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Electrons in graphene have four flavors associated with low-energy spin and valley degrees of
freedom. The fractional quantum Hall effect in graphene is dominated by long-range Coulomb
interactions which are invariant under rotations in spin-valley space. This SU(4) symmetry is spon-
taneously broken at most filling factors, and also weakly broken by atomic scale valley-dependent
and valley-exchange interactions with coupling constants gz and g⊥. In this paper we demonstrate
that when gz = −g⊥ an exact SO(5) symmetry survives which unifies the Néel spin order parameter
of the antiferromagnetic state and the XY valley order parameter of the Kekulé distortion state into
a single five-component order parameter. The proximity of the highly insulating quantum Hall state
observed in graphene at ν = 0 to an ideal SO(5) symmetric quantum Hall state remains an open
experimental question. We illustrate the physics associated with this SO(5) symmetry by studying
the multiplet structure and collective dynamics of filling factor ν = 0 quantum Hall states based
on exact-diagonalization and low-energy effective theory approaches. This allows to illustrate how
manifestations of the SO(5) symmetry would survive even when it is weakly broken.

PACS numbers: 73.22.Pr, 73.43.-f

I. INTRODUCTION

Electron-electron interactions in the fractional quan-
tum Hall effect (FQHE) regime give rise to a host of
non-perturbative and unexpected phenomena, including
importantly the emergence of quasiparticles with frac-
tional charge and statistics. In this paper we suggest
that neutral graphene in the FQHE regime could also
provide a relatively simple example of the complex many-
particle physics that occurs in systems with simultane-
ous quantum fluctuations of competing order parame-
ters. Because each of its Landau levels has a four-
fold spin/valley flavor degeneracy in the absence of Zee-
man coupling, large gaps and associated quantum Hall
effects are produced by single-particle physics only at
filling factors ν = ±2,±6, . . .. The quantum Hall ef-
fect nevertheless occurs at all intermediate integer fill-
ing factors1,2, and at many fractional filling factors3–5,
usually6 with a broken symmetry incompressible ground
state. When lattice corrections to the continuum Dirac
model’s Coulomb interactions are ignored the ground
state at neutrality (ν = 0) is a Slater determinant7 with
all the N = 0 single-particle states of two arbitrarily
chosen flavors occupied and, because the Hamiltonian is
SU(4) invariant, has four independent degenerate Gold-
stone modes. The rich flavor physics of graphene in the
quantum Hall regime has already been established by ex-
periments which demonstrate that phase transitions be-
tween distinct many-electron states with the same filling
factor ν can be driven by tuning magnetic field strength
or tilt-angle8–12.
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In graphene the competition between states with
Kekulé-distorion(KD), antiferromagnetic(AF), ferromag-
netic(F), charge-density wave(CDW), and other types of
order is controlled by Zeeman coupling to the electron-
spin, and also by weak atomic-range valley-dependent13

interactions. A variety of approaches have been used to
estimate these short-range corrections to the Coulomb in-
teraction14–20. In this paper, we adopt a two-parameter
phenomenological model motivated by crystal momen-
tum conservation and by the expectation that corrections
to the Coulomb interaction are significant only at dis-
tances shorter than a magnetic length20 lB =

√
~c/eB⊥.

(B⊥ is the magnetic field component perpendicular to
the graphene plane.) We demonstrate that along a line
in this parameter space SU(4) symmetry is reduced only
to a SO(5) subgroup. In this paper, we take interaction-
driven quantum Hall states at ν = 0 as an example to
illustrate the physical manifestation of the SO(5) sym-
metry. We explicitly derive a low-energy theory at ν = 0
that is able to account simultaneously for Néel anti-
ferromagnetism and Kekulé lattice-distortion order and
demonstrate that along the SO(5) line the four collective
modes remain gapless in spite of the reduced symme-
try. The exact SO(5) symmetry we have identified in
graphene’s quantum Hall regime is analogous to the ap-
proximate symmetry conjectured in some models of high-
Tc superconductivity21. Our work demonstrates that an
enlarged symmetry like SO(5) can indeed be exactly real-
ized in a realistic microscopic Hamiltonian. In the follow-
ing, we start with a systematic analysis of Hamiltonian
symmetries and then use both exact-diagonalization and
low-energy effective models at ν = 0 to identify some
symmetry-related properties.

Although our work focuses on the properties of the
quantum Hall state at neutrality, we demonstrate that
the SO(5) symmetry is an exact symmetry of the interac-
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tion Hamiltonian for the quantum Hall states in the zero
energy Landau level of graphene. Therefore this symme-
try is expected to emerge as well in the phase diagrams
at arbitrary filling fractions in this Landau level.

The quantum Hall state of graphene at neutrality is
believed to be a canted antiferromagnet, as indicated by
the behaviour of the edge conductance in experiments
with tilted magnetic fields10. However, as we argue be-
low, these experiments are not sufficient to determine
the proximity of graphene to the ideal SO(5) symmetric
state. Even if graphene is in the antiferromagnetic side of
the phase diagram, the presence of a weakly broken SO(5)
symmetry would have important consequences, such as
the existence of additional weakly gapped neutral collec-
tive modes as we will discuss in detail in Section IV and
in Appendix D.

II. HAMILTONIAN SYMMETRIES

When projected to the N = 0 Landau level (LL) the
graphene Hamiltonian is

H =HC +Hv +HZ,

HC =
1

2

∑
i 6=j

e2

ε|~ri − ~rj |
,

Hv =
1

2

∑
i 6=j

(
gzτ

i
zτ
j
z + g⊥(τ ixτ

j
x + τ iyτ

j
y )
)
δ(~ri − ~rj),

HZ = − εZ
∑
i

σiz.

