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A generalization of Büttiker’s voltage probe concept for nonzero temperatures is an open third
terminal of a quantum thermoelectric circuit. An explicit analytic expression for the thermoelectric
correction to an ideal quantum voltage measurement in linear response is derived, and interpreted
in terms of local Peltier cooling/heating within the nonequilibrium system. The thermoelectric
correction is found to be large (up to ±24% of the peak voltage) in a prototypical ballistic quantum
conductor (graphene nanoribbon). The effects of measurement non-ideality are also investigated.
Our findings have important implications for precision local electrical measurements.
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I. INTRODUCTION

Following the work of Engquist and Anderson1,
Markus Büttiker developed a paradigm2–4 of quantum
voltage measurement carried out by a probe consisting
of a reservoir of non-interacting electrons coupled locally
to a system of interest. The probe exchanges electrons
with the system until it reaches local electrical equilib-
rium with the system:

I(0)p = 0, (1)

where −eI
(0)
p is the mean electrical current flowing into

the probe. Once equilibrium is established, the chemical
potential µp ≡ −eVp of the probe constitutes a measure-
ment of the local electrochemical potential (and voltage
Vp) within the nonequilibrium quantum system3. The
condition (1) implies the probe has a large electrical input
impedance, a necessary condition for a faithful voltage
measurement. Scanning potentiometers satisfying these
conditions5 are now a mature technology, and many ex-
periments in mesoscopic electrical transport utilize volt-
age probes as circuit components6–9.
Although the average electric current into the probe

is zero, electrons are constantly being emitted from the
system into the probe, and replaced by electrons from
the probe reservoir whose quantum mechanical phase
is uncorrelated with those emitted by the system. In
this way, such a voltage probe serves as an inelastic

scatterer2, analogous to the model of inelastic scattering
introduced previously in the context of lattice thermal
conduction10,11. Indeed, much of the theoretical interest
in Büttiker’s model of a voltage probe is as a convenient
way to introduce inelastic scattering in a quantum co-
herent conductor at the expense of introducing one ad-
ditional electrical terminal.
Büttiker’s early analysis2,3 was confined to systems at

absolute zero temperature, where thermoelectric effects
are absent. More recently, voltage probes at finite tem-
perature have been considered by a number of investiga-
tors in various contexts and limits4,12–16. In particular,

Förster et al.4 considered the limit where the thermal
coupling of the probe to the environment is large, so that
the probe remains at ambient temperature despite its
coupling to the nonequilibrium quantum system4. This
limit is consistent with the original analysis of Engquist
and Anderson1, which did not consider thermoelectric
effects.
However, considered as a model of an inelastic scat-

terer, a voltage probe cannot be a steady-state source
or sink of heat13. This suggests that in generalizing the
voltage probe concept2,3 to finite temperatures, the probe
should be not only in local electrical equilibrium, but also
in local thermal equilibrium with the system:

I(1)p = 0, (2)

where I
(1)
p is the heat current flowing into the probe.

Condition (2) is required for a probe with a large thermal
input impedance.
Further support for the additional condition (2) is pro-

vided by considering thermoelectric effects in the three-
terminal circuit formed by the system with source, drain,
and probe. Even if both source and drain electrodes are
held at ambient temperature, an electrical bias between
source and drain can drive Peltier cooling/heating within
the system, resulting in hot and cold spots differing sig-
nificantly from ambient temperature. If the probe is not
allowed to equilibrate thermally with the system under
these conditions, a voltage will develop across the system-
probe junction due to the Seebeck effect. Then the probe
voltage can no longer be interpreted as a measurement
of the local electrochemical potential in the system. We
thus define an ideal voltage measurement as one satisfying
both conditions (1) and (2). A precision voltage measure-
ment thus requires a simultaneous precision temperature
measurement.
A significant challenge to achieving such an ideal volt-

age measurement is posed by thermal coupling of the
probe to the environment17–20, including to the system’s
lattice4, which may not be in local thermal equilibrium
with the nonequilibrium electron system. Furthermore,
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this coupling may be many times as large as the probe’s
local thermal coupling to the system’s electrons18–20.
The probe’s thermal coupling to anything other than
the nonequilibrium electron system of interest leads to
a deviation of the probe’s voltage from the ideal value
associated with the local electrochemical potential of the
system, and thus must be considered a non-ideality. The
probe’s thermal coupling to the system’s lattice can be
minimized when it is operated in the tunneling regime19,
and continued advances in scanning thermal microscopy
(SThM)17,18,21–23 promise to further reduce the probe’s
thermal coupling to the environment.

