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The magnetic ordering structure of GdPO4 is determined at T = 60 mK by the diffraction of
hot neutrons with wavelength λ = 0.4696 Å. It corresponds to a non-collinear antiferromagnetic
arrangement of the Gd moments with propagation vector k = (1/2, 0, 1/2). This arrangement is
found to minimize the dipole-dipole interaction and the crystal-field anisotropy energy, the magnetic
superexchange being much smaller. The intensity of the magnetic reflections decreases with increas-
ing temperature and vanishes at T ≈ 0.8 K, in agreement with the magnetic ordering temperature
TN = 0.77 K, as reported in previous works based on heat capacity and magnetic susceptibility
measurements. The magnetocaloric parameters have been determined from heat capacity data at
constant applied fields up to 7 T, as well as from isothermal magnetization data. The magnetocaloric
effect, for a file change ∆B = 0 − 7T , reaches −∆ST = 375.8 mJ/cm3 K−1 at T = 2.1 K, largely
exceeding the maximum values reported to date for Gd-based magnetic refrigerants.

PACS numbers: 61.05.fg, 75.30.Sg, 75.50.Ee

I. INTRODUCTION

Adiabatic demagnetization of a paramagnetic salt was
the first technology applied to obtain temperatures below
0.5 K.1 Today, temperatures of 2 mK can be attained rou-
tinely by this procedure.2 For this purpose compounds
with a large magnetic moment and extremely low order-
ing temperatures are used, e.g. gadolinium gallium gar-
net3 or cerium magnesium nitrate, which contain a large
fraction of inert atoms to prevent magnetic ordering by
the exchange or dipole-dipole interactions. In the sixties,
the newly developed technology of 3He/4He dilution re-
frigeration, by which low temperatures can be maintained
continuously, gradually replaced adiabatic demagnetiza-
tion as the main method to reach temperatures between
20 mK and 1 K. Nevertheless, adiabatic demagnetization
remained an option for refrigeration, especially in cases
where the use of fluids is not convenient (e.g., in gravity-
free spacecrafts). Moreover, since the rare and strategi-
cally important 3He isotope is increasingly expensive, the
adiabatic demagnetization technique is becoming com-
petitive again. In the present context, the method is
also used for cooling in the liquid-helium temperature
range above 1 K, for which compounds with large mag-
netization under field, low magnetic anisotropy and low
magnetic ordering temperatures are desirable. The first
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and the third conditions are antagonistic to each other
since, by separating the magnetic atoms far enough to de-
crease the dipole-dipole interaction, the magnetic density
decreases likewise. However, the dipolar interaction can
still be reduced to produce ordering well below 1 K by
choosing compounds with special crystal structures. For
instance, this can be accomplished if the magnetic ions
are at short distances in a so-called “frustrated” arrange-
ment, thus leaving the small magnetic anisotropy and
large magnetic density as the only ingredients. A valid
example is gadolinium formate, Gd(HCOO)3, a mag-
netically dense metal- organic framework material that
has recently proved to be a good candidate, reaching a
record magnetocaloric effect (MCE) between ca. 1 K and
5 K,4 with a maximum magnetic entropy decrease on
isothermal magnetization −∆ST = 216.3 mJ/cm3 K−1

at T = 1.8 K for an external field variation ∆B = 7 T.
Anhydrous gadolinium phosphate, GdPO4, appears to

be another good candidate, since the ionic bonding pre-
vents strong overlap of the Gd wave functions with its
nearest neighbors (hence promoting weak exchange in-
teractions) and the absence of an orbital moment implies
a low magnetic anisotropy. This leads to a magnetic or-
dering temperature of only TN = 0.77 K.5 The magnetic
dipolar density at saturation is Ms = 155 A m2 kg−1