(1)

In Eq. (1) HC is the valley-independent Coulomb inter-
action, ε is an environment-dependent effective dielectric
constant, Hv is the short-range valley-dependent interac-
tion, τα(α = x, y, z) are Pauli matrices which act in valley
space, HZ is the Zeeman energy1, εZ = µBB where µB
is the Bohr magneton and B is the total magnetic field
strength, and σα are Pauli matrices which act in spin
space. Note that B can have components both perpen-
dicular and parallel to the graphene plane and that we
have chosen the ẑ direction in spin-space to be aligned
with B. The form used for Hv in Eq. (1) was proposed
by Kharitonov20,22.

The short-range interaction coupling constants gz,⊥/l
2
B

are estimated to be ∼ a0/lB times the Coulomb energy
scale e2/εlB , where a0 ∼ 0.01lB is the lattice constant of
graphene. They are therefore weak and physically rel-
evant mainly when they lift low-energy Coulomb-only
model degeneracies. For later notational convenience
we define the energy scales uz,⊥ = gz,⊥/(2πl

2
B). The

Coulomb interactionHC in Eq. (1) commutes with the fif-
teen SU(4) transformation generators which can be cho-

sen as follows :

Sα =
1

2

∑
i

σiα, Tα =
1

2

∑
i

τ iα,

Nα =
1

2

∑
i

τ izσ
i
α, Πβ

α =
1

2

∑
i

τ iβσ
i
α,

(2)

where the indices α = x, y, z and β = x, y. Sα and Tα
are respectively the total spin and valley pseudospin. Due
to the equivalence between valley and sublattice degrees
of freedom in the N = 0 LL of graphene, Nα can be
identified as a Néel vector. The physical meaning of the
six Πβ

α operators is discussed below.
SU(4) symmetry is broken by the valley-dependent

short range interactions. At a generic point in the
(gz, g⊥) plane, Hv breaks the SU(4) symmetry down to
SU(2)s×U(1)v with the U(1)v symmetry corresponding
to conservation of the valley polarization Tz and the
SU(2)s symmetry corresponding to global spin-rotational
invariance. Two high-symmetry lines in the (gz, g⊥) pa-
rameter space are evident : (1) for g⊥ = 0 the system
is invariant under separate spin-rotations in each valley
yielding symmetry group SU(2)Ks ×SU(2)K

′

s ×U(1)v and
(2) for g⊥ = gz there is a full rotational symmetry in
valley space yielding symmetry group SU(2)s×SU(2)v.
We have discovered that there is even higher symmetry
along the g⊥ = −gz line where the generic SU(2)s×U(1)v

symmetry is enlarged to SO(5) : see Appendix A for an
explicit proof. Along this line the Hamiltonian commutes

with ten (~S, Tz, and the six Π operators) of the fifteen
SU(4) generators identified in Eq. (2). The other five
(Tx,y, Nx,y,z) SU(4) generators form a a natural order-
parameter vector space on which the SO(5) group acts.

As illustrated schematically in Fig. 1, spin operators ~S

generate rotations in the Néel vector space ~N , Tz gen-
erates rotations in the valley XY vector space Tx,y, and
the Π operators generate rotations that connect these two
spaces. When the Zeeman term is added to the Hamil-
tonian the spin-symmetry is limited to invariance under
rotations about the direction of the magnetic field. The
symmetry groups of HC +Hv and H and the correspond-
ing generators are listed in Table I.

N

Tx
Ty

P

S

Tz

FIG. 1: Schematic illustration of the five component
(Tx,y, Nx,y,z) order parameter space, and of rotations in this
vector space produced by the SO(5) generators.

As we will demonstrate, the SO(5) symmetry is spon-
taneously broken when it is exact. Provided that the
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Zeeman and short-range interaction terms which ex-
plicitly breaks SO(5) symmetry is not too strong, the
(Tx,y, Nx,y,z) vectors can be used to construct a useful
Ginzburg-Landau model or quantum effective-field the-
ory. The Néel vector components of the order parameter
characterize the AF part of the order, while the valley
XY components capture the KD18,20 part of the order.
The SO(5) symmetry demonstrates that states which ap-
pear quite different at a first glance are close in energy
and that they can be continuously transformed into one
another by appropriate rotations in the SO(5) order pa-
rameter space. The 5D vector (Tx,y, Nx,y,z) identified
here provides a concrete example for the 56 possible quin-
tuplets proposed in graphene23,24. Although we focus
here mainly on monolayer graphene, a similar symmetry
analysis applies to the N = 0 LL in bilayer graphene25–27.

III. EXACT DIAGONALIZATION

We have performed exact diagonalization (ED) studies
for the Hamiltonian specified in Eq. (1) acting in a ν = 0
torus-geometry Hilbert space with up to Nφ = 8 orbitals
per flavor. When only Coulomb interactions are included,
we verify that the ground state is a single Slater deter-
minant with two occupied and two empty flavors7. The
SU(4) multiplet structure of this broken-symmetry state
is discussed in Appendix B. We specify the ratio of gz to
g⊥ by the angle θg = tan−1(gz/g⊥) and fix the valley-

dependent interaction strength g/l2B =
√
g2
⊥ + g2

z/l
2
B at

0.01e2/(εlB). Because gNφ/l
2
B is small compared to the

Coulomb model charge-neutral energy gap that separates
the ground state multiplet from the first excited multi-
plet at zero momentum, the role of the valley-dependent
interactions is simply to lift the Coulomb model degen-
eracy and split the corresponding SU(4) ground state
multiplet. Over the angle ranges θg ∈ [−π/4, π/2] and
θg ∈ [5π/4, 7π/4] the exact ground states of HC + Hv

are single-Slater determinants, with F and CDW order
respectively. For other values of θg valley-dependent in-
teractions are non-trivial.

