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Elastic properties and stress-temperature phase diagrams of high-temperature phases
with low-temperature lattice instabilities
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The crystal structures of many technologically important high-temperature phases are predicted
to have lattice instabilities at low temperature, making their thermodynamic and mechanical prop-
erties inaccessible to standard first principles approaches that rely on the (quasi) harmonic ap-
proximation. Here, we use the recently developed anharmonic potential cluster expansion within
Monte Carlo simulations to predict the effect of temperature and anisotropic stress on the elas-
tic properties of ZrH2, a material that undergoes diffusionless transitions among cubic, tetragonal,
and orthorhombic phases. Our analysis shows that the mechanical properties of high-temperature
phases with low-temperature vibrational instabilities are very sensitive to temperature and stress
state. These findings have important implications for materials characterization and multi-scale
simulations and suggest opportunities for enhanced strain engineering of high-temperature phases
exhibiting soft-mode instabilities.

PACS numbers: 64.10.+h,63.20.Ry,62.20.-x,63.20.dk

I. INTRODUCTION

Despite posing theoretical challenges, strongly anhar-
monic crystals and high-temperature phases are found
not only in naturally-occurring extreme environments,
such as deep within Earth,1 but also in many mod-
ern technological applications. Certain superconduct-
ing cuprates,2 ferroelectric perovskites,3 magnetic shape
memory alloys,4,5 and numerous transition metals, in-
cluding Ti, Zr, and Hf, along with their hydrides6 and
oxides,7 all exhibit high-symmetry phases at elevated
temperature that density functional theory (DFT) pre-
dicts to be dynamically unstable at 0 K.

Transition metals and their alloys, in particular, are
utilized extensively in extreme environments, where they
may eventually coexist – and interact mechanically – with
their hydrided and oxidized corrosion products. ZrH2−x,
for example, is an important corrosion product that pre-
cipitates within the Zr-alloy cladding of nuclear fuel rods.
It has a complex phase diagram with a high-temperature
cubic phase that, according to DFT, is mechanically un-
stable at 0 K with respect to tetragonal distortions.6

Constitutive relations for high-temperature phases are
essential for predicting the behavior of engineering ma-
terials in extreme environments. However, the low-
temperature lattice instabilities of cubic ZrH2 and many
other high-temperature phases make them particularly
challenging for first principles simulation. It is common
to approximate the elastic moduli of a particular crystal
by its zero Kelvin values as determined by first-principles
calculations of the curvature of the crystal potential en-
ergy with respect to strain. This approach fails for high-
temperature phases that become mechanically unstable
at low temperature as their 0-K potential energy surfaces
become non-convex.

Common statistical mechanical approaches to calcu-
late free energies at finite temperature such as the
(quasi)-harmonic approximation are also inadequate for

anharmonically-stabilized phases,8–10 The prediction of
constitutive relations for these materials instead requires
models that rigorously treat anharmonic vibrational ex-
citations. However, efficient and generalizable methods
for studying finite-temperature anharmonic effects from
first principles have remained elusive. Ab initio molec-
ular dynamics, while accurate, cannot reach thermody-
namic scales; self-consistent phonon theories, which de-
scribe the high-temperature phase using an approximate
quasi-harmonic potential,11,12 can estimate free energies
but cannot be used near second-order transitions; effec-
tive Hamiltonians,13–15 which use a reduced set of mi-
croscopic variables in order to describe anharmonicity of
dynamically unstable degrees of freedom, can elucidate
qualitative phenomena at the structural phase transition
but are less suited to predicting accurate free energies or
constitutive relations.

