32 (in the presence of itinerant electrons,
the 3D pyrochlore lattice may be approximated by decoupled
2D kagome layers if the inter-layer hopping is weak). Further-
more, it may be possible to stabilize chiral kagome ice through
the electron-mediated interactions themselves.

Although there is no long-range order in the Ising variables
σi, the chiral kagome ice does have an overall magnetization
in the out-of-plane direction, and our results do not directly
explain the experiments on Pr2Ir2O7, where the anomalous
quantum Hall effect seems to persist even in the absence of
net magnetization. Motivated by Pr2Ir2O7, however, the chiral
itinerant kagome ice in a magnetic field was studied recently
in the limit of low densities and small Kondo coupling, where
an anomalous (nonquantized) Hall response was obtained33.
Here we focus on the opposite limit of large Kondo coupling
and finite densities in a broad range close 1/3 filling and find
a quantized response.

We now introduce the itinerant electrons, which are coupled
to the above Ising-like moments on the kagome lattice via an
exchange coupling J. The electronic part of the Hamiltonian
is then given by

H = t
∑
α〈i j〉

(
c†iαc jα + H.c.

)
+ J

∑
iαβ

Si · c
†

iασαβciβ, (1)

where ciα is a fermionic annihilation operator on site i and
spin α and t is the hopping amplitude. If the classical energy
scales are much larger than the electron-mediated spin-spin
interactions, the coupling to itinerant electrons does not bring
the system out of the ice manifold. Before a discussion of the
energetics, we examine the fate of the electronic state for each
chiral kagome-ice configuration of local moments Si.

FIG. 3: (Color online) The disorder-averaged density of states ρ(E)
for chiral kagome ice at θ = θ∗.

To examine the intrinsic topological properties of the elec-
trons in this ice manifold, we further simplify the problem by
first considering the strong coupling limit. In the |J| � |t|
limit, the electrons align themselves with the local moments
and the effective hopping amplitude between two sites with
local moments Si and S j becomes t〈χi|χ j〉, where |χi〉 is the
spinor eigenstate of Si · σαβ. As shown in Fig. 1(c), there
are two distinct hopping constants: t1 = cos π

6 e−i π6 cos θ and
t2 = sin π

6 ei π3 + cos π
6 e−i π6 sin θ, for opposite and same Ising

spins on the bond, respectively. The gauge-invariant fluxes,
which determine the electronic properties, can be obtained
from the above (gauge-dependent) amplitudes. These fluxes
are equal in all up and down triangular plaquettes:

Φ4 = Φ5 = 2φ1 + φ2, φi ≡ arg(ti). (2)

The fluxes in the hexagonal plaquettes of a generic chiral ice
state, on the other hand, depend on the ice configuration, giv-
ing rise to a model of flux disorder. These hexagonal fluxes
are not uncorrelated. To see this, let us write the flux in a
hexagon in terms of the six Ising variables around a hexagon
as follows:

Φ7 = −6φ1 + (φ1 − φ2)
∑

i∈7 σi, (3)

where
∑

i∈7 σi can take four distinct values: 0, 2, 4, and
6. Due to a mapping of the chiral ice manifold to a dimer
model on the honeycomb lattice32,34, the Ising spins and con-
sequently the fluxes above exhibit power-law correlations

Φ7(r)Φ7(0) −
(
Φ7(r)

)2
∼ 1/r2, (4)

where the “overline” indicates an average over chiral kagome
ice configurations (see the Supplemental Material for de-
tails). Note that the average flux in a hexagonal plaquette
〈Φ7(r)〉 = −4φ1 − 2φ2, is generically nonzero (the total flux
through all triangles and hexagons vanishes). The same map-
ping to dimers also suggests that the flux disorder above is
non-Gaussian.

The magnitude of the hopping amplitudes can, in general,
take two different values |t1| and |t2|. At a special canting an-
gle θ = θ∗ = 1

2 arccos
(

1
3

)
, which we mostly focus on in the

present paper, we have |t1| = |t2| = t
√

2
≡ t̃. For this special

θ, the phases of the hopping amplitudes are given by φ1 = − π6
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and φ2 = π
12 , which according to Eqs. (2) and (3) leads to a

flux − π4 in every triangular plaquette, and four different fluxes
in the hexagonal ones, as shown in Fig. 1(d).