or ρµ0Ms = 1.2 T, similar to that of permanent mag-
nets. The magnetic entropy in the paramagnetic state,
Sm = R ln(8) = 17.3 J mol−1 K−1 = 68.6 J kg−1 K−1 =
416 J cm−3 K−1, suggests that its increase on demagne-
tization might be very high. This compound has been
studied by heat capacity and magnetic susceptibility in
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the form of nano-particles and in bulk, both for powder
samples and single- crystals.5,6 Also Monte Carlo simula-
tions were made.6 The experiments indicated a compen-
sated antiferromagnetic structure below TN , interpreted
as resulting from a competition between the dipolar, ex-
change and anisotropy energies. Because of the lack of
sufficiently detailed information, the data were analysed
in terms of a simple uniaxial two-sublattice antiferromag-
net.6 However, the field-dependent susceptibility mea-
surements on a single crystal as well as the Monte Carlo
simulations did indicate the structure to be more com-
plex. Accordingly, it was decided to investigate the mag-
netic structure by neutron diffraction on a single crystal,
which formed the main motivation for the present work.
In addition, we report and discuss new data obtained

for the MCE of this material, i.e., the isothermal en-
tropy increment (∆ST ) and adiabatic temperature in-
crement (∆TS) under given magnetic field variations, in
both cases deduced from heat capacity measurements at
constant fields (CB vs. T ) up to 7 T, and for the first
one also from isothermal magnetization (MT vs. B) mea-
surements up to 5 T.

II. NEUTRON DIFFRACTION IN GdPO4

A. Experimental

Single-crystal neutron diffraction was performed on
the instrument D9 at the high-flux reactor of the In-
stitut Laue-Langevin, using hot neutrons with a short
wavelength λ = 0.4696(2) Å, obtained from a Cu(220)
monochromator and calibrated with a single crystal of
Ge, by which the problem of severe absorption of thermal
neutrons by natural Gd can be circumvented.7 An indium
filter was used to suppress the λ/2 contamination. The
coherent scattering length for this wavelength has been
interpolated from those given in Table 1 of Ref. 8, giving
b = (1.042 − 0.034i) × 10−12 cm. The absorption cross
section was deduced from the imaginary part of the scat-
tering length −b′′ as σa = 4πb′′/k = 2b′′λ = 319 barn.9

The inverse of the neutron mean-free path is given by
Σa = σaZ/Vcell = 0.47 mm−1, where Vcell = 276.39 Å3

is the unit-cell volume and Z = 4 is the number of Gd
atoms per unit cell. For the other elements, the coher-
ent scattering lengths reported in the literature have been
taken, i.e., bP = 5.130×10−12 cm, bO = 5.803×10−12 cm,
similarly for the Gd magnetic form factor.9 For this ex-
periment, D9 was equipped with a small area detector of
64× 64 mm2 consisting of 1024 pixels at 40 cm from the
sample,10 which allowed determination of the centroids of
all observed reflections and optimal delineation of each
peak from the background. The crystal was a platelet
normal to the (101) crystal direction, 0.5 mm-thick with
face dimensions 1×1.5 mm2.
A collection of 245 unique reflections was made at

298 K using the standard four-circle setup with an Eu-
lerian cradle to orient the sample, in order to check the
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Figure 1: Variation of the intensity of the strong magnetic
reflections (1.5, 0,−1.5) and (0.5,−1,−2.5) with temperature.
Lines are guide to the eye.

reported monazite-type structure solved by X-ray diffrac-
tion.11,12 For the measurements below 1 K, the crystal
was attached to the mixing chamber of a 3He/4He di-
lution cryostat which could only be rotated around the
vertical axis. Normal-beamWeissenberg geometry, where
the crystal can be rotated around the vertical laboratory
axis with the detector rotating around vertical and hor-
izontal axes, was used for data collection in this case.
During the cooling process some strong reflections were
followed, but no evident changes were observed below
10 K. At 60 mK q-scans revealed magnetic satellites only
at (h± 1/2, k, l± 1/2), thus giving the propagation vec-
tor for the magnetic structure k = (1/2, 0, 1/2). 250 (71
observed) “nuclear” reflections with integer indices (hkl)
and 359 (105 observed) “magnetic” reflections with half-
odd h and l indices were scanned.
Finally, two strong magnetic reflections (1.5, 0,−1.5)

and (0.5,−1,−2.5) were scanned at different tempera-
tures between 60 mK and 1 K to track the evolution of
the intensity with the temperature (Figure 1). It vanishes
near 0.80 K, consistent with the peak at TN = 0.77 K, in
heat capacity.5,6

