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Abstract

We introduce general principles for achieving maximal violation of detailed balance in thermal

radiation. We validate these principles by direct numerical calculations, based on fluctuational

electrodynamics, on thermal emitters constructed from magneto-optical photonic crystals. Such a

capability to maximally violate the detailed balance provides new opportunities for the design of

thermal absorber and emitter.
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For thermal radiation, the principle of detailed balance leads to the general form of the

Kirchhoff’s law [1–4], which states that

e(ω, θ, φ) = α(ω, θ, φ) (1)

where e is the directional spectral emissivity, α is the directional spectral absorptivity, ω

is the frequency, and θ and φ specify a direction. Seeking to violate detailed balance is

fundamentally important, because the principle of detailed balance implies the existence of

an intrinsic loss mechanism that limits the efficiency of many energy conversion processes.

For example, a solar absorber absorbs light from the sun. The detailed balance then dictates

that the solar absorber must therefore radiate back to the sun. Such a radiation back to

the sun is an intrinsic loss mechanism that can only be eliminated by maximal violation

of detailed balance. The ability to significantly violate detailed balance therefore points

to a previously unexplored pathway for fundamental improvement of a wide variety of en-

ergy conversion processes, including solar energy harvesting and thermal radiation energy

conversion.

Microscopically, Eq. 1 can be proven using the fluctuation-dissipation theorem, but only

for emitters consisting of materials satisfying Lorentz reciprocity [5, 6]. It has been noted

theoretically that non-reciprocal materials, such as magneto-optical materials, may not obey

detailed balance [7] and hence may not satisfy Eq. 1, without violating the second law of

thermodynamics [8]. However, there has not been any direct experimental measurement or

theoretical design of actual physical structures that violate detailed balance.

In recent years, significant efforts have been devoted to the use of engineered pho-

tonic structures, including photonic crystals [9–26], optical antennas [27–29] and meta-

materials [30–32], for the control of thermal radiation properties. Photonic structures can

exhibit thermal radiation properties that are significantly different from naturally occur-

ring materials. Notable examples include the creation of thermal emitters with narrow

spectrum [12, 15, 25] or enhanced coherence [11, 17]. All previous works on the thermal

radiation properties of photonic structures, however, consider only reciprocal materials. In

this Letter, using the formalism of fluctuational electrodynamics [33–37], we present a direct

numerical calculation of thermal emission from non-reciprocal photonic structures, and in-

troduce the theoretical conditions for such structures to maximally violate detailed balance,

i.e. to achieve a unity difference between directional spectral emissivity and absorptivity.
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Non-reciprocal photonic structures represent an important emerging direction for the

control of thermal radiation. From a fundamental point of view, significant numbers of

theoretical approaches for the calculations of far-field thermal radiation use the Kirchhoff’s

law of Eq. 1 by computing the absorption properties [15–19, 21, 22, 24]. Such an approach

is no longer applicable for non-reciprocal thermal emitters, and direct calculations using

the formalism of fluctuational electrodynamics become essential. From a practical point

of view, creating non-reciprocal thermal emitters can have important implications for the

enhancement of the efficiency for solar cells [38, 39] and thermophotovoltaic systems [40].

We start by reviewing the general thermodynamic constraints on non-reciprocal thermal

emitters. Consider an emitter undergoes radiative exchange through two radiation channels,

A and B, with two separate blackbodies also labelled A and B, respectively. Part of the

emission from either blackbody A or blackbody B towards the emitter is absorbed, as

described by absorptivities αA and αB, respectively. The emitter also emits towards the

blackbodies as described by emissivities eA and eB, respectively. We consider the equilibrium

situation where the emitter, and the blackbodies, are at the same temperature T . The second

law of thermodynamics then requires that there is no net energy flow in or out of the emitter,

independent of whether the emitter is reciprocal or not. In the reciprocal case (Fig. 1a),

