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We study the topologically protected Majorana zero modes induced by lattice dislocations in chiral topolog-
ical superconductors. Dislocations provide a new way to realize Majorana modes at zero magnetic field. In
particular, we study several different types of dislocations in the candidate material Sr2RuO4. We also discuss
the properties of linked dislocation lines and linked dislocation and flux lines. Various experimental conse-
quences are predicted which provide a new approach to determine the nature of the superconducting phase of
Sr2RuO4.

Chiral topological superconductors (TSC) in 2D are pre-
dicted to have vortices that harbor stable Majorana bound
states (MBS) when the Chern number topological invariant
is an odd integer1. This property is an important feature for
topological quantum computing architectures which are based
on the use of such non-Abelian anyon qubits2,3. It is generally
agreed that Sr2RuO4 is a quasi-2D, p-wave superconductor
with broken time-reversal symmetry, although the precise na-
ture of the order parameter is still controversial (for a review,
see Ref. 4). So, while there is no comprehensive evidence that
Sr2RuO4 is a TSC, it is one of the best candidate chiral TSC
materials.

The low-energy electronic structure of the normal metal
state of Sr2RuO4 is controlled by the t2g multiplet of d-
orbitals dxz , dyz , and dxy . These three orbitals give rise
to three Fermi-surfaces which are expected to become fully
gapped below the superconducting transition temperature at
Tc ∼ 1.5K. The conventional wisdom indicates that the
quasi-2D dxy band dominates the pairing instability and de-
velops a nodeless chiral px + ipy order parameter5. If such an
order parameter were generated, then the recently measured
half-quantum vortices would indeed bind MBS6,7. However,
a conflict between the theoretical prediction of chiral surface
states in the px + ipy state, and the clear lack of surface cur-
rents measured in Ref. 8, motivated Raghu, Kapitulnik, and
Kivelson (RKK) to make a different, compelling proposal for
the nature of the order parameter which is dominated instead
by the quasi-1D dxz and dyz orbitals9. The RKK order param-
eter by itself is odd-parity/p-wave which breaks time-reversal,
but is not a chiral TSC and should not exhibit chiral edge
states. Thus, it is consistent with the measurements of Ref.
8. The true nature of the order parameter is still an open ques-
tion, and experiments that can distinguish between these two
predictions are needed.

In this article we propose topological properties that can
distinguish the two pairing schemes and also provide a new
approach to MBS in superconductors with even-integer or
vanishing Chern number. Our key observation is that the RKK
order parameter, while trivial in the sense of a 2D chiral su-
perconductor (i.e. vanishing Chern number), in fact is still
nontrivial as a weak TSC. Weak TSCs (and insulators)10–13

are topological states protected by translation symmetry. They
are distinguished by a topological invariant defined in a lower-

dimensional sub-manifold of the Brillouin zone (BZ) (recall
that the so-called strong invariant depends on the electronic
structure in the entire BZ). For example, the 3D weak topo-
logical insulators are classified by three Z2 invariants, which
characterize whether the gapped Bloch Hamiltonian restricted
to the three 2D planes of kx = π, ky = π, kz = π in the BZ
are trivial insulators or quantum spin Hall insulators in that
plane. Heuristically, a non-trivial weak invariant indicates a
state which is made from stacking up topological states of
lower dimensions. Another example is a 2D superconduc-
tor in class D (no symmetry) which has two weak Z2 in-
dices. These exist since there is a strong Z2 topological su-
perconductor in this class in 1D –the Majorana chain/p-wave
wire13–15. We show that the RKK pairing in the dxz and dyz
bands corresponds to this type of weak topological supercon-
ductor where 1D topological wires have been “stacked” into a
higher dimension. As a consequence, we show that naturally
occurring or fabricated crystal defects can exhibit a number
of remarkable properties that can help to distinguish the case
when the px + ip+ y state dominates from the case when the
RKK pairing dominates. These properties can topologically
characterize the superconducting order, and as we will show,
can give rise to a mechanism for stable MBS even in the RKK
state.