Fig. 2 illustrates the θg-dependence of the Hamilto-
nian spectrum for Ne = 16 electrons in N = 0 Landau
levels with Nφ = 8 over the θg ∈ [π/2, 5π/4] interval.
Fig. 2(a) plots ground state energies in various (Sz, Tz)
sectors and demonstrates that the overall ground state
has total valley polarization Tz = 0 and total spin S = 0
at all θg values in this range. Note that the dependence
of energy on Tz is suppressed as the CDW state is ap-
proached (θg → 5π/4) and that the dependence of en-
ergy on S is suppressed as the F state is approached
(θg → π/2). Fig. 2(b) illustrates how the Tz = 0 sec-
tor of the SU(4) Coulomb ground-state multiplet is split
by Hv. Since Hv preserves SU(2)s spin symmetry, all
energies in Fig. 2(a,b) occur in SU(2)s multiplets. At
θg = 3π/4 eigenvalues with different values of S merge
to form SO(5) multiplets, each forming an irreducible
representation of the SO(5) group. (A geometric repre-
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FIG. 2: Low-energy spectrum on the torus geometry for zero
total momentum, filling factor ν = 0, and orbital Landau level
degeneracyNφ = 8 as a function of θg in the range [π/2, 5π/4].
Ev is defined as the difference between the eigenvalues of HC+
Hv and the Coulomb-only ground state energy. All plotted
eigenvalues are degenerate in the absence of Hv. (a) Ground
state energies in a series of (Tz, S) sectors. The solid lines
show the lowest Tz = 0 energies for different total spin S
values. Similarly, the dashed lines show the lowest spin singlet
(S = 0) energies in different Tz sectors. The ground state has
S = 0 and Tz = 0 throughout the plotted θg range. The inset
shows the mean-field phase diagram over the full θg range
from Ref. 20. (b) Low-energy states in the Tz = 0 sector for
a series of total spin S quantum numbers. Note that at θg =
3π/4 states with different S values are degenerate because of
the hidden SO(5) symmetry.

sentation of the SO(5) multiplet structure is provided in
Appendix B.) All eigenstates have a definite value of the
SO(5) Casimir operator28 Γ2 = S2 + T 2

z + Π2 = l(l + 3),
with integer l = 0, 1...Nφ. The low-energy spectrum at
θg = 3π/4 is accurately fit by the following equation :

Heff
v (θg =

3π

4
) = uz

( 2Γ2

Nφ + 1
− Nφ(Nφ + 5)

Nφ + 1

)
, (3)

implying that the ground state, |G(3π/4)〉, is a SO(5) sin-
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TABLE I: Expanded symmetries along high-symmetry lines in the (gz, g⊥) plane. At a generic point in the (gz, g⊥) plane
HC +Hv has SU(2)s×U(1)v symmetry and H = HC +Hv +HZ has U(1)s×U(1)v symmetry.

Symmetry of HC +Hv generators Symmetry of H generators

g⊥ = 0 SU(2)Ks ×SU(2)K
′

s ×U(1)v Sα, Nα, Tz U(1)Ks ×U(1)K
′

s ×U(1)v Sz, Nz, Tz

g⊥ = gz SU(2)s×SU(2)v Sα, Tα U(1)s×SU(2)v Sz, Tα

g⊥ + gz = 0 SO(5) Sα, Tz, Πx
α, Πy

α U(1)s×SU(2) Sz, Tz, Πx
z , Πy

z

glet with Γ2 = 0. It follows that the 5D order parameter
vector (Tx,y, Nx,y,z) is maximally polarized :

〈T 2
x + T 2

y +N2〉3π/4 = 〈C4 − Γ2〉3π/4 = 〈C4〉3π/4 ≈ C∗4 ,
(4)

where 〈· · · 〉3π/4 denotes expectation values in the ground
state |G(3π/4)〉 and C∗4 = Nφ(Nφ + 4) is the value of the
SU(4) Casimir operator C4 in the Coulomb model SU(4)
multiplet. The approximation leading to C∗4 in Eq. (4) is
validated by numerical calculation, and also follows from
the argument that |G(3π/4)〉 is adiabatically connected
to a state in the SU(4) multiplet. Because |G(3π/4)〉 does
not break SO(5) symmetry, 〈N2

α〉3π/4 = 〈T 2
β 〉3π/4 ≈ C∗4/5

with α = x, y, z and β = x, y.
Eq. (3) predicts that in the thermodynamic limitNφ →

∞, small l multiplets will approach degeneracy. By mak-
ing an analogy with the quantum rotor model, we can see
that this property signals spontaneous SO(5) symmetry
breaking, The energy in Eq. (3) can be interpreted as
the kinetic energy of a generalized rotor model in the 5D
(Tx,y, Nx,y,z) space with the SO(5) generators playing the
role of angular momenta. In the thermodynamic limit
Nφ → ∞, the moments of inertia of the rotors diverge
and it can be stuck in a spontaneously chosen direction,
resulting in symmetry breaking. The absence of ground

state level crossings along the θg = 3π/4 line in Fig. 2
indicates that the crossover between AF and KD states
is smooth in finite size systems. However, the level cross-
ings between the low-lying excited states in Fig. 2 signals
a first order phase transition in the thermodynamic limit.

IV. LOW-ENERGY EFFECTIVE THEORY AND
COLLECTIVE MODES

Following Refs.20,29,30, we can derive a low-energy ef-
fective field theory for ν = 0 quantum Hall states by
constructing the Lagrangian,

L = 〈ψ|i∂t −H|ψ〉 =

∫
d2r

2πl2B

[
B −H

]
, (5)

where |ψ〉 is a Slater-determinant state in which two or-
thogonal occupied spinors χ1,2 are allowed to vary slowly
in space and time. The Lagrangian density L = B − H
has kinetic Berry phase (B = i(χ†1∂tχ1+χ†2∂tχ2)) and en-
ergy density H contributions. As detailed in Appendix
C we find that :

H =− u⊥ − 2εZsz + (uz + u⊥)(t2z −
∑

α=x,y,z

s2
α) + 2u⊥

∑
β=x,y

t2β + (u⊥ − uz)
∑

α=x,y,z

n2
α

+ l2B
[
ρz(∇tz)2 + ρ⊥

∑
β=x,y

(∇tβ)2 +
∑

α=x,y,z

ρs(∇sα)2 + ρn(∇nα)2 + ρπ
(
(∇πxα)2 + (∇πyα)2

)]
.