All data were corrected for background by the mini-
mum σ(I)/I algorithm13 and the Lorentz correction ap-
propriate to the particular scan geometry applied.14 Cor-
rection for absorption and calculation of the mean path
length for each reflection were carried out by Gaussian
integration15 with the program DATAP, using the calcu-
lated absorption cross section given above. Refinement of
both the crystal and magnetic structure was made using
the Fullprof Suite,16 in single-crystal mode.

B. Crystal structure at room temperature

The crystal structure at 298 K (data collection in the
conventional four-circle configuration) was refined using
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Table I: Structural parameters resulting from the refinements at 298 K and 60 mK. The space group is P21/n, with Z = 4
chemical units per cell. Fractional coordinates are in units of a, b, and c. Standard deviations in the last digit units are given
in parentheses. Rnucl, Rmag =

∑
h,k,l

|Fhkl(obs) − Fhkl(cal)|/|Fhkl(obs)| for the nuclear and magnetic reflections, respectively.

Similarly but with F 2 for R(F 2). For more details see supplementary material.28

T Atom x y z < U2 > (Å2)

298 K Gd 0.2818(3) 0.1553(3) 0.0970(3) 0.0063(10)
P 0.3028(6) 0.1608(6) 0.6130(7) 0.0077(12)
O1 0.2502(5) 0.0030(6) 0.4371(6) 0.0097(11)
O2 0.3833(6) 0.3359(5) 0.5025(6) 0.0103(11)
O3 0.4735(5) 0.1023(5) 0.8117(6) 0.0089(11)
O4 0.1218(6) 0.2105(5) 0.7122(6) 0.0089(12)

a, b, c(Å), β(◦) 6.6252(18) 6.8372(16) 6.3176(18) 104.017(12)
Rnucl = 0.06 wRnucl(F

2) = 0.11 Nobs, I > 5σ = 215 (unique)

60 mK Gd 0.2825(15) 0.154(5) 0.0995(19) 0
µ(Gd)/µB 6.57(12) 2.0(3) 3.3(2)
P 0.305(3) 0.173(9) 0.610(3) 0
O1 0.249(3) 0.000(8) 0.438(2) 0
O2 0.379(3) 0.326(12) 0.504(2) 0
O3 0.475(3) 0.114(10) 0.814(2) 0
O4 0.119(3) 0.206(11) 0.712(3) 0

a, b, c(Å), β(◦) 6.625(4) 6.82 6.317(3) 104.06(3)
Rnucl = 0.07 Rmag = 0.12 Rmag(F

2) = 0.21 Nobs,mag , I > 5σ = 105

the reported X-ray parameters as starting values.11,12

No significant differences were found in the atomic co-
ordinates with respect to those reported values. The
most relevant (and even then very small) difference con-
cerns the position of the O atoms. The P-O distances
(1.530(1) Å on average) agree with usual values for this
molecular group 1.54(2) Å.17 The maximum departure
of the O-P-O angle with respect to the ideal tetrahedral
angle is 5.6◦. The refinement parameters and reliabil-
ity factors are shown in Table I. In spite of the higher
R-value than for the X-ray experiment, the obtained po-
sitions of the O and P atoms should be considered as
more reliable than given in Refs. 11 and 12 (they claim
R = 0.031 and 0.016, respectively), due to the stronger
relative scattering amplitudes of these atoms for neutrons
than for X rays, as compared with that of Gd. The most
important error in our neutron diffraction experiment
arises from the imprecise estimation of the intensities
of some severely absorbed reflections with the incident
or diffracted beam nearly parallel to the platelet. For in-
stance among the most absorbed reflections, the observed
(2̄02) is circa three times weaker than expected before
applying the absorption correction and circa 30% weaker
after such correction, this suggesting that the absorption
can bias the results. The structural parameters are sum-
marized in Table I and in supplementary material.28