II. LINEAR THERMOELECTRIC RESPONSE

In the limit of small electric and thermal bias away
from the equilibrium temperature T0 and chemical po-

tential µ0, the electric current −eI
(0)
p and heat current

I
(1)
p flowing into the probe may be expressed as19,24

I(ν)p = L
(ν)
p1 (µ1 − µp) + L

(ν)
p2 (µ2 − µp)

+ L
(ν+1)
p1

(

T1 − Tp

T0

)

+ L
(ν+1)
p2

(

T2 − Tp

T0

)

+ δν,1κp0(T0 − Tp), (3)

where L
(ν)
αβ are Onsager linear-response coefficients with

electrode labels α and β, and κp0 = L
(2)
p0 /T0 is the ther-

mal conductance between the probe and the ambient
environment19. Eq. (3) is a completely general linear-
response formula, and applies to macroscopic systems,
mesoscopic systems, nanostructures, etc., including elec-
trons, phonons, and all other degrees of freedom, with
arbitrary interactions between them.
At sufficiently low temperatures or for sufficiently

small systems, the electronic contribution to the coef-

ficients L
(ν)
αβ may be calculated using elastic quantum

transport theory25–27

L
(ν)
αβ =

1

h

∫

dE (E − µ0)
ν Tαβ(E)

(

−
∂f0
∂E

)

, (4)

where Tαβ(E) is the quantum mechanical transmission
function28 describing the probability to propagate from
electrode β to electrode α, and

f0(E) =
1

exp
(

E−µ0

kBT0

)

+ 1
(5)

is the equilibrium Fermi-Dirac distribution.

A. Büttiker’s voltage probe

In the limit as the system temperature approaches ab-
solute zero, Eq. (4) becomes

lim
T0→0

L
(ν)
αβ =

1

h
Tαβ(µ0)δν,0. (6)

Then Eqs. (1) and (3) may be solved to obtain Büttiker’s
result2,3 for the voltage measured by the probe

µB
p ≡ lim

T0→0
µp =

Tp1(µ0)µ1 + Tp2(µ0)µ2

Tp1(µ0) + Tp2(µ0)
. (7)

B. Engquist and Anderson’s voltage probe

The question remains, how to generalize Büttiker’s re-
sult (7) to systems at non-zero temperatures. Early on,
Engquist and Anderson1 considered both voltage and
temperature probes of quantum electron systems at fi-
nite temperature. For the case of a voltage measurement,
they assumed the entire system remains at ambient tem-
perature T1 = T2 = Tp = T0, so that Eqs. (1) and (3)
imply

µEA
p =

L
(0)
p1 µ1 + L

(0)
p2 µ2

L
(0)
p1 + L

(0)
p2

. (8)

However, substituting Eq. (8) for the probe’s chemical
potential into Eq. (3) gives

I(1)p =
L
(1)
p1 L

(0)
p2 − L

(1)
p2 L

(0)
p1

L
(0)
p1 + L

(0)
p2

(µ1 − µ2) , (9)

which is generally non-zero at finite temperature. This
is a generic three-terminal thermoelectric effect occur-
ing whenever the probe coupling to the source and drain
electrodes (through the system) is unequal. Thus the
voltage probe originally proposed by Engquist and An-
derson is not in thermal equilibrium with the system. In
the absence of thermal equilibrium, the identification of
µEA
p with the local electrochemical potential of the sys-

tem is problematic, since any temperature differential be-
tween sample and probe will lead to a voltage differential
through the Seebeck effect. Moreover, the assumption

that Tp = T0 is inconsistent, given that I
(1)
p 6= 0, unless

the thermal coupling of the probe to the environment is
so large that the heat current flowing into the probe from
the system can be neglected.

III. IDEAL VOLTAGE MEASUREMENT

We define an ideal voltage measurement as one in which
the probe is in both electrical and thermal equilibrium

with the system. For an electrical bias ∆µ = µ1 − µ2

applied between electrodes 1 and 2, both held at ambient
temperature (T1 = T2 = T0), Eqs. (1–3) can be solved for
the probe voltage of such an ideal measurement, yielding
µp = µEA

p − e∆Vp, where the thermoelectric correction
to the voltage is

∆Vp = Sps(Tp − T0), (10)
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FIG. 1. The calculated response of a voltage probe scanned 3Å above the plane of a zig-zag graphene nanoribbon. Top panel:
The voltage distribution calculated using Engquist and Anderson’s theory1, cf. Eq. (8). This theory neglects thermoelectric
effects. The peak voltage for this system is 47.6mV. Bottom panel: The thermoelectric correction ∆Vp to the probe voltage,
calculated using Eqs. (10–13), reaching a maximum value for this system of 11.5mV. Calculations are performed at µ0−µDirac =
−57.5meV, µ2 − µ1 = 0.1eV, T1 = T2 = T0 = 300K, and κp0 = 0.