(6)

The stiffness coefficients ρz = ρ0 − (3uz + 2u⊥)/4,
ρ⊥ = ρ0 − (uz + u⊥)/4, ρs = ρ0 + (uz + 2u⊥)4, ρn =
ρ0 + (uz − 2u⊥)/4 and ρπ = ρ0−uz/4, are dominated by

the common Coulomb contribution ρ0 =
√

2πe2/(16εlB).
It is easy to check that the energy density function H has
the same symmetries as the Hamiltonian H. The mean-
field theory ground state is determined by assuming that
all fields are static and spatially uniform. The energy
competitions behind the mean-field phase diagram pre-
viously derived by Kharitonov20 are transparent when
Eq. (6) is combined with the normalization constraint∑
α(t2α+n2

α+s2
α+(πxα)2+(πyα)2) = 1 (see Appendix C). In

the absence of a Zeeman field the four mean field phases
are the F state (

∑
s2
α = 1), the AF state (

∑
n2
α = 1),

the KD state (t2x + t2y = 1), and the CDW state (t2z = 1).
The phase boundaries between these states, shown in the
inset of Fig. 2(a), lie along the high symmetry lines iden-
tified in Table I.

We now concentrate on physics near uz+u⊥ = 0 where
a first order phase transition occurs between KD and AF
states and the system exhibits SO(5) symmetry. The
uz+u⊥ = 0 line in graphene is analogous to the Jxy = Jz
line in a XXZ spin model, along which a phase transi-
tion occurs between Ising and XY ground states and the
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system exhibits expanded O(3) symmetry. One physical
manifestation of SO(5) symmetry along the transition
line is the response to an external Zeeman field, which
induces a finite z direction spin polarization sz. It follows
from orthogonality constraints on the fields discussed in
Appendix C that when among the ten SO(5) generators
only sz has a finite expectation value, tx,y and nz must
vanish. A finite Zeeman energy therefore favors the AF
state over the KD state because the AF state can dis-
tort to a canted AF with a finite sz and a Néel vector
lying in the xy plane. A sufficiently strong Zeeman field
eventually favors the F state. Because experiments de-
tect what appears to be a continuous phase transition as
a function of Zeeman coupling strength10, they suggest
that the ground state in the absence of Zeeman coupling
lies in the AF region of the phase diagram.

Close to the uz+u⊥ = 0 line, the system retains crucial
SO(5) properties in the presence of a small Zeeman term.
Approximate SO(5) symmetry is revealed in the collec-
tive mode spectra of both KD and AF states. The KD
phase spontaneously breaks the valley U(1)v symmetry.
Chosing the ground state to have valley polarization tx
with a spontaneous non-zero value, we see that infinites-
imal SU(4) rotations31 give rise to infinitesimal values of
eight fields, {ty,z, nx,y,z, πyx,y,z}, and leave the remaining
six fields, {sx,y,z, πxx,y,z} at zero. The eight dynamical
fields parametrize the tangent manifold of the mean-field
ground state. By evaluating the Berry phase we find
that for small fluctuations the valley pseudospin fields
ty and tz are canonically conjugate, and that the Néel
vector field nα is conjugate to πyα. The valley pseudospin
and Néel vector collective modes therefore decouple. The
valley collective mode is gapless because of the Kekulé
state’s broken U(1) symmetry and has dispersion :

ω1(KD) = 2k
√
ρ⊥(uz − u⊥ + ρzk2), (7)

where k is wave vector and lengths are in units of lB . The
three additional collective modes are kinetically coupled
Néel-π modes and have energy :

ω2,3,4(KD) = 2
√

(|uz + u⊥|+ ρnk2)(2|u⊥|+ ρπk2). (8)

Note that these modes become gapless as the SO(5) sym-
metry line is approached and the energy cost of Néel fluc-
tuations away from the KD state vanishes, and that the
Zeeman field does not influence collective mode energies
in the KD phase because sz is not a dynamical field. Sim-
ilarly the AF state spontaneously breaks the spin SU(2)s

symmetry. When the Néel vector is chosen to lie along
the x-axis, the dynamical fields generated by infinitesimal
SU(4) rotations are {sy,z, ny,z, tx,y, πx,yx }. Evaluating the
Berry phase we find that sy is conjugate to nz and sz to
ny, as in a standard antiferromagnet. The spin-collective
modes are :

ω1,2(AF) = 2k
√
ρn(2|u⊥|+ ρsk2). (9)

In the AF state (tx,πyx) and (ty,πxx) fluctuations form
kinetically coupled conjugate pairs and give rise to the

sublattice/π collective mode energies :

ω3,4(AF) = 2
√

(uz + u⊥ + ρ⊥k2)(uz − u⊥ + ρπk2).
(10)

Note that all four collective modes are gapless and de-
generate along the uz + u⊥ = 0 line. The degeneracy
arises from the SO(5) symmetry. Appendix D describes
how the collective modes in Eq. (9) and (10) are modified
by the Zeeman field.

V. DISCUSSION AND SUMMARY

In ordered systems a Landau-Ginzburg or quantum
effective model which includes a single-order parame-
ter, for example a complex pair-amplitude order param-
eter for a superconductor or a magnetization direction
order parameter for a magnetic system, is often able
to describe thermodynamic, fluctuation, and response
properties over wide ranges of temperature and exper-
imentally tunable system parameters. These theories
can be powerfully predictive even when their parame-
ters cannot be reliably calculated from the underlying
microscopic physics. The naive effective-field-theory ap-
proach sometimes fails however. A notable example is the
case of high-temperature superconductors in which ex-
periments indicate that charge-density, spin-density, and
pair-amplitude order parameters have correlated quan-
tum and thermal fluctuations that must be treated si-
multaneously. Unlike the case discussed in the present
paper in which an N=5 component effective theory can
be motivated and its parameters estimated on the basis of
microscopic physics, large-N field theories21,32,33 are typ-
ically constructed on the basis of hints from experimental
data, for example from observed correlations in the tem-
perature and parameter dependence of the fluctuation
amplitudes of different observables. In these theories, it
is often difficult to be certain that all relevant fields have
been identified, and to identify constraints imposed on
the fluctuations of these fields by the underlying micro-
scopic physics. As discussed below, the remarkably sim-
ple example of ordered states in graphene quantum Hall
systems, particularly ordered states at ν = 0, suggests
criteria which can be tested experimentally to validate
large-N unified theories of systems with competing or-
ders.