We recently developed a new formalism to construct
arbitrarily improvable anharmonic Hamiltonians that are
invariant to all symmetries of free space (i.e., rigid-
body rotation and translation of coordinate system)
as well as all space group symmetries of the high-
symmetry reference crystal that becomes stable at el-
evated temperatures.16 We demonstrated the ability of
this method to predict the cubic to tetragonal second-
order structural transition of unstressed ZrH2. Monte
Carlo simulations applied to the anharmonic Hamilto-
nian showed that cubic ZrH2, which is mechanically un-
stable at zero Kelvin, is thermodynamically stabilized at
high temperature by large-amplitude anharmonic vibra-
tional excitations.16

Here we study the finite temperature mechani-
cal properties of ZrH2 using our recently developed
first-principles anharmonic potential cluster expansion
(APCE)16 Hamiltonian within Monte Carlo simula-
tions. We predict the elastic moduli of both the low-
temperature tetragonal phase and the high-temperature
cubic phase and find that they are very different. While
cubic ZrH2 is mechanically unstable at zero Kelvin, its
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high-temperature elastic moduli show only a negligi-
ble dependence on temperature. The elastic moduli of
the low temperature tetragonal form of ZrH2, however,
are highly anisotropic and exhibit surprisingly strong
temperature dependence, indicating that anharmonic vi-
brational contributions to the mechanical properties of
phases that undergo a second-order structural transi-
tion can be important. We also examine the effect of
anisotropic stress states on elevated temperature elas-
tic moduli and phase stability. Such anisotropic-stress
boundary conditions are typical when a hydride such as
ZrH2 coexists coherently with its parent Zr metal.

II. METHODS

Measurements of the high-temperature phase of H-rich
ZrHx indicate that it has a cubic fluorite crystal struc-
ture consisting of a FCC Zr sublattice with H atoms at its
tetrahedral sites.17 Upon cooling, the crystal undergoes
a symmetry-breaking diffusionless transformation to a
tetragonal phase, with H remaining at tetrahedral sites of
the FCT sublattice. The resulting crystal has one lattice
parameter (c) that is shorter than the other two (a = b),
indicating “negative” tetragonality, since c/a − 1 < 0.
The tetragonality becomes more negative at lower tem-
peratures, and DFT predicts c/a ≈ 0.88 for ZrH2 at 0
K.

We can unambiguously describe the large range of lat-
tice deformations that can be realized in ZrH2 using the
Green-Lagrange finite strain tensor E = 1

2

(
F>F− I

)
.

I is the 3 × 3 identity tensor, and F is the deforma-
tion gradient tensor, which for homogeneous deforma-
tions maps the lattice vectors from the reference state to
the deformed state, so that E = 0 for the cubic reference
crystal. E is symmetric, and using Kelvin notation, we
represent its independent components as the vector

~E = (Exx, Eyy, Ezz,
√

2Eyz,
√

2Exz,
√

2Exy). (1)

The 2nd Piola-Kirchhoff stress, ~σ(P ), is work-conjugate

to ~E, such that σ
(P )
m = (∂A/∂Em) /V0, where A(T, ~E) is

the Helmholtz free energy and V0 is the volume of the
reference crystal.

The strain state ~E? is a stationary point of the free en-

ergy A(T, ~E) when the constitutive stress equation sat-

isfies ~σ(P )(T, ~E?) ≡ ~0. When ~E? = ~0 is a stationary
point (as it is for cubic ZrH2, because it corresponds to
the high-symmetry reference crystal) the free energy at
small strains is often approximated by the harmonic ex-
pression

A(T, ~E) ≈ A(T,~0) +
1

2
V0 ~E>C(T,~0) ~E. (2)

The 6 × 6 Lagrangian stiffness tensor Cmn(T, ~E?) =
(∂2A/∂Em∂En)/V0 is the first non-zero derivative of the
free energy at a stationary point. When all the eigen-
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FIG. 1: (a) The 0-K potential energy surface of the ZrH2 crys-
tal in the e2–e3 plane, where colors indicate x (blue), y (red),
and z (green) orientations of the negative tetragonal phase,
with the three tetragonal strain orientations are illustrated
pictorially. (b) A detail of the strain energy contours, where
labeled point ‘a’ corresponds to a negative tetragonal defor-
mation, which is convex, and labeled point ‘b’ corresponds to
a positive tetragonal state, which is a saddle point.

values of C(T, ~E?) are positive, the free energy is locally

convex near ~E?, and the stationary point is a minimum
of the free energy.