In an ordered q = 0 configuration [see Fig. 1(a)], which
belongs to the chiral ice manifold, the flux in all hexagons is
equal to −2Φ4. The tight-binding Hamiltonian is known to
exhibit a spectral gap and an IQHE at 1/3 and 2/3 filling frac-
tions for this orderd state4. The topological origin of the quan-
tum Hall effect in the q = 0 state can be understood by consid-
ering its band structure in the limits of θ = 0 and θ = π

2 . The
fluxes vanish in all plaquettes at θ = 0 but the tight-binding
spectrum has pairs of Dirac points at 1/3 and 2/3 filling frac-
tions. Non-zero fluxes resulting from canted spins gap out the
Dirac points and lead to nontrivial band Chern numbers2,4.
In the θ = π

2 limit, on the other hand, we obtain an array of
one-dimensional chains. Moving away from θ = π

2 results in
coupling these noninteracting Luttinger liquids (in the pres-
ence of time-reversal-symmetry-breaking fluxes), which also
leads to quantum Hall effect35,36.

For random chiral ice states, the electrons experience flux
disorder according to Eqs. (3) and (4). Generically, flux dis-
order should not differ from electrostatic potential disorder if
there is a net flux through the system37. In case of the chiral
kagome ice, the average flux vanishes, but since the system is
characterized by a global quantum Hall response, one expects
similar behavior to quantum Hall systems, which emerge in
the presence of a net magnetic field. Generically, strong dis-
order closes the spectral gap in integer quantum Hall liquids
(see, e.g., Ref.23) but the quantum Hall effect nevertheless per-
sists at T = 0. This can be understood in terms of a critical
point (localization-delocalization transition) between two in-
sulating states with extended states appearing only at a single
critical energy Ec

38–41. For the peculiar power-law correlated
disorder considered here, we find that not only does the quan-
tized Hall conductance remain robust, but also the spectral gap
at 1/3 filling remarkably persists even in the presence of strong
flux disorder.

Fig. 3(a) shows the disorder-averaged density of states ob-
tained using loop-update Monte Carlo simulations at the spe-
cial canting angle θ∗. A spectral gap ∆ ∼ 0.2t can be clearly
seen. Interestingly, we also observe a peak in the middle of the
spectral gap. This peak corresponds to a flat band42 of local-
ized states around hexagonal plaquettes with Φ7 = −π/2. We
have checked that the spectral gap and a quantized Hall con-
ductance in the kagome ice manifold remain robust for a broad
range of canting angles, which include θ∗ (see also Ref.43 for
a detailed study). The ice rules are indeed important for the
robustness of the spectral gap. As shown in the Supplemental
Material, both continuous and discrete uncorrelated random
fluxes close the gap.

We computed the above-mentioned quantum Hall conduc-
tance σxy explicitly for each ice configuration using the real-
space version of the Kubo formula σxy =

∑′
m σ

m
xy, where

∑′
indicates summation over occupied levels m, and

σm
xy =

2e2~

A

∑
n,m

Im
[
〈m|vx|n〉〈n|vy|m〉

(Em − En)2

]
, (5)

where |n〉 is a single-particle eigenstate with energy En, A is
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FIG. 4: (Color online) (a) The disorder-averaged Hall conductance
as a function of the Fermi energy. (b) The ratio of density of extended
states to the total density of states. (c) The number of extended states
as a function of the the system size.

the area of the system, and vi is the velocity operator in direc-
tion i = x, y. We found that σxy is indeed quantized at filling
fractions 1/3 and 2/3 for all chiral kagome ice configurations.

Fig. 4(a) shows the σxy as a function of the filling fraction ν
for the q = 0 state as well as the disorder-averaged σxy for the
full chiral kagome ice manifold. In order to suppress finite-
size effects in the above calculation of σxy(ν), we average σm

xy
[Eq. (5)] over various boundary phases, where a phase 0 (π),
e.g., corresponds to periodic (antiperiodic) boundary condi-
tions. The Hall conductance rises much more quickly when
increasing the density for chiral kagome ice than the clean
q = 0 ice state, and approaches its quantized value at a signif-
icantly smaller ν. Similar to traditional quantum Hall states,
where disorder leads to plateaus of transverse conductance as
a function of the filling fraction, disorder stabilizes a T = 0
quantized conductance over a wide range of filling fractions
in chiral kagome ice.

The localization properties of the system can be explored
in more detail by identifying localized and extended single-
particle states. For each realization of the disorder, the angle-
averaged 〈σm

xy〉 is an integral multiple of e2/h23,44–48. A state
|m〉 with nonzero 〈σm

xy〉 , 0 carries Hall current and is nec-
essarily an extended state45. This allows us to compute the
average density of extended states. Fig. 4(b) shows the ratio
of extended to total density of states. While the two higher
energy peaks in Fig. 4(b) decrease with increasing the system
size, the lowest-energy peak persists and roughly coincides
with the abrupt rise of σxy in Fig. 4(a). We estimate a critical
energy Ec = (1.9±0.1)t, close to the bottom of the band. This
is in contrast to the traditional quantum Hall liquids, in which
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extended states appear in the middle of the broadened Landau
level (the gap generally vanishes as Landau levels overlap).
The proximity of Ec to the bottom of the band explains why
the Hall conductivity rises up quickly to its quantized value in
chiral kagome ice.