TABLE II: Comparison between the Kekulé-distortion state
in graphene and the d-wave state in high temperature super-
conductors.

Parameter Kekulé-distortion state d-wave state

Order Parameter (Tx, Ty) (∆x, ∆y)

U(1) generator Tz Charge Q

External Potential Staggered potential εv Chemical potential µ

As summarized in Table II, there is a close analogy
between SO(5) symmetry in the quantum Hall effect of
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graphene and SO(5) symmetry in some theories of high-
Tc superconductivity (HTS) 21. The SO(5) theory of
HTS theory unifies antiferromagnetism and d-wave su-
perconductivity (dSC). The analog of d-wave supercon-
ductivity in the graphene quantum Hall case is Kekulé
distortion order. The order parameters of both theo-
ries involve a sublattice degree of freedom, the honey-
comb sublattice degree-of-freedom in the case of graphene
and the sublattice degree of freedom of the magneti-
cally ordered state in HTS SO(5) theory case. The
graphene analog of the chemical potential µ term which
tunes transitions between antiferromagnetic and d-wave
superconducting states in the HTS case, is a sublattice-
staggered potential εv. Interestingly this field is eas-
ily tunable experimentally34–37 in the bilayer graphene
case. SO(5) symmetry in HTS is conjectured to emerge
in low-energy effective theory21, and can be exactly re-
alized in extended Hubbard model with artificial long-
range interactions38,39; however, it never becomes exact
for commonly used models like t− J or Hubbard model.
In contrast, SO(5) symmetry and its explicit symmetry
breaking naturally appear in the microscopic Hamilto-
nian (Eq. (1)) for the quantum Hall effect in graphene at
any filling factors within N = 0 LL. We note that generic
SO(5) symmetry without any fine-tuning parameters can
appear in spin-3/2 ultracold femionic system40,41.

The SO(5) symmetry in graphene is manifested by
multiplet structure in exact diagonalization spectra, and
by the appearance of soft collective modes beyond those
associated separate Kekulé or antiferromagnetic order.
In particular, the antiferromagnetic state of graphene has
π-operator fluctuation collective modes. The observation
of the analogous collective modes in the antiferromag-
netic state of high temperature superconductors would
provide powerful evidence for the applicability of an ef-
fective theory which unifies antiferromagnetism and su-
perconductivity only. On the other hand their absence
would likely indicate that an effective theory of this type
is not adequate over a useful range of the tunable doping-
level parameter of HTSs. Similarly a recently proposed
alternate N=6 parameter theory32 which unifies charge-
density-wave and d-wave superconducting order, also has
implications for collective mode structure which, if veri-
fied, would provide powerful validation.

Finally we would like to comment on the relevance of
our study to the understanding of the highly insulat-
ing quantum Hall state found in graphene at neutral-
ity. Experiments with tilted magnetic fields10 are con-
sistent with the view that the state at neutrality is a
canted antiferromagnet. Since the transition between
canted antiferromagnet and the spin polarized state is
controlled solely by the ratio of the Zeeman term to the
u⊥ interaction strength20, these very experiments serve
to estimate the value of u⊥, which is found to be about
u⊥ ∼ −10εZ

11,12. This experiment however does not
serve to estimate the value of uz, but simply to con-
strain it to satisfy uz & |u⊥|, from the requirement that
the system is in the canted Antiferromagnet phase. The

determination of the value of uz relevant for monolayer
graphene, and hence of its proximity to the ideal SO(5)
symmetric state is therefore an open experimental prob-
lem. The presence of a weakly broken SO(5) symmetry
would have important physical consequences, such as the
existence of additional weakly gapped neutral collective
modes as we illustrated in Section IV and in Appendix D.
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Appendix A: Proof of SO(5) Symmetry for
gz + g⊥ = 0

Let us first briefly review how SO(5) arises naturally
as a subgroup of SU(4). The fifteen generators of SU(4)
can be chosen to be the Pauli matrices in spin and val-
ley space and their direct products: {σα, τβ , σατβ}. The
Clifford algebra, {γµ, γν} = 2δµν , is realized by a subset
of these generators, namely the 4x4 γ matrices, which
can be chosen as:

γ1 = τx, γ2 = τzσx, γ3 = τzσy, γ4 = τzσz, γ5 = τy.
(A1)

SO(5) can be shown to be generated by the commuta-
tors of these γ matrices: [γµ, γν ]. More specifically, we
have the following ten generators of SO(5):

γab = − i
2

[γa, γb] (A2)

which can be thought of as a 5×5 antisymmetric tensor :

γab =


0

τyσx 0

τyσy −σz 0

τyσz σy −σx 0

−τz τxσx τxσy τxσz 0

 . (A3)

These matrices satisfy the following commutation rela-
tions :

[γab, γcd] = 2i(δacγbd + δbdγac − δadγbc − δbcγad), (A4)

[γab, γc] = 2i(δacγb − δbcγa). (A5)

Eq. (A4) shows that the ten independent γab matrices
obey a set of closed commutation relations, which is the
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SO(5) Lie algebra. Additionally according to Eq. (A4)
and (A5), when the group is viewed as acting on γab and
γa by matrix conjugation, we have respectively a tensor
and a vector representation of SO(5)42.

We will now demonstrate explicitly that SO(5) is an
exact symmetry of the Hamiltonian in the absence of
Zeeman coupling for gz+g⊥ = 0. From among the fifteen
generators of SU(4) identified in the main text, the spin
operator Sα, the valley polarization operator Tz and the
Πβ
α operators are the ten generators of the SO(5) group.