αA,B = eA,B, and as a result the second law of thermodynamics is satisfied. In the non-

reciprocal case (Fig. 1b), consider the emission from blackbody A, through channel A, we

assume that the part of the emission that is not absorbed by the emitter is reflected through

channel B to blackbody B, with a reflectivity rA→B. As a result, we have

αA + rA→B = 1. (2)

On the other hand, blackbody A receives emission both from the emitter and the part of

emission from blackbody B that is not absorbed by the emitter, i.e.

eA + rB→A = 1. (3)

Combining Eqs. 2 and 3 and similarly consider the energy balance of the blackbody B, we

have

eA − αA = rA→B − rB→A = αB − eB (4)

For non-reciprocal systems, rA→B 6= rB→A [41–43]. As a result, eA,B 6= αA,B, and the detailed

balance is violated. On the other hand, from Eq. 4 there is no net energy flow in and out
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FIG. 1. (Color online). Energy flow diagrams in the cases of (a) a reciprocal emitter, and (b) a

non-reciprocal emitter. The emitter undergoes radiative exchange with two separate blackbodies

labelled A and B, respectively. The emitter and the blackbodies are at the same temperature T .

of the emitter as well as bodies A and B, as required by the second law. Thus, for the non-

reciprocal structure considered here the second law in fact dictates the violation of detailed

balance. The argument here is equivalent to Ref. [7] which uses bidirectional reflectance

distribution functions, but simplified and generalized so that the argument can be directly

applied to the physical system that we will consider in this Letter that has only specular

reflection.

As a main contribution of this Letter, we next introduce the general conditions in order

to achieve maximum violation of detailed balance in a physical structure. As the emitter,

we consider a photonic crystal emitter structure that is periodic in x-direction, emitting to

free space on top of the structure, with a mirror at the back side (Fig. 2). For simplicity we

consider only a two-dimensional case where both the fields and the structure are assumed

uniform along the z-direction. The principle described here however is generalizable to

three dimensions. For such a structure, its electromagnetic properties are characterized by a

photonic band structure ω(kx), where ω is the frequency, and kx is the parallel wave vector.

Corresponding to the scenario as described in Fig. 1, we study the directional spectral

emissivity and absorptivity e(ω,±θ) and α(ω,±θ), respectively, where ±θ are the angles of

incidence for the two channels. Consider light incident with an angle of incidence θ, having

a parallel wavevector kx = ω/c sinθ. With a proper choice of periodicity that is sufficiently

small, by momentum conservation, light can only be reflected into the −θ channel (Fig. 2).

Moreover, if the ω and kx of the incident light satisfy the photonic band structure ω(kx) of the

emitter, a mode inside the emitter will be resonantly excited, as a result there will typically

be strong absorption, with part of the resonant excitation contributing to the reflected wave

in the −θ channel. Similarly, the reflection and absorption properties for light incident with
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FIG. 2. (Color online). A schematic of a photonic crystal structure for maximal violation of

detailed balance. The structure consists of an n-InAs grating structure atop a uniform metal layer.

The structure is periodic in x-direction, and has the following geometry parameters: p = 7.24 µm,

w = 3.2 µm, t1 = 1.981 µm and t2 = 0.485 µm. External magnetic field is applied in z-direction.

TM polarization with electric field in x-y plane is considered.

an angle of incidence of −θ will be controlled by the photonic band structure at ω(−kx).

For an emitter constructed from a reciprocal material, its photonic band structure is

symmetric in the kx-space [44], i.e. ω(kx) = ω(−kx). The resonance frequencies for lights

incident with an incidence angle of either θ or −θ are the same, and rθ→−θ = r−θ→θ. As a

result, from Eq. 4 we have e(ω,±θ) = α(ω,±θ), and thus detailed balance is satisfied. On

the other hand, with the breaking of reciprocity, for example by the use of magneto-optical

material, one can achieve an asymmetry of the photonic band structure in kx-space [41, 45–

48], i.e. ω(kx) 6= ω(−kx). In such a case, the resonance conditions for the two channels are

no longer the same, hence rθ→−θ 6= r−θ→θ, and as a result detailed balance can be violated.