C. Crystal and magnetic structures at 60 mK

As mentioned, a set of 71 unique reflections (hkl), with
k = 0,−1,−2 and integer h and l indices was collected.
The nuclear structure was refined starting with the posi-
tional parameters at T = 298 K, fixing the thermal pa-
rameters to zero. This resulted in very similar positional

parameters as found at 298 K but with R = 0.070, indi-
cating that the anisotropic thermal parameters at 298 K
compensate to some extent for the disagreement between
calculated and observed values due to other causes, espe-
cially absorption. The cell parameter b was not refined
because the detector has a narrowly limited degree of
freedom out of the equatorial plane. Consequently all
reflections correspond to very small k-values (2nd Miller
index) and the refinement of b is ill-conditioned. Instead,
a value of b was assumed, precise enough to center all
scanned reflections. The main results of the refinement
are displayed in Table I. Details of the refinement of the
nuclear and magnetic structure refinements can be found
in supplementary material.28

Some symmetry considerations were used to solve the
magnetic structure. There are four Gd atoms in the unit
cell. For k = (1/2, 0, 1/2) and for the space group P21/n,
the irreducible magnetic representations (combinations
of the spins which transform into themselves under the
space operations) are given in Table II.
For k = (1/2, 0, 1/2), all magnetic reflections have half-

odd h and l indices, and an integer k index, which allows
us to deal with the magnetic and nuclear structures sep-
arately. Moreover for the group P21/n, some of the (h0l)
reflections are forbidden by the positional symmetry op-
erations. The magnetic structure factor for these special
reflections is

Fh0l = αf(q)
∑

j

µ⊥ exp[2πi(hxj + lzj)] (1)

where α = 2.695× 10−12 cm/µB is the magnetic scatter-
ing length, µB the Bohr magneton, f(q) the form factor
for Gd, µ⊥ the projection of the magnetic moment (in
Bohr magnetons) on the plane perpendicular to the scat-
tering vector q, and the sum runs over the four Gd atoms
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per unit cell. For a collinear structure, Fh0l can be writ- ten as

Fh0l = αf(q)µ⊥ × {exp[2πi(hx+ lz)](e1 + e4 · exp[πi(h+ l)]) + exp[−2πi(hx+ lz)](e3 + e2 · exp[πi(h+ l)]} (2)

where (x, y, z) are the coordinates of the reference Gd
atom, as given in Table I and the parameters ej = +1
or −1, (j = 1, ..., 4) define the magnetic mode F , G,
A or C, i.e. e1 = e4 = 1, e2 = e3 = −1 for a C
mode. For the F or C modes, h+ l must be even (sim-
ilarly to the extinction produced by the glide plane n
in the usual nuclear reflections) and for the G and A
modes h + l must be odd. Fifteen reflections (h0l) with
h and l half-odd were clearly observed with h+ l even al-
though there were also five weaker reflections with I > 5σ
and h + l odd, namely (1/2, 0,−7/2), (3/2, 0,−5/2),
(5/2, 0,−7/2), (7/2, 0,−5/2) and (5/2, 0, 1/2). The exis-
tence of both types of reflections implies a non- collinear
structure. The occurrence of F modes is difficult to un-
derstand on physical grounds since all the four moments
would be parallel in one unit cell, but opposite to the mo-
ments in the nearest cells. Then, the plausible irreducible
representations are Γ4 : CxAyCz or Γ3 : AxCyAz .
According to the observed (h0l) reflections, in a first

stage, we refined the moment direction assuming a
collinear C mode with the moments lying in the xz plane,
fixing the y-component, µy = 0. The least-squares proce-
dure converged, giving the moment at an angle of nearly
30◦ to the x axis, which corresponds to the irreducible
representation Γ4 : CxAyCz, with µy = 0. Finally a re-
finement was made leaving µy free (keeping just three free
parameters defining the Gd moment, i.e., the magnitude
µ and the polar angles (θ, φ) defining the orientation of
moment at site 1, all other moments being deduced by
symmetry) and using the 105 magnetic reflections with