3D weak topological superconductors: The non-interacting
topological insulators and superconductors in generic dimen-
sions have been classified13,15,16. Here we are interested in
superconductors in class D, which have a strong Z2 topolog-
ical classification in 1D, Z in 2D, and trivial in 3D which
is stable without any additional symmetries beyond fermion
parity conservation. For class D SCs in 3D with additional
translational symmetries we can define weak topological in-
variants as well—the 2D Chern numbers can be defined along
constant kx, ky or kz planes in the BZ. In a gapped state the
Chern number cannot change, so the Chern number in dif-
ferent kz = const planes is the same integer nz. Similarly nx
and ny can be defined for the other two planes, as is illustrated
in Fig. 1(a). The integer-valued vector n = (nx, ny, nz) are
the primary weak indices of the 3D TSC. A system in class
D with indices n is topologically equivalent to a set of de-
coupled 2D layers of topological chiral superconductors with
non-vanishing Chern number, stacked along the n direction.
For any surface plane which is not perpendicular to n, there
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FIG. 1. (a) The Brillouin zone of a 3D SC. The primary weak topo-
logical invariants n = (nx, ny, nz) are defined as the Chern numbers
in the three independent planes (colored green, blue and red), and the
secondary weak topological invariants ν = (νx, νy, νz) are defined
as the 1D Z2 indices along the three perpendicular lines colored in
red. (b) Illustration that a topological superconductor with topolog-
ical invariants n = (0, 0, 1), ν = (1, 1, 0), such as Sr2RuO4 is
equivalent to decoupled layers of chiral superconductors (with the
red line and arrow labeling the chiral edge states) and 1D wires along
x and y directions with Majorana zero modes at end points.

will be chiral surface states.
Similarly, the 1D Z2 invariants14 can be calculated along

time-reversal invariant lines in the 3D BZ17. The three sec-
ondary weak topological invariants are defined as the Z2 in-
variants along the three lines (ky, kz) = (π, π), (kz, kx) =
(π, π), (kx, ky) = (π, π). We collect them into a vector
ν = (νx, νy, νz) shown in Fig. 1 (a) (with νx,y,z = 0, 1). It
can be shown that ν and n together determine the Z2 invari-
ants along all other time-reversal invariant lines. A TSC with
ν 6= 0 and n = 0 is topologically equivalent to decoupled 1D
TSC wires aligned in the direction of ν, each of which has an
odd number of MBS at each end. Consequently, for any sur-
face plane that is not parallel to ν there will be Majorana sur-
face states. A generic TSC with both n and ν non-vanishing
can be considered as decoupled layers of 2D chiral TSC coex-
isting with decoupled wires of 1D TSC. We will show that the
RKK model (ignoring spin degeneracy) has the weak topolog-
ical invariants n = (0, 0, 1), ν = (1, 1, 0), which is topolog-
ically equivalent to decoupled topological layers and wires as
is illustrated in Fig. 1 (b). This conceptual decomposition into
stacks of lower dimensional systems will be helpful to illus-
trate our discussion of dislocations. Primary weak topologi-
cal indices were first discussed in the context of time-reversal
invariant topological insulators10,11,18 and subsequently both
primary and secondary indices (and beyond) can be straight-
forwardly extracted for the entire periodic table of topolog-
ical states from the K-theory calculation in Ref. 13. We
note that although we have defined the secondary-index ν as
a vector, the natural structure is actually an anti-symmetric
two-index tensor which can be interpreted as a vector only
in 3D.19,20 In addition to the application to Sr2RuO4, one of
our primary results is that secondary weak invariants also de-
scribe the MBS trapped on a pair of linked dislocation lines,
which is analogous to a similar mechanism for bound states
on linked vortex lines in 3D time-reversal invariant topologi-
cal superconductors21.