In order to achieve maximum violation of detailed balance, from Eq. 4, one needs to have

rθ→−θ ≈ 1, and r−θ→θ ≈ 0. Using coupled mode theory (CMT) [49], when the frequency of

the incident light is near-resonant, one can show that

r(ω)θ→−θ =
[ω − ω(kx)]

2 + (γi − γe)
2

[ω − ω(kx)]
2 + (γi + γe)2

(5)

and

r(ω)−θ→θ =
[ω − ω(−kx)]

2 + (γi − γe)
2

[ω − ω(−kx)]
2 + (γi + γe)2

, (6)

where for simplicity we have assumed that the two resonances at ω(kx) and ω(−kx) have

the same intrinsic material loss rate γi, and external leakage rate γe. Therefore, to achieve

maximum violation of detailed balance, the structure needs to provide critical coupling for
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light incident with an angle of θ, i.e.

γi = γe, (7)

and also needs to be sufficiently off resonance for light incident with an angle of −θ, i.e.

|ω(kx)− ω(−kx)| ≫ γi,e. (8)

We provide a brief comment on some of the assumptions for Eqs. 5 and 6. The coupled

mode theory is valid for resonance systems having a relatively high quality factor [49] and

therefore applies to our system. Also, when compared with the underlying reciprocal struc-

ture, the introduction of non-reciprocal effects typically shifts the resonance frequency by

a substantial amount, without significantly influencing the intrinsic material loss rate and

external leakage rate of the resonance.

We implement the general consideration above with a photonic crystal structure as shown

in Fig. 2. The photonic crystal structure consists of an n-InAs grating structure with 7.24 µm

periodicity, on top of a uniform metal layer acting as a mirror. For most of the calculations

in the paper, we assume the mirror to be a perfect electric conductor (PEC). The effect of

using a lossy aluminum mirror will be discussed towards the end of the paper. We consider

the TM polarization with electric fields in the x-y plane. To break reciprocity, we use a

Voigt geometry, where an external magnetic field is applied along the translation-invariant

z-direction. The relative permittivity tensor of n-InAs in the presence of the B field is [50–

52]:

¯̄ǫ =











ǫ∞ −
ω2
p
(ω+iΓ)

ω[(ω+iΓ)2−ω2
c
]

iω2
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c
]

0

−
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]
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,

where ǫ∞ = 12.37 [53] is the high-frequency permittivity, Γ is the relaxation rate, ωp =
√

nee2/(m∗ǫ0) is the plasma frequency, and ωc = eB/m∗ is the cyclotron frequency. Here ne

is the electron carrier density, m∗ is effective electron mass, and B is the external magnetic

field. We assume a doping concentration ne = 7.8× 1017 cm−3. For the given doping level,

the effective electron mass is m∗ = 0.033 me [53] (me is electron mass), and relaxation

rate Γ is calculated from A = 4π/λ · Im

[

√

ǫ∞ −
ω2
p

ω(ω+iΓ)

]

, where experimental absorbance

A = 0.0382 × λ3 (with λ in µm, and A in cm−1) is extracted from Ref. 53. We consider

experimentally-achievable external magnetic field B = 3 T . As our structure operates at
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T ≥ 300 K, where thermal energy is larger than Landau splitting energy ~ωc, Landau

quantization is ignored.