Table II: Magnetic irreducible representations for the position
(x, y, z) in the space group P21/n for k = (1/2, 0, 1/2). The
atom 1 is at (x, y, z) = (0.2825, 0.154, 0.0995). Atoms 2, 3 and
4 are obtained by the symmetry operations 21 = 1/2−x, 1/2+
y, 1/2 − z, 1 = −x,−y − z and n = 1/2 + x, 1/2 − y, 1/2 +
z, respectively. The given combinations follow conventions
similar to that of Bertaut:18 F = s1 + s2 + s3 + s4, G = s1 −
s2+s3−s4, A = s1+s2−s3−s4 and C = s1−s2−s3+s4. All
irreducible representations are single dimensional. The sign of
the transformation of the base vectors under each symmetry
operation is given.

1 21 1 n sx sy sz

Γ1 + + + + Gx Fy Gz

Γ2 + − + − Fx Gy Fz

Γ3 + − − + Ax Cy Az

Γ4 + + − − Cx Ay Cz

I > 5σ. Here θ is the angle between the moments and
the b axis, whereas φ is the angle between the projection
of the moment on the ac plane and the c axis. The fit
led to the moment parameters given in Table I, corre-
sponding to θ = 73◦ and φ = 29◦. Moreover, this model
predicts all scanned but unobserved reflections to be very
weak, indeed. Figure 2 summarizes graphically the qual-
ity of the refinement of the magnetic structure, whereas
Figure 3 shows the nuclear and magnetic structures with
the crystal b axis upwards.

In Ref. 6 the moments were assumed to lie near the ab
plane, with c and b as the hardest and easiest directions,
respectively (model AxCyAz with µz = 0). However,
this possibility is not compatible with the observed in-
tensities in the neutron diffraction data. A refinement
fixing the moment to lie in the ab plane gives a rather
poor R = 0.19, considering all the 105 observed reflec-
tions with I > 5σ, with the two most disagreeable be-
ing (−1.5,−1, 0.5) (Icalc/Iobs = 3) and (−0.5,−2,−1.5)
(Icalc/Iobs = 0.38). In contrast, the most disagree-
able reflections for the model proposed here CxAyCz

(i.e., (0.5,−1,−2.5), Icalc/Iobs = 0.60, (2.5,−3, 0.5),
Icalc/Iobs = 0.60) correspond to strong reflections which
could be affected by an imprecise correction of extinc-
tion. They have the same discrepancy for the “easy b
direction” model. Also the modes FxGyFz and GxFyGz

can be ruled out since many strong calculated intensities
are actually observed as weak and vice-versa.
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Figure 2: (Color online) Plot of the observed vs. calculated
intensities for the (I > 5σ) magnetic and nuclear reflections.
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a

b

c

Figure 3: (Color online) Nuclear and magnetic structure at
T = 60 mK. Red: O, blue: P, yellow: Gd. Green arrows:
moments of Gd

III. HEAT CAPACITY AND

MAGNETOCALORIC EFFECT

The heat capacity CB at constant field was measured
by the relaxation method in a PPMS device from Quan-
tum Design, equipped with the 3He option (Figure 4,
top panel). Our results agree with data in the litera-
ture.5,6,19 In these publications, the data on GdPO4 for
T ≥ 15 K were found to coincide with those of the non-
magnetic isomorph LaPO4 and were analysed in terms
of a simple Debye model, giving the Debye temperature
θD = 227 K. Considering as relevant only the three acous-
tic modes in the temperature region where the magnetic
contribution is negligible (Fig. 4), a fit of the experi-
mental data to the Debye law for the phonon contribu-
tion, Cph = AT 3 = (12Rπ4/5)(T/θD)

3 where R is the
gas constant, yields the value θD = 211 K for the De-
bye temperature, i.e., close to the previous estimate.5,6

By subtracting Cph from CB, the magnetic contribution
Cm to the heat capacity is obtained. Thus, by taking
the integral E = −