Application in Sr2RuO4: To begin our discussion we will
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FIG. 2. (Left) Fermi-surface structure of Sr2RuO4 showing the
Fermi surfaces coming from the dxz dyz and dxy bands with orbital
mixing. (Right) Low-energy quasi-particle spectrum of supercon-
ducting Sr2RuO4 for a geometry with open boundary conditions in
the y-direction and periodic boundary conditions on the x-direction.
The states in red-dashed lines are edge states arising from the quasi-
1D bands; notice they exist at kx = 0 and kx = π. The green dash-
dotted lines are the edge states arising from the quasi-2D band; notice
they exist only around kx = 0.

review the electronic structure of the normal metal state of
Sr2RuO4. This will by followed by recounting the supercon-
ducting pairing scheme as given in the paper by RKK9. The
three relevant orbitals for the electronic structure are the t2g
multiplet dxz, dyz, dxy which will be labelled by α = 1, 2, 3.
The layered structure of Sr2RuO4 makes the system behave
quasi-two dimensionally; consequently the first two orbitals
are effectively quasi-1D in nature while dxy is quasi-2D. The
bandstructure can be modeled using these three orbitals, plus
spin, on a simple tetragonal lattice with nearest neighbor, and
next-nearest neighbor hoppings. The Bloch Hamiltonian is

H(k) =

 εxz(k) Λ(k) 0
Λ(k) εyz(k) 0

0 0 εxy(k)

⊗ Ispin (1)

εxz(k) = −2t cos kx − 2t⊥ cos ky − 2tz1 cos kz

εyz(k) = −2t cos ky − 2t⊥ cos kx − 2tz1 cos kz

εxy(k) = −2t′(cos kx + cos ky)− 4t′′ cos kx cos ky − 2tz2 cos kz

Λ(k) = −2λ sin kx sin ky

where values of in-plane hopping parameters taken from RKK
are t = 1.0, t′ = 0.8, t⊥ = 0.1, t′′ = 0.3. We have also con-
sidered an orbital-hybridization term Λ(k) which arises from
next-nearest neighbor hopping between different quasi-1D or-
bitals in the xy-plane, and removes the crossings in those
Fermi surfaces. Hopping amplitudes along z are tz1 and tz2
for quasi-1D and quasi-2D orbitals, respectively. Due to the
layered structure of the lattice, out-of-plane hoppings are neg-
ligibly small22,23 and we shall consider the 2D limit hereafter.

In the left panel of Fig. 2 we show the Fermi-surfaces.
There are three Fermi-surfaces: two around (kx, ky) = (0, 0)
and one around (kx, ky) = (π, π). The two quasi-1D Fermi-
surfaces from dxz and dyz orbitals do not touch as long as
λ 6= 0. The inner quasi-1D Fermi-surface is a hole pocket,
and the outer Fermi-surface is an electron-pocket. The round
quasi-2D Fermi-surface arises from the dxy orbital which we
assume is completely decoupled from the quasi-1D orbitals at
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the single-particle level and in the 2D limit24. We have also
left out the spin-orbit coupling from this Bloch Hamiltonian
description. It is expected that the spin-orbit coupling scale in
Sr2RuO4 is appreciable, and that it affects the orbital character
of the states on the Fermi surfaces, primarily near the intersec-
tions between the quasi-1D and quasi-2D Fermi surfaces25,26.
The main effect of the spin-orbit coupling will be to determine
the dominant superconducting pairing instabilities on each
Fermi surface. As such, since this article is agnostic toward
which order parameter dominates we will not consider the cor-
rections due to spin orbit coupling much further. We will thus
make the same assumption as RKK, i.e. the inter-orbital hy-
bridization is more important than the spin-orbit coupling, and
as such we have spin-rotation symmetry. We do note that if the
spin-orbit coupling is too strong it might destabilize the MBS
zero-modes on the linked dislocation lines considered below,
if spin-rotation symmetry is strongly broken. However, it is
likely that before this happened the dominant order parameter
would be modified significantly anyway to a (possibly) differ-
ent topological class. As such, we will leave the consideration
of the non-trivial effects of spin-orbit coupling in Sr2RuO4 to
future work.