The band structure of the photonic crystal can be understood by first considering a

uniform slab of n-InAs with a thickness of 1.361 µm, atop PEC mirror. This uniform slab

contains the same amount of n-InAs per unit area as the structure in Fig. 2. Its dispersion

relation ω(kx) can be calculated from:

tan(kyt) =
ǫ⊥kyαy

ǫ⊥(ω/c)2 − k2
x − ηkxαy

(9)

where ǫ⊥ = Re(ǫxx) = Re(ǫyy), gyration η = Im(ǫxy) = −Im(ǫyx), t is the thickness of the

uniform slab, ky =
√

(ω/c)2 (ǫ⊥ − η2/ǫ⊥)− k2
x is y-component wave vector of the guided

mode inside the uniform slab, and αy =
√

k2
x − (ω/c)2 describes the exponential decay of

the fields in vacuum. When η 6= 0, as will occur when the magnetic field is applied, we have

ω(kx) 6= ω(−kx).

To determine the dispersion relation of the photonic crystal, we compute the directional

spectral absorptivity as shown in Fig. 3. We calculate absorptivity by a Fourier modal

method adapted for non-reciprocal structures [54]. The location of the absorption peak in

the ω-kx space, which corresponds to the band structure of the photonic crystal, compares

quite well with the folded band structure of the uniform slab. The effect of periodicity results

in part of the band structure being folded above the light line, creating guided resonances

which then manifest as absorption resonances. In Fig. 3, we observe ω(kx) 6= ω(−kx) in the

band structure of the photonic crystal.

In connection of the theory as shown earlier, we show the reflection spectra rθ→−θ, and

r−θ→θ in Fig. 4. In our system, the periodicity is chosen to be small enough such that only

specular reflection occurs. For reciprocal system, these spectra should be the same. In the

presence of B, we see a difference between rθ→−θ and r−θ→θ. The reflection spectra agree

very well with coupled mode theory fitting using Eqs. 5 and 6, as shown in Fig. 4, with

the parameters of the theoretical fit included in the caption of Fig. 4. The resonances are

close to the critical coupling condition, as can be seen either by noting that peak absorption

approaches 100%, or by examining the relevant internal absorption and external leakage

rates in Fig. 4. The resonance frequency separation |ω(kx) − ω(−kx)| is much larger than

the decay rates, and satisfies the requirement of Eq. 8.

The calculation above, on the absorption properties of the photonic crystal, shows that
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FIG. 3. (Color online). Absorptivity for different parallel wave vectors and frequencies, for the

structure in Fig. 2 with PEC as mirror, at B = 3 T . The black and blue solid curves denote the

peaks of absorptivities at positive and negative parallel wave vectors, respectively. The green solid

curve is the mirror reflection of the blue solid curve. The grey solid curves denote the folded band

structure for a 1.361 µm-thick uniform n-InAs atop PEC mirror without external B field.
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FIG. 4. (Color online). Reflectivity spectra of rθ→−θ and r−θ→θ, for the structure in Fig. 2

with PEC mirror, at B = 3 T and θ = 61.28◦. The parameters for the coupled mode theory

(CMT) fitting using Eqs. 5 and 6 are: ω(kx) = 456.6 × 1011 rad/s, ω(−kx) = 463.7 × 1011 rad/s,

γi,kx = 1.22 × 1011 rad/s, γe,kx = 9.78 × 1010 rad/s, γi,−kx = 1.33 × 1011 rad/s and γe,−kx =

1.42 × 1011 rad/s.

such a photonic crystal satisfies all the theoretical conditions for maximum violation of

detailed balance. As a direct check of the theoretical concept, we now proceed to compute the

directional spectral emissivity and compare that with the corresponding directional spectral

absorptivity. Obviously, since our goal is to demonstrate violation of detailed balance, we

cannot use absorptivity calculation to infer about emissivity, as was commonly done in

the literature on thermal radiation calculation [15–19, 21, 22, 24]. Instead, to compute
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emissivity, we provide a direct calculation based on fluctuational electrodynamics. In this

approach, the thermal emission is generated by fluctuating random current j(r, t) inside the

material. The magnitude of the fluctuation is related to the imaginary part of the dielectric

tensor:

〈jk(r, ω)j
∗

l (r
′, ω′)〉 =4πωΘ(ω, T )δ(r− r′)δ(ω − ω′)