It is possible to transform the vector ~E so that its
components are aligned along 6 directions that preserve
the most point-group symmetries, such that C(T,~0) is
always diagonal. One such basis is

e1 = (E1 + E2 + E3) /
√

3; e4 = E4;

e2 = (E1 − E2) /
√

2; e5 = E5;

e3 = (2E3 − E1 − E2) /
√

6; e6 = E6,

which can be specified by the 6×6 matrix Q via ~e = Q ~E.
The ei act as strain order parameters, where e1 describes
volumetric deformation, e2 and e3 describe deviatoric de-
formations (i.e., to tetragonal (I) and orthorhombic (F)),
and e4, e5, and e6 describe shear deformations (i.e., to
rhombohedral, orthorhombic (I), and lower point sym-
metries). Because Q is an orthogonal matrix, the stress
conjugate to ~e is simply the symmetry-adapted stress
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~Σ(P ) = Q~σ(P ).

The strain order parameters e2 and e3 describe con-
tinuous paths linking cubic, tetragonal, and orthorhom-
bic strains. When e2 = 0, for example, e3 describes z-
oriented tetragonality, with sgn(e3) = sgn(c/a− 1). The
0-K Helmholtz free energy surface, shown in Fig. 1(a),
has a local maximum at the origin of the e2–e3 subspace,
corresponding to cubic ZrH2, while local minima occur at
negative tetragonal strains. The DFT-calculated stiffness
tensor of cubic ZrH2 thus has two negative eigenvalues,
corresponding to e2 and e3, and the crystal is harmoni-
cally (or dynamically) unstable at e2 = e3 = 0. As such,
the cubic crystal cannot exist as an equilibrium phase
at low temperature, regardless of boundary conditions.
Any small strain will spontaneously grow until reaching
one of the three tetragonal minima. The positive tetrag-
onal strains, opposite each negative tetragonal strain, are
also dynamically unstable, and appear as saddle points
in Fig. 1(a). These instabilities prevent us from describ-
ing the finite-temperature free energy of cubic ZrH2 or
predicting its constitutive relationships using a (quasi)
harmonic phonon model.

Real materials often incorporate multiple coexisting
phases, and hydrides can precipitate in Zr coherently or
semi-coherently.18,19 Mechanical equilibrium of a solid-
state multi-phase coexistence induces tractions that im-
pose a distinct anisotropic stress state on each individual
phase. These boundary conditions deviate significantly
from the usual hydrostatic boundary conditions and can
significantly alter the phase stability of a precipitating
hydride.20 At fixed number of atoms N , anisotropic stress
state ~σ(P ), and constant temperature T , the equilibrium
state is determined by a minimum of the anisotropic
Gibbs potential

Φ = U − ST − V0 ~E>~σ(P ), (3)

where S is entropy. Differentiation of Eq. (3) reveals that
Φ is an explicit function of only T , ~σ(P ), and N , and that

Ei = −(∂Φ/∂σ
(P )
i ).

The anharmonic potential cluster expansion formal-
ism resolves many of the difficulties of studying high-
temperature phases from first principles.16 The APCE
is a series expansion of the 0-K crystal potential energy
surface in terms of multibody variables, called cluster
deformation amplitudes (CDAs), which describe all de-
formational degrees of freedom of a cluster of two or more
atoms. Because the CDAs are measured in the rotated
frame of the deformed cluster, they are automatically in-
variant to rigid-body rotation and satisfy all symmetries
of free space, making them ideal metrics for very large
local deformations. The APCE basis functions are mono-
mials of the CDAs that are invariant to the space group
of ideal cubic ZrH2.