We now want to consider the properties of the supercon-
ducting state of Sr2RuO4. When we consider the quasi-2D
band we will assume triplet px+ipy pairing (possibly induced
via proximity coupling to the quasi-1D bands9). For values of
the Fermi-level which lie within the quasi-2D band (which is
expected in experiments) this means that the system will be a
weak 3D TSC with primary index n = (0, 0, 1). For the quasi-
1D bands we assume either a topologically trivial pairing27 or
the RKK pairing, which we now describe. Since the quasi-1D
and quasi-2D orbitals are assumed to be approximately decou-
pled, at least at the single-particle level, we can separate off
the quasi-2D band and write a reduced two-orbital model for
the quasi-1D orbitals:

H(k) =

(
εxz(k) Λ(k)
Λ(k) εyz(k)

)
⊗ Ispin (2)

with λ = 0.1t. The superconducting pairing that RKK pro-
pose is spin-triplet and intra-orbital. The pairing functions of
orbital α for this chiral superconducting state are

∆α = idα(k) · ~σσy, α = 1, 2 (3)
d1 = ẑ∆0 sin kx cos ky, (4)
d2 = iẑ∆0 sin ky cos kx, (5)

where the direction of dα and the relative phase between d1

and d2 are determined by the inter-orbital hybridization and
spin-orbit coupling. This pairing term establishes a non-trivial
secondary weak invariant ν = (1, 1, 0).

When considering all of the orbitals there are a few possible
scenarios for the pairing in Sr2RuO4, but let us limit ourselves
to two main cases: (i) the pairing is dominated by the quasi-
2D orbital and is the chiral, topological px + ipy state so that
n 6= 0 but ν = 0 or (ii) the pairing is dominated by the quasi-
1D orbitals which are in the RKK state and a (probably weak)
px + ipy state is induced on the quasi-2D orbital, i.e. n 6= 0
and ν 6= 0. It is these two cases which we aim to topologically
distinguish in this article.

Properties of boundary states: The RKK superconducting
pairing term winds around the two quasi-1D Fermi surfaces
with the same chirality, but since they have opposite charge
character, they contribute oppositely to the winding number
yielding a vanishing Chern number. However, in a clean sys-
tem with (even approximate) translation invariance there will
be edge states located near, say kx = 0 and kx = π if, for
example we put the system on a cylinder with open bound-
ary conditions in the y-direction and periodic boundary con-
ditions in the x-direction. The energy spectrum for such an
open boundary system is shown in the right panel of Fig. 2
with clear low-energy modes near kx = 0, π which develop
zero modes exactly at these k-points. This figure assumes the
pairing scenario (i) and the boundary states exist because of a
non-trivial primary weak index n = (0, 0, 1), and a secondary
weak index ν = (1, 1, 0) due to the RKK pairing. Even
though n, and other quantities, should be doubled when the
spin degeneracy is taken into account, it has no qualitative ef-
fect on most of the properties of lattice dislocations discussed
below when the effects of spin-orbit coupling are weak and
we have approximate spin-rotation invariance. Thus the quasi-
1D bands contribute gapless boundary states, albeit non-chiral
modes. The energy gaps in the figure have been exaggerated
from what one would expect in a real experiment to illustrate
the important features.