[ǫkl(r, ω)− ǫ∗lk(r, ω)] /(2i) (10)

where Θ(ω, T ) = ~ω/(exp(~ω/kB/T )− 1). This form of the fluctuation-dissipation theorem

is appropriate for magneto-optical materials [37]. We assume the structure is in local thermal

equilibrium with a uniform temperature T . To compute the resulting energy flux from such

sources, we use a Fourier modal method, where the fluctuating random current j(r, t), the

dielectric constant profile in each patterned layer, and the electromagnetic fields, are all

expanded in Fourier space. We use a numerically stable scattering matrix formalism [54]

to relate Fourier modal amplitudes between layers. The magnitude of the fluctuation is

determined from Eq. 10.

In Fig. 5a and b, we show the emissivity spectra, for the structure atop PEC mirror

(Fig. 2), at θ = 61.28◦, and compared to the absorptivity spectra at the same angle. Fig-

ure 5a shows the calculation result when B = 0. The absorptivity and emissivity spectra

perfectly overlap, and detailed balance is satisfied in this case as expected. We emphasize

that our computation method itself does not use reciprocity. Thus the agreement of two

separate calculations on absorptivity and emissivity provides a direct check of our numerical

approach. With B = 3 T (Fig. 5b), the absorptivity and emissivity no longer overlap, in-

dicating the violation of detailed balance. The contrast in directional spectral absorptivity

and emissivity can be as large as 12.7 dB at the wavelength of 15.92 µm. Thus, our struc-

ture indeed provides near maximum violation of detailed balance. The results here provide

a numerical validation of the theoretical condition.

Figure 5c shows the calculation results for the absorptivity and emissivity, when we

replace the PEC mirror with a more realistic aluminum mirror. The effect of near-maximum

violation of detailed balance persists. The contrast ratio between the directional spectral

emissivity and absorptivity is as large as 10.2 dB at the wavelength of 15.96 µm, with

θ = 61.28◦.

The capability to achieve significant violation of detailed balance may provide new op-
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FIG. 5. (Color online). Absorptivity (α) and emissivity (e) spectra, for the structure atop PEC

mirror (Fig. 2), at θ = 61.28◦, and (a) B = 0 T or (b) B = 3 T . (c) Absorptivity and emissivity

spectra, for the structure atop aluminum (Al) mirror (Fig. 2), at θ = 61.28◦ and B = 3 T .

portunities for the design of thermal absorber and emitter. By violating detailed balance,

the thermal radiation from the absorber needs not be sent to the source, but instead can be

reused to boost the energy conversion efficiency [38, 39]. Our design for an thermal emitter

that maximally violates detailed balance therefore points to the new opportunities to exploit

non-reciprocal photonics to enhance the efficiency of renewable energy systems.
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[47] M. Vanwolleghem, X. Checoury, W. Śmigaj, B. Gralak, L. Magdenko, K. Postava, B. Dagens,

P. Beauvillain, and J.-M. Lourtioz, Phys. Rev. B 80, 121102 (2009).

[48] A. B. Khanikaev, A. V. Baryshev, M. Inoue, and Y. S. Kivshar, Appl. Phys. Lett. 95, 011101

(2009).

[49] H. Haus, Waves and Fields in Optoelectronics (Prentice Hall, 1984).

[50] K. Seeger, Semiconductor Physics: An Introduction (U.S. Government Printing Office, 2004).

[51] V. I. Pipa, A. I. Liptuga, and V. Morozhenko, J. Opt. 15, 075104 (2013).

[52] S. Law, D. C. Adams, A. M. Taylor, and D. Wasserman, Opt. Express 20, 12155 (2012).

[53] O. Madelung, Semiconductors: Data Handbook, 3rd Ed. (Springer-Verlag, 2004).

[54] D. M. Whittaker and I. S. Culshaw, Phys. Rev. B 60, 2610 (1999).

13