Sps = −
1

eT0

L
(1)
p1 + L

(1)
p2

L
(0)
p1 + L

(0)
p2

(11)

is the thermopower of the probe-sample junction, and Tp

is the probe temperature satisfying

Tp − T0 =
I
(1)
p

κps + κp0
, (12)

where I
(1)
p is given by Eq. (9),

κps =
1

T0







(

L
(2)
p1 + L

(2)
p2

)

−

(

L
(1)
p1 + L

(1)
p2

)2

(

L
(0)
p1 + L

(0)
p2

)






(13)

is the parallel thermal conductance from electrodes 1 and
2 into the probe, and κp0 is the thermal coupling of the
probe to the environment at temperature T0.

IV. RESULTS

In this section, we calculate the thermoelectric cor-
rection to the probe voltage for a prototypical ballistic
quantum conductor, a graphene nanoribbon. However,
we emphasize that the voltage error induced by thermo-
electric effects is a generic phenomenon, and not material
specific. Figure 1 shows the computed voltage distribu-
tion for a zig-zag graphene nanoribbon with an electrical

bias of 0.1V between the source and drain electrodes (at
right and left in the figure), which are held at the ambi-
ent temperature of T0 = 300K. The equilibrium chem-
ical potential of the nanoribbon (determined by doping
and/or a backgate) was taken as µ0 − µDirac=-57.5meV.
In the top panel of Fig. 1, an oscillatory pattern can be
observed, superimposed on the overall voltage drop be-
tween the two electrodes. This is a manifestation of the
characteristic voltage oscillations predicted by Büttiker3,
arising in this case due to interference of electron waves
propagating directly from an electrode into the probe and
waves scattered from the edges of the nanoribbon.
In our calculations, the π-system of the graphene

nanoribbon is described using a tight-binding model
which has been shown to accurately reproduce the low-
energy physics of this system29. The macroscopic elec-
trodes are assumed to operate in the broad-band limit,
where the electrode-nanoribbon coupling is independent
of energy, with a per-orbital bonding strength of 2.5eV.
The voltage probe is modeled as an atomically-sharp Pt
tip scanned at a fixed height of 3Å above the plane of the
C nuclei (tunneling regime). The tunneling matrix ele-
ments between the probe atoms and the nanoribbon were
determined using the methods outlined in Ref. 30. The
linear-response coefficients were calculated using Eq. (4)
following the methods of Refs.19,20. Additional details
of our computational methods may be found in the Sup-
porting Information31.
The top panel of Fig. 1 shows the Engquist-Anderson

voltage V EA
p ≡ −µEA

p /e computed from Eq. (8), while the
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bottom panel shows the thermoelectric correction ∆Vp

to the probe voltage, computed from Eqs. (10–13). For
this case, which is representative of various geometries we
have considered (see Supporting Information), the ther-
moelectric correction to the measured voltage is ±24% of
the maxiumum voltage and ±11.5% of the applied bias,
highlighting the importance of thermoelectric effects on
precision voltage measurements in quantum systems. As
mentioned previously, this system is not unique and even
larger corrections are expected for systems with larger
thermoelectric responses.
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FIG. 2. Top panel: The heat current I
(1)
p flowing into the

probe when it is held at the ambient temperature T0 = 300K,
calculated from Eq. (9). Bottom panel: The temperature
Tp of the probe when it is in both electrical and thermal
equilibrium with the nonequilibrium electron system in the
graphene nanoribbon, calculated from Eq. (12).

The cause of the substantial thermoelectric correction
to the voltage is elucidated in Fig. 2. The top panel of

Fig. 2 shows the heat current I
(1)
p flowing into the probe

when its temperature is held fixed at T0, calculated using

Eq. (9). The peak values of I
(1)
p = ±2.3 nW may not be

large in an absolute sense, but they correspond to a heat

current density of j
(1)
p = 4.5 × 1010W/m2 through the

apex atom at the tip of the probe, some 700 times the
radiant energy flux at the surface of the sun! Clearly,
the assumption that such a probe, whose voltage is given
by Eq. (8), is in local equilibrium with the system is
questionable.
The bottom panel of Fig. 2 shows the deviation of the

temperature Tp of an ideal thermoelectric probe from am-
bient temperature, calculated from Eq. (12). The ideal
probe is in local thermal equilibrium with the system,
and as such, its temperature maps out the hot and cold
regions of the system19,20,32. Hot and cold spots within
the system arise due to local Peltier heating/cooling in-
duced by the electrical bias between the source and drain

FIG. 3. Thermoelectric circuit diagram for the 3-terminal
source-drain-probe circuit. According to Eqs. (9) and (12),

there is Peltier heating (cooling) of the probe if (L
(1)
p1 L

(0)
p2 −

L
(1)
p2 L

(0)
p1 ) (µ1 − µ2) > 0 (< 0). Eq. (12) also includes a direct

thermal coupling κp0 of the probe to the environment (not
shown in diagram).