If the px + ipy state on the quasi-2D Fermi surface is gen-
erated via proximity coupling (or exists independently of the
quasi-1D bands as in scenario (i)) then there will be an over-
all chirality of the boundary states, e.g. two chiral modes at
kx = 0 and one anti-chiral mode at kx = π. If the location
of the surface states in momentum space can be resolved via
ARPES then, if the RKK pairing is not present, we would not
expect any gapless surface states at kx = π (ky = π) for
edges with normal vectors in the ŷ (x̂) direction. This is one
distinguishing feature of these two pairing scenarios. If the
gap induced on the quasi-2D band is very weak then the chi-
ral boundary states associated to this gap will not be very well
localized and might hybridize with the low-energy modes on
other boundaries. In this case, there will be an energy gap for
the chiral modes and the gapless boundary states will be dis-
tinctly non-chiral. This is perhaps a more clear signature, and
is one feature that RKK emphasized, however from our anal-
ysis above, the boundary state distinction persists between the
two pairing scenarios even if the px+ ipy gap is not extremely
small.

Properties of dislocations and linked dislocation lines: In
addition to the surface state properties, weak topological in-
dices have important consequences for the properties of crys-
tal dislocations19,20,28. For the 3D crystal we are considering,
a lattice dislocation is a line defect around which the ions are
displaced by an integer valued vector b (in the lattice basis)
known as the Burgers vector. A dislocation is described by
b and the integer-valued tangent vector l. The relative ori-
entation of b and l determines the type of dislocation: edge
(l · b = 0), screw (l parallel to b), and mixed (l neither paral-
lel nor perpendicular to b). While b is a topological property
of a dislocation line, l (namely the dislocation-type) is not.

Both the primary and secondary weak topological indices
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can be probed by dislocations. The primary weak indices n in
class D lead to

N1 = n · b (6)

branches of chiral Majorana modes propagating along the
dislocation19. Note that N1 is independent of the disloca-
tion tangent vector l, and is thus topologically protected. The
sign of the integer N1 determines the chirality of the localized
state, which is defined with respect to l. This fact can be eas-
ily understood for an edge dislocation with n perpendicular to
l, in which case the dislocation can be obtained by adding an
additional layer of chiral 2D TSC on one side of the disloca-
tion line, as is illustrated in Fig. 3 (a), i.e. we just imagine
jamming an extra partial-plane of a 2D strong chiral TSC into
the layered system.

The secondary weak indices ν lead to non-chiral 1D prop-
agating Majorana modes on the dislocation line if

N2 ≡ (b× l) · ν = 1 mod 2. (7)

The modes determined by N2 are like the “weak” analog of
the “strong” modes determined by N1. This fact can be easily
understood using a similar picture for an edge dislocation, in
which case the dislocation can be obtained by adding an addi-
tional layer of a weak 2D TSC on one side of the dislocation
line, as is illustrated in Fig. 3 (b), i.e. we imagine jamming an
extra partial-plane of a 2D weak TSC into the layered system.

For the secondary weak invariant, the dislocation line is
thus like the edge of a weak TSC and requires translation sym-
metry to have protected modes. We can see this because of the
dependence of N2 on the variable direction l, which indicates
that topological stability will require an additional symmetry
which in this case is translation symmetry along the disloca-
tion (i.e. the direction l cannot change along the dislocation
line). The non-chiral Majorana propagating modes are pro-
tected by translation symmetry along the dislocation, since its
left and right moving branches are around k = 0 and k = π
(k is the momentum parallel to the translation invariant dislo-
cation line), which cannot be coupled without breaking trans-
lation symmetry. Also we see that N2 can be nontrivial only
for edge dislocations, i.e. b× l 6= 0 must be satisfied.

In the topologically equivalent decoupled chain limit
(which is appropriate for a system with ν 6= 0), the dislocation
bound states can be understood intuitively, as is illustrated in
Fig. 3 (b). Decoupled 1D Majorana chains along the ν direc-
tion terminate at the dislocation line and the MBS at their end
points couple to form the 1D non-chiral Majorana edge state.
It is thus intuitive to take N1 to be akin to a “strong” dislo-
cation invariant and N2 to be a “weak” dislocation invariant.
The weak invariantN2 requires the additional translation sym-
metry along the dislocation line to be protected.