At the critical energy, Ec, the localization length is expected
to diverge as |E−Ec|

−ν (the exponent ν not to be confused with
the filling fraction). For Gaussian power-law correlated disor-
der with an exponent 2, as in Eq. (4), we expect this critical
point to have an exponent ν = 2.3320,21. We have checked the
exponents for our non-Gaussian case by comparing the num-
ber of extended states Ne (averaged over the kagome ice man-
ifold) at a given system size with the total number of states
N, which should go as Nα, with α = 1 − 1/2ν. As shown in
Fig. 4(c), the results indicate that the localization exponent is
approximately equal to ν = 2.33, as in the case of Gaussian
disorder.

We now address the energetics of the system in detail. So
far, we assumed that the chiral kagome ice was stabilized
by certain interactions between local moments and added the
electrons in an ad hoc manner. To study the energetic stabil-
ity of this phase, we performed classical Monte Carlo simula-
tions for large J/t, ν = 1/3 and θ = θ∗ and found that in fact
at T = 0, the q = 0 [Fig. 2(a)] state has the lowest energy.
However, this state is not a unique ground state: assuming pe-
riodic boundary conditions, we can transform the q = 0 state
to other ice states, with the same flux pattern, by flipping loops
of spins. Similarly, the highest-energy state appears to be the
√

3×
√

3 [Fig. 2(b)] state and related degenerate states, which
give rise to the same flux pattern.

As shown in Fig. 2, all chiral ice configurations give rise to
a single-particle spectral gap ∆ at 1/3 filling fraction, which is
typically an order of magnitude larger than the difference, δ,
between the energy densities (per lattice site) of the q = 0 and
√

3 ×
√

3 configurations. (At θ = θ∗ and 1/3 filling, we have
δ = 0.02t and ∆ = 0.12t.) Since δ serves as a characteristic
energy scale for electron-mediated spin-spin interactions, the
energy difference between different chiral ice configurations
is not resolved at temperatures δ � T � min{σ} ∆({σ}), while
the corrections to the quantized σxy are exponentially small in
the ∆/T ratio over such range of temperatures.

After establishing the existence of the quantum Hall ice
phase and studying its (bulk) topological and localization
properties, we consider the interplay of magnetic monopoles
with itinerant electrons in this system. Indeed, one of the
most fascinating properties of spin ice is the emergent mag-
netic monopoles. These emergent excitations are defects vi-
olating the local ice constraints, which in the case of chiral
kagome ice require Q4 = −1 and Q5 = 1. Emergent mag-
netic monopoles in the chiral ice are triangles with Q4 = 1
and Q5 = −149 (we neglect the higher-energy defects with
Q4,5 = ±3).

In a given ice configuration, flipping an open string of head-
to-tail spins can create two such triangles, which violate the
ice rules. The defects in turn change the Berry flux pat-
tern experienced by the electrons (see Supplemental Mate-
rial for details). Interestingly, an incarnation of Laughlin’s
flux-insertion argument in this quantum Hall state predicts

FIG. 5: Numerically computed charge density in the vicinity of a
pinned magnetic monopole, averaged over ice realizations with two
monopole defects (the shown region has 24×24 lattice spacings).

the formation electric dipoles pointing from the center of the
(monopole) triangle to the center of the neigboring hexagons.
Detection of such dipoles in a given realization is difficult be-
cause the charge density is not generically uniform, and flip-
ping a finite string creates charge density variations with a
similar magnitude to the variations already present in a typi-
cal configuration.

However, magnetic monopoles, which are in fact defined
for the full fluctuating spin ice manifold, can be pinned by im-
purities. For two such pinned monopoles, the charge density
profile is uniform away from the defects after averaging over
a time scale longer than the characteristic time scales of the
spin dynamics. The remnants of the above-mentioned electric
dipoles appear around each monopole as three electric dipoles
with C3 symmetry (see Fig. 5).

In summary, the magnetic exchange between conduction
electrons and a frustrated set of local Ising moments can lead
to a novel state matter, simultaneously characterized by spin-
ice local moment physics and a quantized (with exponentially
small finite-T corrections) anomalous quantum Hall effect for
itinerant electrons over a wide range of filling factors. This
spontaneously broken symmetry state does not require of any
external magnetic field or spin-orbit interaction. The critical
correlations of spin ice produce a peculiar form of power-law
correlated flux disorder that has nontrivial consequences on
the spectrum and transport properties of the conduction elec-
trons. While previous studies have focused on the longitu-
dinal conductivity of “metallic-ice”16,17, we have shown that
chiral spin-ice can dramatically change the electronic state
by inducing a robust Quantum Hall liquid (“Quantum Hall
ice”). Moreover, the interplay of the electrons with magnetic
monopole defects may provide novel electronic signatures for
detecting these monopoles.
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