∫∞

0
CmdT , the energy involved in

the magnetic ordering process can be calculated. This
yields an experimental magnetic energy per particle of
E/kB = −2.2(1) K (see also Fig. 6). We postpone a
further analysis of the magnetic heat capacity to the dis-
cussion section and will now concentrate on the magne-
tocaloric effect, whose parameters can be deduced from
it.
The total entropy S(T,B) has been computed from the

heat capacity at constant field, CB(T ), as:

S(T,B) = S(T0, B) +

∫ T

T0

CB(T )dT

T
(3)

The determination of the absolute entropies is usually
made taking T0 = 0, when S = 0, but the procedure
is not always applicable, notably in the present case
where the CB data cannot be properly extrapolated to
T → 0 due to the existence of the magnetic anomaly at
TN = 0.77 K. Different procedures were followed to deter-
mine S(T0, B) for the curves at different fields, sketched
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Figure 4: (Color online) Top: Heat capacity at applied mag-
netic field, CB(T ). Dashed line: calculation of the phonon
contribution. Bottom: Entropy S(T,B) deduced from heat
capacity. Details in the text. Dotted line: infinite tem-
perature limit for the molar magnetic entropy Sm/R(∞) =
ln(2s+ 1) for s = 7/2.

in Figure 4, bottom panel. For B = 3 T and 7 T, the ex-
perimental CB data could be extrapolated down to T = 0
by a Schottky function (that matches very well the exper-
imental CB data up to 10 K), permitting to determine the
absolute entropy at any other temperature. For B = 0,
the magnetic heat capacity decreases as T−2 above TN ,
becoming negligible at ca. 10 K, thus permitting to
determine the phonon contribution to the entropy as
Sph ≃ AT 3/3 on the basis of the aforementioned Debye
specific heat term. The magnetic entropy was assumed
to reach its maximum value of R ln(2s + 1) = R ln(8)
for s = 7/2 at ca. T = 10 K. Finally, for the data
collected for 1 T, none of the above approximations is
valid. We estimated the magnetic entropy by a mean-
field approximation in the paramagnetic state, i.e., pre-
cisely at 14.93 K (hence, very close to the R ln(8) limit).
By so doing, the entropy extrapolates correctly to T = 0.
With the aid of the so-obtained entropy curves for differ-
ent fields, the quantities ∆ST = S(T,B) − S(T, 0) and
∆TS = T (S,B) − T (S, 0) were computed, with T (S,B)
being the inverse function of S(T,B) for a given B. Fig-
ure 5 shows ∆ST and ∆TS as functions of the tempera-
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Figure 5: (Color online) Top: Isothermal entropy increment
∆ST for magnetic field increment, from zero to a given value,
as labelled, computed from isothermal magnetization mea-
surements and from heat capacity. Vertical axis reports units
in J kg−1 K−1 (left) and volumetric mJ/cm3 K−1 (right). De-
tails about the absolute entropy in the text. Bottom: Adia-
batic temperature increments, from zero field to a given value,
as labelled, computed from heat capacity data. The abscissa
is the initial temperature.

ture at zero field.
The MCE has been estimated also from isothermal

magnetization MT (B) data, collected using a MPMS-XL
magnetometer from Quantum Design. The isothermal
entropy increment ∆ST under a given field variation was
computed by integration of the well-known Maxwell re-
lation:

(

∂S

∂B

)

T

=

(

∂M

∂T

)

B

⇒

∆ST ≡ S(T,B)− S(T, 0) =

∫ B

0

(

∂M

∂T

)

B

dB (4)

For the sake of brevity, we omit M(T,B) data and plot
the ∆ST deduced from them in Figure 5. The ∆ST data
derived from magnetization agree very well with those
obtained from heat capacity and show a very large MCE,
even higher than the benchmark gadolinium gallium gar-
net20 and the record-holding gadolinium formate, which

does not exceed −∆ST = 216.3 mJ/cm3 K−1 for 7 T.4

The large MCE can be explained by the combination of a
large magnetic density, weak magnetic interactions, small
magnetic anisotropy and modest lattice contribution to
the heat capacity. This last item is an extra interesting
feature of this material with regard to refrigeration as a
small lattice heat capacity implies that the increase in the
spin entropy following the demagnetization procedure is
used almost entirely to absorb the heat from the sample
that is to be cooled. The determination of ∆TS from
heat capacity requires careful evaluation of the absolute
entropy for different fields. In the present case, the re-
sults are consistent with those obtained for ∆ST , which
are ≈ 1.7 times as large in volumetric units as those for
Gd(HCOO)3.