Despite the fact that our arguments are based on the de-
coupled layer/wire limit, the topological protection remains as
long as the bulk gap is not closed. Thus, we can move away
from the decoupled limit and the low-energy bound states
will remain stable. We illustrate this numerically in Fig. 4
where we plot the sum of the probability densities for the two
zero energy modes which are localized on the two dislocation

FIG. 3. (a) Illustration of an edge dislocation line with Burgers vector
b in a TSC consisting of decoupled layers stacked along the direction
of topological index vector n. (b) Illustration of an edge dislocation
line with Burgest vector b and direction l in a TSC consisting of de-
coupled 1D wires along the direction of secondary weak topological
index vector ν. The red dots at the end of wires represent Majorana
zero modes.(c) Illustration of the Majorana zero modes induced by
linking of two edge dislocations with b1 = ẑ and b2 = −x̂ in the
decoupled plane limit.There is a Majorana zero mode at each dislo-
cation line, indicated by the red dot and red line.

FIG. 4. Spatial profile of the sum of the probability densities for the
two lowest energy (closest to zero energy) bound states at the ends
of a dislocation that stretches from x = 40 to x = 120 on the line
y = 50. The total lattice size is 160 × 100. The asymmetry in the
density profile is due to finite-size error introduced by discretization.

lines that bound an extra partial-plane of atoms. To perform
the calculation we only considered the quasi-1D RKK sec-
tor, since the quasi-2D band is decoupled and we wanted to
test the secondary weak invariant. We used the same parame-
ters as in Fig. 2 where the layers/wires are certainly coupled.
We inserted an edge dislocation where the Burgers’ vector
of the dislocation is b = (0, 1, 0) and the tangent vector is
l = (0, 0, 1) which yields N2 = (ŷ × ẑ) · (x̂ + ŷ) = 1. We
used exact diagonalization on a system with periodic bound-
ary conditions in all three directions to extract the wavefunc-
tions of the two zero modes. We plot the sum of their proba-
bility densities (restricted to the xy-plane) in Fig. 4. One can
clearly see the exponentially localized bound states on each
dislocation line.

One additional effect that has thus far gone unnoticed is the
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property of linked dislocation rings. Along a finite-length dis-
location ring in a system with nontrivial topological invariants
N1 and/or N2, the Majorana fermion energy spectrum is dis-
crete, and the boundary conditions of the fermions around the
ring determine whether there is an exact zero-energy Majo-
rana mode (c.f. Ref. 29). Interestingly, the boundary condi-
tion around a dislocation ring depends on its linking with other
dislocation rings and with flux/vortex lines. To illustrate, con-
sider the RKK model with ν = (1, 1, 0) and consider two
edge dislocation lines: one which is a circle in the xy-plane
with b1 = (0, 0, 1), and one with b2 = (1, 0, 0) aligned along
the ẑ direction so that l = ẑ. If these two dislocations are not
linked, the MBS along the xy-plane dislocation loop has a fi-
nite size gap with no exact zero mode because the boundary
conditions are (effectively) anti-periodic due to a Berry phase
effect29. This can be shown in the decoupled-layer limit as in
Fig. 3(c), in which case the in-plane dislocation circle is the
boundary of a single-layer disk, and a finite gap of order 1/R
(with R the radius of the circle) is present since the boundary
conditions are (effectively) anti-periodic.

In contrast, when the circle encloses the other dislocation
line along ẑ direction, the effect is to introduce an edge dis-
location with Burgers vector b2 in the disk, which introduces
an extra translation phase for the fermion modes on the xy-
plane dislocation loop enclosing the threaded dislocation line.
When the condition