Sα and Tz automatically commute with Hv for any values
of gz and g⊥. Thus, SO(5) will be a symmetry group if

the six Πβ
α operators also commute with Hv. To simplify

the calculation of these commutators, we define the Π
ladder operators :

Πλ
λ′ =

∑
i

τ iλσ
i
λ′ ,Πλ

z =
∑
i

τ iλσ
i
z, (A6)

where λ and λ′ can be + or −. τ± = (τx ± iτy)/2 are
ladder operators in valley space, and the spin ladder op-
erators σ± are similarly defined. We work out the com-
mutator

[
Π+

+, Hv

]
in detail below :

[
Π+

+, Hv

]
= 2

∑
i 6=j

(
− gzτ jz τ i+σi+ + g⊥τ

j
+τ

i
zσ

i
+

)
δ(~ri − ~rj)

= 2
∑
v,s

∑
p1p2p3p4

τvvz Dp1p2p3p4

(
− gzc†p1K↑c

†
p2vscp3vscp4K′↓ + g⊥c

†
p1v↑c

†
p2Ks

cp3K′scp4v↓
)

= 2 (gz + g⊥)
∑

p1p2p3p4

Dp1p2p3p4

(
c†p1K↑c

†
p2K′↑cp3K′↑cp4K′↓ + c†p1K↑c

†
p2K↓cp3K′↓cp4K↓

)
.

(A7)

The second line of Eq. (A7) is the Landau gauge sec-
ond quantized form of the first line. c†pvs (cpvs) is an
electron creation (annihilation) operator, p denotes the
orbital index within the N = 0 Landau level, v = K,K ′

labels valley, and s =↑, ↓ labels spin. Dp1p2p3p4 is the
orbital two-particle matrix element for the δ function in-
teraction :

Dp1p2p3p4 =

∫ ∫
d~r1d~r2 φ

∗
p1(~r1)φ∗p2(~r2)δ(~r1 − ~r2)φp3(~r2)φp4(~r1)

=

∫
d~r φ∗p1(~r)φ∗p2(~r)φp3(~r)φp4(~r),

(A8)

where φp(~r) is the wave function for orbital p. In the sim-
plification leading to the last line of Eq. (A7), we used (1)
fermion anticommutation relations, and (2) the identity
Dp1p2p3p4 = Dp1p2p4p3 , which is a special property of δ
function interaction. Eq. (A7) shows that

[
Π+

+, Hv

]
= 0

at gz + g⊥ = 0. In a similar fashion, it can be shown
that the other Π operators also commute with Hv at
gz + g⊥ = 0. Thus, Hv has exact SO(5) symmetry for
gz + g⊥ = 0 independent of filling factors. The sym-
metry follows from the short-range nature of the valley-
symmetry breaking interaction combined with the Pauli
exclusion principle for electrons. Note that in Eq.(A7),
we did not make use of the explicit form of the wave
function φp(~r). The same Hamiltonian in Eq.(1) has
also been used to describe physics in N = 0 LL of bi-
layer graphene(BLG)25–27. There is a similar equivalence
among valley, sublattice and layer degrees of freedom

within N = 0 LL in BLG. The main difference is that
N = 0 LL in BLG contains both n = 0 and n = 1 mag-
netic oscillator states. Since the SO(5) symmetry iden-
tified for Hamiltonian in Eq.(1) is independent of single-
particle wave function basis, it can also be applied to the
case of BLG.

Appendix B: Exact Diagonalization Results

Our ED results for finite-size systems with up to 16
electrons verify that the ground state at ν = 0 for
Coulomb interactions only (H = HC) is given exactly
by mean field theory. The ground state wave functions
at ν = 0 are single Slater determinants with filled Lan-
dau levels for two of four flavors. This property is a
generalization of simple, quantum Hall ferromagnetism,
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the occurrence of a spontaneously spin-polarized states
at odd filling factors when the spin degree-of-freedom is
added to the physics of a parabolic band system Landau
levels. We have used periodic boundary conditions and
classified many-body states by their magnetic translation
symmetries43. In graphene the ν = 0 ground states occur
at zero momentum and form an irreducible representa-
tion of SU(4).

The ν = 0 F, AF and CDW states are included in the
ground state multiplet and can be expressed in the form:

|χ1,2〉 =

Nφ∏
p=1

c†pχ1
c†pχ2
|0〉, (B1)

where χ1,2 are the two spinors defining the state and p
is the index of the LL orbital. When considered as a
tensor representation of SU(4), this formula implies that
the states in this multiplet are tensors with 2Nφ indices
in two symmetric sets each with Nφ indices i.e. they are
described by the Young tableau:

. . . . . . . . . . . . . . .

. . . . . . . . . . . . . . .

with Nφ columns and two rows. Fig. S1(a) represents
the SU(4) multiplet structure geometrically in terms of
an octahedron in (Sz, Nz, Tz) space44. The octahedral
shape is understood to bound a tetrahedral lattice of
points in which each point designates the states within
the multiplet with common Sz, Nz, Tz quantum numbers.
Fig. S1(b) shows a slice of this lattice with Tz = Nφ − 4.
F, AF and CDW states are located at vertices of the
octahedron, and other orthogonal degenerate states are
derived from them by applying suitable SU(4) transfor-
mations.

States in the SU(4) ground state multiplet share the
same value of the SU(4) guadratic Casimir operator:

C4 = S2 +N2 + T 2 + Π2, (B2)

where S2 =
∑

α=x,y,z
S2
α, N2 and T 2 are similarly de-

fined, and Π2 =
∑

α=x,y,z
(Πx

α)2 + (Πy
α)2. C4 takes value

Nφ(Nφ + 4) for the Coulomb ground state multiplet at
ν = 0. Fig. S1(b) demonstrates that there can be more
than one state in the multiplet at a given (Sz, Nz, Tz)
point. Hence, an additional quantum number, such as
S2 + N2, is needed to uniquely label a state within the
SU(4) multiplet of interest44. S2 + N2 is one of the

quadratic Casimir operator of the SU(2)Ks ×SU(2)K
′

s sub-

group of SU(4). We note that SU(2)Ks ×SU(2)K
′

s group
has another quadratic Casimir operator

∑
α=x,y,z

SαNα,

which is identical to 0 for Coulomb ground states at
ν = 0.