The ZrH2 APCE was fit to a set of 1484 crystal defor-
mation energies calculated using DFT, as implemented
in the Vienna ab-initio Simulation Package (vasp).21–23

The DFT parameters and fitting procedure have been de-
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FIG. 2: The stress–temperature phase diagram for (a) the
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(C)
2 = 0 contour and (b) the (Σ

(C)
2 ,Σ

(C)
3 ) plane; all other

stress components are zero. Phases are characterized, in part,
by the equilibrium lattice parameters, shown along iso-stress

trajectories at (c) Σ
(C)
2 = 0, Σ

(C)
3 = −392 MPa; (d) Σ

(C)
2 =

Σ
(C)
3 = 0; and (e) Σ

(C)
2 = 0, Σ

(C)
3 = 392 MPa; (c) and (e)

correspond to thick dashed lines in (a).

scribed previously.16 Because DFT calculations employ
a variational approach to solve for the ground-state elec-
tronic structure, they do not account for the effect of
electronic entropy. We explored the qualitative effect of
electronic entropy in our previous work (Ref.16) and de-
termined that electronic excitations should play a minor
role compared to anharmonic vibrational excitations in
determining thermodynamic properties. While electronic
entropy may act to shift features of calculated properties
to slightly lower temperatures, it should not qualitatively
change the predictions presented here. The resulting
APCE accurately describes the energetics of the 6 ho-
mogeneous strain components, as well as the 3N atomic
coordinates, of the ZrH2 crystal in terms of only 18 ex-
pansion coefficients.

We use the ZrH2 APCE Hamiltonian to perform
Metropolis MC simulations using a N~σ(P )T ensemble, in

which homogeneous strains ~E and Zr displacement fields,
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FIG. 3: Elements from the top left 3 × 3 block of the of the

6× 6 stiffness tensor, calculated at (a) Σ
(C)
2 = Σ

(C)
3 = 0 MPa

and (b) Σ
(C)
2 = 0, Σ

(C)
3 = 392 MPa. Shear stiffnesses (not

shown) are comparatively soft and depend weakly on tem-
perature and stress. C44, C55, and C66 range between 47-56
GPa at low temperature and converge toward 50 GPa at high
temperatures; all other components are zero by symmetry.
The stiffness components are indexed according to the same
convention as the elements of ~E in Eq. (1).

specified by the 3N -dimensional vector ~R, were sampled
according to the procedure described in Ref.16. Hydro-
genic degrees of freedom can be factored out via a coarse-
graining analysis.16 Classically, the ensemble probability
of a particular deformation state at constant stress is

proportional to exp
{
−
[
V (~R, ~E)− V0 ~E>~σ(P )

]
/kBT

}
,

where V (~R, ~E) is the APCE potential energy of the de-
formed crystal. Ensemble averaged quantities (e.g., 〈Ei〉)
correspond to thermodynamic state variables that can be
used to identify phase boundaries in temperature and
stress space, from which we build the comprehensive
ZrH2 phase diagram.

Thermodynamic response functions, such as the La-
grangian compliance tensor, can be related to the
ensemble-averaged covariance of the strain components,
as can be shown by explicitly differentiating Φ in terms
of the partition function to find

Sij = − 1

V0
∂2Φ

∂σ
(P )
i ∂σ

(P )
j

=
V0
kBT

(〈EiEj〉 − 〈Ei〉〈Ej〉) .

(4)
The Lagrangian stiffness tensor is given by C = S−1. We

report both C and S in Cartesian stress and strain coor-
dinate systems (i.e., not the symmetry-adapted coordi-
nates). However, we do perform a change of coordinates,
using the average displacement gradient 〈F〉 and volume
〈V〉, so that the compliance tensor relates stresses and
strains measured relative to the equilibrium lattice of the
crystal (and not the reference cubic crystal). This change
of coordinates allows easier comparison to typical exper-
imental boundary conditions. All stresses reported here
are Cauchy (or true) stresses (i.e., the stresses measured
with respect to the equilibrium dimensions of the crys-
tal). We denote the Cartesian Cauchy stresses as ~σ(C)

and the symmetry-adapted Cauchy stresses as Σ
(C)
i .