N0 ≡ NL (b1 × b2) · ν = 1 mod 2, (8)

where NL is the linking number of the two edge dislocations,
is met, the boundary conditions are shifted exactly back to ef-
fectively periodic, and a MBS will appear. Since MBS have to
come in pairs, there must also be a MBS along the other dislo-
cation which is threaded through the disk30. In fact, if the dis-
location line along ẑ is glued to form a closed loop then it will
also clearly receive a translation phase which will convert the
boundary conditions to effectively periodic exactly when the
same condition is met. Since any generic superconductors can
be adiabatically deformed to the decoupled layer limit (due to
the absence of strong invariant in 3D), the number of MBS on
linking dislocations can be determined generically from this
argument. Importantly, the dependence on l has dropped out
which means that N0 is topological and does not require the
addition of translation symmetry along the dislocations. Thus,
we see that a crucial consequence of the secondary weak in-
variant is the determination of bound states on linked dislo-
cations. This is one of the main results of this article, and it
provides a mechanism to generate stable MBS on defects even
in superconductors with an even-integer or vanishing Chern
number. If we had left ν as an anti-symmetric tensor this in-
variant would simply be the contraction of the tensor with the
Burgers’ vectors of both dislocation lines.

While the primary weak invariant N1 has no effect in the
linking of two dislocations, it does determine the MBS when
linking occurs between dislocation lines and flux/vortex lines.
When a superconducting vortex ring is linked with a disloca-
tion ring, the boundary condition for the Majorana fermion
along the dislocation line will change. For odd N1 such a
boundary condition change results in a single MBS on the

dislocation line, and another one on the vortex line. The exis-
tence of a MBS on the dislocation line is determined by

Ñ0 ≡ ÑLN1 mod 2, (9)

where ÑL is the linking number between a dislocation line
and a vortex line.

Discussion and Physical Consequences of Dislocation
Bound States: So far we have mentioned how one might
distinguish the two pairing scenarios using the low-energy
boundary modes. Now let us indicate several more distin-
guishing features determined from our dislocation analysis
above.

(1) Due to the nontrivial primary weak topological invari-
ant n, the dislocations with Burgers vector b = ẑ have chi-
ral Majorana fermion modes. Thus, in scenario (i) each such
dislocation carries a (localized) “persistent” chiral energy cur-
rent IE =

πk2BT
2

24~ at finite temperature31. However, we should
clarify that this ”persistent energy current” carried by a chiral
Majorana mode is not in contradiction with the fundamental
principles of thermal transport (such as heat can only flow in
non-equilibrium) because the number of left and right moving
Majorana modes is always the same in any physical system.
For our case this implies that since in a physical crystal dis-
location lines must come in pairs if they extend between two
boundaries, or form loops if the do not, there is no way to ex-
tract an energy transport current without perturbing the system
away from equilibrium. Locally there is an energy current on
every dislocation even without a thermal gradient, however a
real transport experiment is sensitive to the global energy cur-
rent and the currents of the dislocations and anti-dislocations
and dislocation loops will globally cancel. With a random
distribution of dislocations in the system, a net chiral energy
flow will not be observed when a temperature gradient is ap-
plied. However, the chiral energy current along random dislo-
cations will contribute a thermal conductivity that is propor-
tional to the dislocation density. Furthermore, it is possible
to have a strained system with imbalanced dislocation lines
which could conduct a net energy current since the strain will
cause an inhomogeneous dislocation density. We should note
that similar energy flows might also be observed on vortex
lines in TSCs that have bound low-energy chiral modes32,33.

Compared to the thermal current carried by the edge states
which is easily overwhelmed by bulk thermal conduction, the
dislocation current can be a bulk effect that remains finite in
the thermodynamic limit, and this would be a signature of sce-
nario (i) where the px + ipy quasi-2D pairing dominates. In
scenario (ii), if the px+ ipy gap is weak then the chiral modes
on the dislocations will not be localized and will hybridize
with other low-energy modes and annihilate. Thus, we gener-
ically would not expect chiral energy currents on dislocations
unless the the px + ipy gap is strong.