electrodes, as described by Eqs. (9) and (12), and illus-
trated in Fig. 3. The three-terminal thermoelectric cir-
cuit formed by the source, drain, and probe electrodes
is equivalent to that of a standard 2-junction Peltier
cooler/heater33,34. The difference is that in a macro-
scopic Peltier effect device, the materials forming the p1
and p2 junctions are distinct (typically n-type and p-
type) and physically separate, while in the present ex-
ample both junctions are formed within the same quan-
tum material. In the quantum transport regime, the p1
and p2 junctions will act like n-type and p-type chan-
nels, respectively, if the transmission functions from 1
to p and 2 to p are dominated by resonances below µ0

and above µ0, respectively. The lower panel of Fig. 2
shows clear evidence of Peltier cooling/heating of up to
±100K within the system induced by the external elec-
trical bias of 0.1V. The large Peltier effect in this system
may be related to giant thermoelectric effects predicted
in related π-conjugated systems26,27, where quantum in-
terference effects have been shown to strongly enhance
thermoelectricity. However, similar phenomena should
occur in other ballistic quantum conductors.

A. Effect of thermal coupling of probe to

environment

Let us now consider the effects of measurement non-
ideality. The greatest source of error in a scanning
thermoelectric measurement is likely to stem from the
unavoidable coupling κp0 of the probe to the thermal
background (typically, the ambient environment)19. In-
deed, state-of-the-art SThM still operates in the regime
where the coupling of the probe to the thermal back-
ground is many times its thermal coupling to the system
itself18. While values of κp0 much less than the thermal
conductance quantum κ0 = (π2/3)k2BT0/h (0.284nW/K
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FIG. 4. The thermoelectric correction ∆Vp to the probe
voltage (top panel) and the deviation of the probe temper-
ature from ambient temperature (bottom panel) for the same
system shown in Figs. 1–2, but with a finite thermal cou-
pling κp0 = κ0 of the probe to the environment, where
κ0 = (π2/3)k2

BT0/h (0.284nW/K at 300K) is the thermal
conductance quantum. Eqs. (10) and (12) indicate that the
thermoelectric corrections for larger values of κp0 scale as κ−1

p0 .

at 300K)35 are possible in principle for probes whose
thermal coupling to the environment is predominantly
radiative19, current scanning probes18 have κp0 > 100κ0.

Figure 4 shows the thermoelectric correction to the
voltage (upper panel) and the probe temperature (lower
panel) for κp0 = κ0. For this case, the thermal coupling
of the probe to the environment exceeds its coupling to
the system, so that the probe temperature is closer to am-
bient, and the thermoelectric correction to the voltage is
reduced. The reduction of the thermoelectric corrections
is described analytically by Eqs. (10) and (12). Even for
a thermal coupling of κp0 = 700κ0, typical of current
state-of-the-art SThM18, the voltage error would still be
of order 1µV, well within the resolution of precision volt-
age measurements, which routinely obtain sub-Ångstrom
spatial resolution5.

V. CONCLUSIONS

An ideal voltage measurement in a nonequilibrium
quantum system was defined in terms of a floating ther-
moelectric probe that reaches both electrical and ther-
mal equilibrium with a system via local (e.g., tunnel)
coupling. This definition extends Büttiker’s quantum
voltage probe paradigm2,3 to systems at finite temper-
ature, where thermoelectric effects are important. A
previous work13 which formally considered such an ex-
tension made the assumption that the scattering matrix
is energy independent, so that thermoelectric effects are
exponentially small, which is not the case in the present
analysis.
As an example, we developed a realistic model of a

scanning potentiometer with atomic resolution and used
it to investigate voltage measurement in a prototypi-
cal ballistic quantum conductor (a graphene nanorib-
bon) bonded to source and drain electrodes. Under ideal
measurement conditions, we predict large thermoelec-
tric voltage corrections (∼24% of the probe’s peak volt-
age signal) when the applied source-drain bias voltage
is small. We also derived expressions for the probe’s
voltage correction under non-ideal measurement condi-
tions, finding that the voltage correction is reduced lin-
early as the probe-environment coupling is increased. In
the graphene nanoribbon system considered here, voltage
corrections on the order of several µV persist even with
strong environmental coupling.
In summary, we predict a large thermoelectric correc-

tion to voltage measurement in quantum coherent con-
ductors. The origin of this correction is local Peltier cool-
ing/heating within the nonequilibrium quantum system,
a generic three-terminal thermoelectric effect. This find-
ing has important implications for precision local elec-
trical measurements: it implies that a precision voltage

measurement requires a simultaneous precision tempera-

ture measurement.
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