III. RESULTS

We performed Monte Carlo simulations within a 30×
30 × 30 supercell of the ZrH2 primitive cell at temper-
ature intervals of 20 K from 400 K to 1660 K, and at

a number of anisotropic stress states in the Σ
(C)
2 –Σ

(C)
3

space. The symmetry adapted stresses Σ
(C)
2 and Σ

(C)
3

are given explicitly by

Σ
(C)
2 =

(
σ
(C)
1 − σ(C)

2

)
/
√

2 (5)

Σ
(C)
3 =

(
2σ

(C)
3 − σ(C)

1 − σ(C)
2

)
/
√

6, (6)

such that Σ
(C)
2 > 0, Σ

(C)
3 = 0 corresponds to pure shear

stress in the x–y plane (i.e., tensile along x and compres-

sive along y), and Σ
(C)
2 = 0, Σ

(C)
3 > 0 corresponds to

isotropic compressive stress in the x–y plane and tensile

stress along z. Thus, Σ
(C)
3 is a field that acts to make

the crystal more tetragonal along z; +120◦ off the Σ
(C)
3

axis in the Σ
(C)
2 –Σ

(C)
3 plane describes a field that acts

to make the crystal more tetragonal along y; and −120◦

off the Σ
(C)
3 axis in the Σ

(C)
2 –Σ

(C)
3 plane describes a field

that acts to make the crystal more tetragonal along x.
Thus, for ZrH2, these three stresses are all symmetrically
equivalent.

Simulations at various stress states along the Σ
(C)
3 axis

were used to construct a ZrH2 phase diagram in the Σ
(C)
3 –

T plane, shown in Fig. 2(a). The symmetries in the

Σ
(C)
2 –Σ

(C)
3 plane allow us to easily construct the three-

dimensional ZrH2 phase diagram, shown in Fig. 2(b).
Clearly, small stresses can drastically change the phase
stability of ZrH2, as further evidenced by the equilibrium
ZrH2 lattice parameters, which are closely related to e2
and e3 and are shown in Figs. 2(c)–(e) for three different

stress states along the Σ
(C)
3 axis.

Our simulations of unstressed ZrH2 indicate that
it undergoes a second-order cubic–tetragonal transition
near 1300 K, in reasonable agreement with the Tc of
1200 K extrapolated from off-stoichiometric experimen-
tal measurements.24 Under an applied negative tetrago-
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Σ
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features. The compliance components are indexed according
to the same convention as the elements of ~E in Eq. (1). The
data were calculated in a 30 × 30 × 30 supercell of the ZrH2

primitive cell.

nal stress [Fig. 2(c)], the a and c lattice parameters be-
come closer with temperature, but never meet, and thus
the structural phase transition is completely suppressed.
In contrast, the unstressed crystal [Fig. 2(d)], clearly be-
comes cubic near 1300 K.

More intriguingly, positive tetragonal stress yields an
orthorhombic, rather than tetragonal, strain, and the
crystal becomes tetragonal only above a stress-dependent
Tc. Figure 2(e), shows the three distinct lattice parame-
ters (a < b < c) under applied positive tetragonal stress
at low temperature, which become tetragonal (a = b < c)
near 1200 K. The reason for this symmetry-breaking phe-
nomena can be illustrated using the 0-K free energy sur-
face illustrated in Fig. 1(b). The point labeled ‘a’ in
Fig. 1(b) is a deformation that can be realized at low

temperature by imposing stress state with Σ
(C)
2 = 0,

Σ
(C)
3 < 0 because the free energy has positive curva-

ture at that point. By contrast, the point labeled ‘b’ in
Fig. 1(b) is a positive tetragonal deformation, but it can-
not be realized by applying a positive tetragonal stress
at low temperature, because it is at a saddle point of the
Helmholtz free energy. Instead, application of a positive
tetragonal stress state will cause the crystal to fall into
one of two equivalent orthorhombic deformation states,