(2) Another distinguishing feature arises for linked defects.
For an edge dislocation ring in the xy-plane (with Burgers
vector b1 = ẑ) and a second edge dislocation along the z-
axis threading the ring (with Burgers vector b2 in-plane), a
Majorana zero mode on the second dislocation may be ob-
servable by scanning tunneling microscopy (STM). In partic-
ular, when the first dislocation is at a crystal surface, it will
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be a disk-shaped plateau on the surface, threaded by the sec-
ond dislocation line and be easy to locate using, for example,
TEM. If linked dislocations exhibit the zero-energy MBS it
is an immediate smoking gun indication for the RKK pairing,
i.e. scenario (ii).

Given the same set up for the surface dislocation we can
also apply a magnetic field. For scenario (i) the STM signal
will exhibit a clear even-odd dependence based on the num-
ber of vortices piercing the dislocation ring plateau. When
the number of vortices is odd then there should be a zero-
energy bound state on both the vortex and the dislocation loop,
and when the number of vortices is even then there will not
be a zero mode. Thus, the even-odd effect would be a clear
signature of scenario (i). However, if the proximity-induced
px + ipy gap in scenario (ii) becomes large then this effect
would also be present in that case. However, since we expect
the gap to be weak then the zero-mode on the vortex and that
on the dislocation loop will hybridize and open a gap, thus
presenting the observation of any zero-modes in STM.

These two possibilities yield useful experimental proposals
for how to distinguish the two pairing scenarios. To some ex-
tent, since the proposals are based on weak topological invari-
ants, then they should be protected by translation symmetry.
Even though clean crystal samples of Sr2RuO4 are available
there will always be some disorder which breaks the transla-
tion symmetry. Thus, some comments on the stability of our
predictions in the presence of disorder are necessary, although
this topic is an active area of research and we will leave a full
discussion for future work.

For the primary weak invariant, i.e. either pairing scenario
(i), or scenario (ii) with a strong induced px + ipy quasi-2D
gap, the low-energy bound states on a dislocation line will be
chiral, and robust to the addition of disorder as long as no low-
energy, delocalized channels couple to the modes. We thus
expect the modes to be stable for weak to moderate strength
disorder. In order for the modes to be destroyed there must be
some mechanism for them to leak away from their dislocation
line and couple to modes on a separate dislocation line in the
bulk or on the surface. There could be some local fluctuation
of the disorder potential that might destabilize the modes in a
local region, or the disorder could be strong enough to close
the bulk/mobility gap which would signal a disorder-driven

bulk topological phase transition. The stability is essentially
the same if we consider the boundary states themselves which
are also chiral, and for zero-energy bound states on a disloca-
tion line linked with a vortex as long as Ñ0 is non-trivial.

For the secondary weak invariant there will exist non-chiral
modes on dislocation lines and non-chiral boundary modes.
These modes are not as stable as the modes due to the pri-
mary invariant as they can be gapped/localized locally at the
dislocation line (or boundary) itself. This can happen from
local disorder at or near the dislocation line which can local-
ize the low-energy modes. Even non-random, but translation-
symmetry breaking perturbations could localize the modes.
We thus expect these modes to be stable only in the case of
weak disorder.

As we have emphasized the secondary weak invariant also
has another consequence. That is, for the secondary weak in-
variant there will exist zero-energy bound states on linked dis-
location lines. These modes are insensitive to disorder on the
dislocation itself, but can be destroyed if they come too close,
or couple through delocalized modes, to other zero-energy
states. These modes are thus the most stable consequence
of bound states due to the secondary weak invariant and we
expect them to be stable for weak to moderate disorder.

In conclusion, we have observed that the RKK pairing
induces a non-trivial secondary weak invariant which dis-
tinguishes it from the primary weak invariant of the chiral
px + ipy state. We then showed that this secondary weak in-
variant has several interesting consequences which can help to
experimentally distinguish the two pairing scenarios, the most
notable of which is the presence of Majorana bound states on
linked dislocation lines. For future work it will be exciting to
consider the effects of strong spin-orbit coupling and disorder.

After the completion of this work we noticed a recent
preprint with similar themes albeit a different focus34. Ac-
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