4 This can be mainly attributed to the sig-
nificantly larger density of Gd+3 spins in the phosphate.
The mass density of Gd(HCOO)3 is ρ = 3.86 g cm−3,
while that of GdPO4 is ρ = 6.06 g cm−3. In GdPO4, all
this results in the isothermal entropy increment reaching
−∆ST = 62.0 J kg−1 K−1 = 375.8 mJ/cm3 K−1 and the
adiabatic temperature increment reaching ∆TS = 24.6 K,
for T = 2.1 K and a 7 T applied-field change (Fig. 5).

IV. DISCUSSION

We will now discuss the information collected thus far
on the magnetic interactions and anisotropy parameters
of GdPO4. The spin-Hamiltonian for the s = 7/2 Gd3+

spins can be written as:

H = ḡµBB · s+HCF +Hdip +Hex, (5)

that is the sum of the Zeeman interaction and the crystal-
field (CF), dipolar and superexchange interactions, re-
spectively. The dipolar term can be readily computed
for any spin configuration as a summation of moment-
moment interaction terms up to a desired distance, when
the r−3 dependence along with the antiferromagnetic
configuration (for zero field) make the remainder neg-
ligible.
Rappaz et al.21 determined the crystal-field terms by

EPR. The four Gd3+ ions in the unit cell are divided into
two pairs transforming into one another by the crystal
symmetry operations, viz., the two ions of each pair being
mutually related by inversion symmetry. Although the
local site-symmetry of the nine-fold oxygen coordination
of the Gd ions is very low, the EPR spectra could be quite
successfully analyzed assuming orthorhombic 2/m or C2h

site-symmetry (with three orthogonal principal axes).
Accordingly, the EPR spectra were analyzed in terms
of a crystal-field Hamiltonian HCF =

∑

n,m Bm
n Om

n , tak-
ing into account terms up to order n,m = 6. Here, the
Om

n terms are the well-known Stevens’ operator equiva-
lents and the Bm

n terms are the associated crystal-field
parameters.22 For numerical convenience,23 Bm

n are often
replaced by bmn , related as: bm2 = 3Bm

2 , bm4 = 60Bm
4 and

bm6 = 1260Bm
6 . Five out of the nine Bm

n parameters were
determined in the EPR experiments. Hereafter, we adopt
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the values reported for the EuPO4:Gd3+ single crystal.
It should be remembered that Eu is next to Gd in the
periodic table, so no significant differences in the EPR
signal are to be expected. Besides, the observed varia-
tion over the entire series of rare-earth elements analyzed
is very small. In what follows, we replace the orthorhom-
bic symmetric crystal-field Hamiltonian, written in terms
of Stevens’ operators, by a spin-Hamiltonian (HSH) more
commonly used in magnetic studies. Keeping only terms
quadratic in the spin operators sz and sx,y (as justified
by the fact that the measured 4th and 6th order terms are
negligible) we may write the spin-Hamiltonian in terms
of the familiar parameters D and E as:

HSH = Ds2z′ + E(s2x′ − s2y′), (6)

where D = 3B0
2−[30X−25]B0

4+[105X2−525X+294]B0
6

and E = B2
2 − [X + 5]B2

4 , for X ≡ s(s + 1). Using the
values given in Table II of Rappaz et al.,21 we obtain:
D/kB = +0.12 K and E/kB = +0.014 K.
As will be shown below, superexchange interactions in

this compound are very weak and thus expected to play
a very minor role. Neglecting superexchange and using
the approximation given in eq. (6) with anisotropy pa-
rameters (D and E) deduced from the EPR study, we
have computed the crystal-field anisotropy energy ECF

and the dipolar energy Edip of a distribution of magnetic
moments with µ = 6.88 µB (as deduced here), mutually
coupled by the dipole-dipole interaction for the four mag-
netic modes with k = (1/2, 0, 1/2) and for all possible
orientations of the moment at the reference atom 1, with
coordinates given explicitly in Table I. The orientations
for the other atoms are determined by the symmetry op-
erations given in Table II. Figure 6 shows the so-obtained
results for the energy per particle E = ECF +Edip, where
the dipolar term is calculated as24