which are indicated by the black arrows originating at
point ‘b’ in Fig. 1(b). The arrows are oriented along e2,
which is the strain order parameter that describes the
structural transition from the z-oriented tetragonal crys-
tal to the orthorhombic crystal. As temperature rises,
anharmonic excitations cause increasingly larger regions
of the free energy to exhibit positive curvature, until the
free energy of point ‘b’ finally becomes convex above Tc

Using Eq. 4, the APCE enables prediction of elas-
tic properties over the entire stress-temperature phase
space, even where the equilibrium strain is dynamically
unstable at 0 K. Figures 3(a) and (b) show the calcu-
lated components from the upper 3 × 3 block of the
6 × 6 stiffness tensor, which describes the Cauchy stress
induced by an infinitesimal strain. Our results reveal
that anharmonic phase stabilization fundamentally al-
ters the behavior of finite-temperature mechanical prop-
erties. At low temperatures, the calculated stiffness com-
ponents of unstressed ZrH2 [Fig. 3(a)] are similar to 0-K
moduli of tetragonal ZrH2 obtained from independent
DFT analyses.25 However, our results reveal the very
strong thermoelastic response of unstressed ZrH2 below
Tc, where heating causes softening of all stiffness compo-
nents except for C31 and C23, which stiffen. Above Tc,
the stiffness components, which now exhibit cubic sym-
metry, vary more weakly with temperature and are quite
softer, on average, than their 0-K values. Pronounced
critical softening of all stiffness components occurs at
Tc ≈ 1300 K, which is most visible as a divergence of
the compliance components S11, S22, and S33, which are
shown for unstressed ZrH2 in Fig. 4(a). The compliance
components in Fig. 4(a) are shown on a logarithmic scale
in order to reveal their temperature dependence away
from Tc.

Application of anisotropic stress significantly changes
the magnitude and temperature dependence of the elastic
stiffness. The stiffness components at negative tetrag-
onal stress (not shown) are slightly softer than in the
unstressed state, and exhibit similar low-temperature
trends, but because the phase transition is suppressed,
no critical softening occurs. Under positive tetragonal
stress, the 6 distinct stiffness components at low tem-
perature [Fig. 3(b)] reflect the tetragonal–orthorhombic
symmetry-breaking and differ significantly from the un-
stressed case. In particular, C31 and C12 become much
softer under positive tetragonal stress, while C33 and
C23 become much harder. The compliance components
S11 and S22, which are shown in Fig. 4(b), exhibit pro-
nounced critical softening, in contrast to S33, which re-
mains continuous through the transition. The reason
for this distinction is that, under the stress condition

Σ
(C)
3 > 0, Σ

(C)
2 = 0, the orthorhombic–tetragonal order

parameter is e2, with e2 > 0 indicating an orthorhom-
bic crystal with ax < ay and e2 < 0 indicating an or-
thorhombic crystal with ay < ax, where ax and ay are
the x- and y-aligned conventional lattice parameters, re-
spectively. As such, S33 exhibits no divergence at the
orthorhombic–tetragonal transition because E3 is orthog-
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onal to the order parameter e2. Likewise, C13, C33, and
C23 do not exhibit critical softening for the same reason.