SU(4) symmetry is lifted by the valley-symmetry
breaking interaction Hv, and the octahedral multiplet
is split. At θg = 3π/4, SU(4) symmetry is reduced to

Tz

Sz

Tz

Sz

Tz

Sz

0S  1S  2S 
level 0 level 1 level 2 

CDW 

AF 

F 

Tz 

Nz 

Sz 

(a) (b) 

Sz

Nz

(c) 

Fig. S 1: Geometric representation of SU(4) multiplet struc-
tures. (a) The octahedron in (Sz, Nz, Tz) space represents
the SU(4) multiplet structure of Coulomb ground states at
ν = 0. (b) A Tz-constant plane in the octahedron displayed
for Tz = Nφ − 4 reached by applying lowering operators to
the CDW state with Tz = Nφ. The size of the symbols indi-
cates the degeneracy at each point in the (Sz, Nz) plane. (c)
Multiplet structures of the first three levels of SO(5).

SO(5) symmetry. Fig. S1(c) shows the SO(5) multiplet
structure of the three lowest energy states, which coin-
cide with the lowest degeneracies. Within a level, states
are distinguished by Tz, Sz and total spin S quantum
numbers, and share the same value of the SO(5) Casimir
operator Γ2 = S2 +T 2

z + Π2 = l(l+ 3), l being a nonneg-
ative integer . We note that the same SO(5) multiplet
structure has arisen previously in numerical studies of
the t − J model45. Interestingly, along the SO(5) line,
i.e. for θg = 3π/4, we find numerically that the eigenen-
ergies are linear in Γ2, as illustrated in Fig. S2(a). The
low-energy part of the spectrum along the SO(5) line is
accurately fit by the following equation:

Heff
v (θg =

3π

4
) = uz

( 2Γ2

Nφ + 1
− Nφ(Nφ + 5)

Nφ + 1

)
. (B3)

The ground state at θg = 3π/4, is an SO(5) singlet with
Γ2 = 0.

Away from θg = 3π/4, SO(5) symmetry is explicitly
broken, leading to anisotropy in the 5D space. Interest-
ingly, the spectrum can also be fit by a linear form in
the appropriate quadratic Casimir operators along other
high symmetry lines. For example, at θg = π/2, the
Casimir operators of the corresponding symmetry group
SU(2)Ks ×SU(2)K

′

s ×U(1)v are S2 + N2 and T 2
z . For a

Tz−constant plane shown in Fig. S1(b), S2 + N2 takes
values f(f + 2), with nonnegative f = Nφ − |Tz|, Nφ −
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Fig. S 2: Finite size scaling analysis. (a) Ev/g at θg = 3π/4 as a function of Γ2 for Nφ ranging from 4 to 8. (b) In a given
(Tz = 0, S) sector, the lowest energy at θg = 4π/7 ∈ [π/2, 3π/4] as a function of S2. (c) In a given (S = 0, Tz) sector, the
lowest energy at θg = π as a function of T 2

z . The inset in each figure shows the inverse of slope versus Nφ. See text for a more
detailed description.

|Tz| − 2, · · · . In analogy with the θg = 3π/4 case, the
low-energy spectrum at θg = π/2 is accurately fit by:

Heff
v (θg =

π

2
) = uz

T 2
z − (S2 +N2) +Nφ

Nφ + 1
. (B4)

By interpolating between Eq. (B3) and (B4), we arrive at
an expression which describes the low-energy spectrum
of the SU(4) ground state manifold over the full θg ∈
(π/2, 5π/4) interval:

Heff
v =

1

Nφ + 1

(
− 2u⊥Γ2 + (uz + u⊥)(T 2

z − S2 −N2) + uzNφ + u⊥Nφ(Nφ + 6)
)
. (B5)

Eq. (B5) is limited in two ways: (1) it describes only the
low-energy part of the spectrum which evolves adiabati-
cally from the SU(4) ground state multiplet; and (2) it is
obtained by fitting numerical data at the high-symmetry
points θg = π/2 and 3π/4. The SO(5) symmetry-
breaking states at θg = 3π/4 were discussed in the main
text.

Eq. (B5) makes the nature of the transition betwen AF
and Kekulé phases at θg = 3π/4 clear. As illustrated in
Fig. 2(a) and discussed in the main text, the ground state
throughout the entire θg ∈ (π/2, 5π/4) range is singly
degenerate and has S2 = 0 and Tz = 0. Therefore, on
the θg < 3π/4 side of the SO(5) line, the quantity −(uz+
u⊥)N2 in Eq. (B5) is an easy-plane anisotropy in the 5D
space with the Néel vector space being the easy-plane;
Néel order is favored over Kekulé order for θg < 3π/4.
On the θg > 3π/4 side of SO(5) point, the Kekulé state
is favored and the Tx,y vectors lie in the easy-plane. We
conclude that there is a spin-flop phase transition in the
5D space across the SO(5) point. The phase transition
is of first order. Our analysis is in agreement with the
mean-field prediction of a zero temperature first-order
phase transition and places it on rigorous grounds.

We will now describe how the finite size scaling demon-
strates the existence of spontaneous symmetry-breaking
away from the SO(5) point. In Fig. S2(b), we plot the

lowest energy at a representative angle θg = 4π/7 in dif-
ferent (Tz = 0, S) sectors as a function of S2 for Nφ from
4 up to 8. There is good linear relationship between
the plotted energy and S2. The quantity IS , defined
as the inverse of the slope, increases linearly as Nφ in-
creases. This quantity is a generalized moment of inertia
and its divergence indicates spontaneous SU(2)s symme-
try breaking in the thermodynamic limit at θg = 4π/7.
The reasoning is analogous as that for the SO(5) symme-
try breaking at θg = 3π/4. In Fig. S2(c), a similar scaling
analysis is applied to the spin singlet sector with varying
Tz numbers at θg = π. In this case, the analysis signals
a spontaneous U(1)v symmetry breaking in the thermo-
dynamic limit. We remark that the finite-size scaling
behavior in our system is very similar to that in the two-
dimensional antiferromagnetic Heisenberg model. The
ground state of the latter model is a spin singlet46 in any
finite size system. However, low-lying energy levels col-
lapse to the ground state in the thermodynamical limit,
resulting in spontaneous symmetry breaking47,48. This
set of low-lying states is often referred to as a tower of
states.