IV. DISCUSSION

Our analysis of ZrH2 demonstrates how extreme an-
harmonicity, which exists when dynamically-unstable re-
gions of the crystal potential energy surface are acces-
sible at thermal energy scales, inevitably results in a
complex interplay among stress, temperature, phase sta-
bility, and mechanical behavior. This is especially true
when the dynamical instability is described by multiple
order parameters, such as e2 and e3 for ZrH2. More-
over, because the strain remains continuous through the
structural transition, the lattice parameters deviate from
their 0-K values even at low temperature due to strong
anharmonic vibrational excitations. Consequently, the
curvature of the 0-K energy surface does not accurately
predict finite-temperature elastic properties, even below
Tc. This extreme anharmonicity results in a strong tem-
perature dependence of the moduli below Tc, as is evi-
dent in Figs. 3(a)-(b). We demonstrated that, by varying
the direction and magnitude of stresses conjugate to the
strain order parameters, we are able to either suppress
the structural phase transition or qualitatively change its
nature, which has practical importance for both applica-
tion and mesoscale simulation.

Many high-temperature phases exist as polycrystals,
whose domains typically experience symmetry-breaking
stress boundary conditions. As we have shown here for
the case of ZrH2, such boundary conditions can signif-
icantly alter phase stability and mechanical properties.
Experimentally, this distribution of stress states may re-
sult in apparent “smearing” of Tc and the associated
critical phenomena. Theoretically, it significantly com-
plicates predictive simulation of macroscopic systems.
These difficulties are not readily apparent when using
single crystals or powder samples for material character-
ization, and thus experimental data cannot necessarily
resolve the unsuitability of 0-K calculations for parame-
terizing meaningful mesoscale and continuum models of
anharmonically-stabilized phases.

The stochasticity of domain orientation in polycrys-
talline samples additionally complicates comparison of
our results to experiment. The anisotropic mechanical
properties of H-rich zirconium hydrides have not been
characterized experimentally, although measurements of
the Young’s modulus and shear modulus have been per-
formed on polycrystalline ZrHx. Yamanaka, et al., cal-
culated isotropic elastic moduli of polycrystalline ZrHx

pellets based on ultrasonic pulse–echo measurements of
longitudinal and shear sound velocities at room temper-
ature for x as high as 1.726. They found that the elastic
moduli decreased with the addition of hydrogen, and at
x ≈ 1.7 inferred a Young’s modulus of 127 GPa and a
shear modulus of 48 GPa. We can use the Voigt aver-

aging method27 to approximate an upper bound on the
elastic moduli of a polycrystal of ZrH2 implied by our
calculated stiffness tensor. The Voigt average gives the
isotropic elastic properties of a textureless polycrystal
of a harmonic solid under a homogeneous strain state.
The Voigt-averaged Young’s modulus, calculated from
the stiffness tensor of the unstressed crystal [i.e., the val-
ues in Fig. 3(a)], is 99.9 GPa at 400 K and decreases
with temperature until reaching a minimum of 83 GPa
at cubic–tetragonal transition temperature. The Voigt-
averaged shear modulus, again based on the data in
Fig. 3(a), is 48.5 GPa at 400 K and decreases to a min-
imum value of 42.1 GPa at the Tc. The Voigt average
is only a rough approximation of polycrystal elasticity,
and the mechanical properties of a real polycrystal can
depend strongly on microstructure and texture28, espe-
cially for a strongly anharmonic material such as ZrH2.
Nevertheless, the Voigt-averaged moduli obtained from
our calculations agree well with an extrapolation of the
measurements reported by Yamanaka, et al.26.

V. CONCLUSION

We have predicted the elastic properties and high-
temperature phase stability for anisotropic stress states
of ZrH2, a system exhibiting a high temperature cubic
phase that becomes mechanically unstable at low temper-
ature. Combining a first-principles anharmonic potential
cluster expansion for ZrH2 with Monte Carlo simulations
we find a strong dependence of elastic moduli on both
temperature and stress. Furthermore, phase stability
and second-order transition temperatures are also found
to be very sensitive to the anisotropic stress states typi-
cally found in solid-state multi-phase equilibrium. These
results suggest that the mechanical properties of many
important materials exhibiting high-temperature phases
with low-temperature lattice instabilities cannot be es-
timated reliably with 0-K first-principles approaches or
with measurements performed at room temperature un-
der hydrostatic pressure conditions.
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