So far, the Zeeman field has been neglected. Since Sz
has been chosen as a good quantum number in our ex-
act diagonalization calculations, the Zeeman field simply
shifts the energy of a state by an amount proportional to
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its Sz value. We found that the mean-field phase bound-
ary between canted antiferromagnetic state and KD in
the presence of a Zeeman field is in quantitative agree-
ment with exact diagonalization results for Nφ = 8.

Appendix C: Low-energy effective theory

The continuum model Lagrangian

L = 〈ψ|i∂t −H|ψ〉 =

∫
d2r

2πl2B

[
B −H

]
, (C1)

where |ψ〉 is a Slater-determinant state in which two or-
thogonal occupied spinors χ1,2 are allowed to vary slowly
in space and time. The Lagrangian density L = B − H
has a Berry phase part :

B = i(χ†1∂tχ1 + χ†2∂tχ2), (C2)

and an energy density contribution :

H = l2BE0(∇P ) + Ev(P )− l2B
2
Ev(∇P ) + EZ(P ). (C3)

where P is the local density matrix, P = χ1χ
†
1+χ2χ

†
2 and

E0(∇P ) is the contribution from the SU(4) symmetric
Coulomb interaction which is non-zero only when P is
space-dependent :

E0(P ) = ρ0Tr[∇P∇P ], (C4)

with stiffness ρ0 =
√

2πe2/(16εlB). The next two terms
are contributed by the valley-dependent interactions :

Ev(P ) =
1

2

∑
α=x,y,z

uαξα(P ), (C5)

where ux,y = u⊥ = g⊥/(2πl
2
B), uz = gz/(2πl

2
B), and

ξα(P ) = Tr[ταP ] Tr[ταP ] − Tr[ταPταP ]. Ev(∇P ) is a
gradient term, and has a similar expression as Ev(P ).
The last term is the Zeeman energy :

EZ(P ) = −εZ Tr[σzP ]. (C6)

The position-dependent density matrix P has the follow-
ing properties :

P † = P, TrP = 2, P 2 = P. (C7)

It is convenient to reparametrize the state with a matrix
R, where P = 1

2 (1 + R). R is Hermitian, traceless, and

R2 = 1. Thus, R can be expressed in terms of SU(4)
generators :

R =
∑
a

laγa +
∑
a>b

labγab, (C8)

where la and lab are classical real fields. The condition
R2 = 1 gives rise to constraints on these fields. One type
is normalization constraint enforcing Tr[R2] = 4 :

∑
a

l2a +
∑
a>b

l2ab = 1, (C9)

Another type are orthogonality constraints :

εabcdelcdle = 0, εabcdelbclde = 0, (C10)

where εabcde is the fully antisymmetric Levi-Civita sym-
bol in five dimensions. The orthogonality constraint is
given by Tr[R2γab] = 0 and Tr[R2γa] = 0.

The SO(5) theory of high-Tc superconductivity21 re-
quires a similar orthogonality constraint, which plays an
essential role in predicting the phase transition between
AF and dSC phases. There, it was proposed based on a
geometric interpretation of rotations in 5D21, and sepa-
rately based on maximum entropy49 considerations. In
our theory, the orthogonality constraint naturally ap-
pears because of the assumption that at each LL orbital
two spinors are occupied, i.e. that charge fluctuations
are quenched. To make the physical meaning of the fif-
teen fields {la, lab} transparent, we rename them using
spin and valley language :

l34,42,23 = sx,y,z, l1,5 = tx,y, l15 = tz,

l2,3,4 = nx,y,z,

l52,53,54 = πxx,y,z, l21,31,41 = πyx,y,z.

(C11)

sα, tα and nα with α = x, y, z are respectively spin, valley
and Néel fields, and there are six π fields. The explicit
form of the energy density H expressed in terms of these
classical fields is given in Eq. (6) of the main text.

Appendix D: Collective Modes in the Presence of a Zeeman Field

In the presence of Zeeman field, the AF is transformed to a canted antiferromagnetic (CAF) state in which the
spin-polarizations on opposite sublattices are not collinear. In the CAF state, the density matrix P (CAF) = 1

2 (1 +

sin θsτzσx + cos θsσz) where the canting angle cos θs = εZ/|2u⊥|20. One of the spin wave mode remains gapless in the
CAF state :

ω1(CAF) = 2

√
ρn(2|u⊥| sin2 θs + (ρn cos2 θs + ρs sin2 θs)k2)k. (D1)
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This gapless mode corresponds to the rotation of Néel vector within the xy plane. Another spin wave mode acquires
a gap :

ω2(CAF) = 2

√
(εZ cos θs + (ρn sin2 θs + ρs cos2 θs)k2)(2|u⊥|+ ρsk2). (D2)

The Zeeman field also modifies the dispersion of the sublattice/π modes :

ω3,4(CAF) = 2

√
(uz + u⊥ + εZ cos θs + (ρ⊥ sin2 θs + ρπ cos2 θs)k2)(uz − u⊥ + ρπk2), (D3)

which remain gapped in the CAF phase and become gapless at the CAF/KD phase boundary uz+u⊥+εZ cos θs = 020.
At the SO(5) point uz + u⊥ = 0, the gapped spin wave mode ω2(CAF) and sublattice/π modes ω3,4(CAF) become

degenerate. The degeneracy is due to the unbroken part of the SO(5) symmetry in the presence of Zeeman field.
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