Edip =
µ0

2N

N
∑

i=1

∑

j 6=i

(

µi · µj

r3ij
−

3(µi · rij)(µj · rij)

r5ij

)

,

(7)
for each magnetic moment µi at ri with every other mag-
netic moment µj at rj , and rij = ri − rj . As can be
seen, the minimum energy value Emin/kB = −2.28 K
(for which ECF /kB = −0.62 K and Edip/kB = −1.66 K)
is found to occur indeed for the configuration CxAyCz,
at values for the polar angles θ = 84◦ and φ = 51◦

that correspond to components along the crystal axes
(µx, µy, µz) = (5.65, 0.72, 5.48) µB, not far from the val-
ues observed above and listed in Table I and to the value
of the total magnetic energy per particle obtained from
the heat capacity experiments, i.e., Em/kB = −2.2(1) K.
The observed and calculated structures agree in the
wavevector k, the magnetic mode and fairly well in the
direction of the moments, µy being the smallest compo-
nent in both cases.
Several conclusions can now be drawn. First, the posi-

tive sign of D (and b02) distinguishes the monoclinic rare-
earth orthophosphate hosts from those having the tetrag-
onal zircon structure, for which values for b02 are found of
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Figure 6: (Color online) Free energy per particle considering
anisotropy and dipolar interactions for the CxAyCz magnetic
mode as a function of the azimuthal angle φ for different θ
values defining the orientation of the moment at Gd1. The
experimentally found magnetic energy is indicated.

similar magnitude but of negative sign.25 The x′, y′ and
z′ axes correspond to the three principal axes of the lo-
cal site pseudo-symmetry. Thus, the positive Ds2z′ term
establishes the local x′y′ plane as the easy plane for the
Gd3+ magnetic moment, in which the y′ axis is singled
out as the most preferred by the positive E term. As
noted by Rappaz et al.21 and seen in Table II, the sym-
metry operations that transform one site into another
are: (1) a 180◦ screw rotation with respect to the b axis,
(2) a glide reflection on the ac plane, (3) inversion, and
it is evident that the local x′, y′, z′ system of axes of the
sites should transform accordingly. The directions of the
local y′ and z′ axes were found to lie on a cone mak-
ing an angle θ = 67◦ with the b axis (see Fig. 16 in
Ref. 21), whereas the projections of the local y′ axes on
the ac plane correspond to an azimuthal angle φy′ = 41◦

(± 180◦). Comparing this with the results of the neutron
study, one may conclude therefore that the observed di-
rections of the four antiferromagnetic sublattices are fa-
vored to large extent by the local crystal-field anisotropy,
although ECF is significantly smaller than Edip.

This is explained as follows. Although the minimum
dipolar energy Edip/kB = −1.67 K is large and occurs
for θ = 90◦ (corresponding to collinear moments aligned
perpendicular to the b axis), Edip increases only by about
0.1 K up to −1.55 K for the spin configuration cor-
responding to a minimum for the magnetic anisotropy
(i.e., θ = 67◦ and φ = 41◦). The difference between
these two values of Edip is therefore much smaller than
the corresponding difference in the anisotropy energy, i.e.
0.62 K. Consequently, although in a first approximation
a collinear structure with the moments in the ac plane
could be expected on the basis of the dipolar interac-
tion solely, the presence of the anisotropy term produces
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a non-collinear configuration of lower energy. The net
result is the experimentally determined four-sublattice
structure with θ = 73◦ and φ = 29◦, close indeed to the
values θ = 67◦ and φ = 41◦ favored by the local crystal-
field site symmetries.
Second, since D is relatively large, the crystal-field

splitting of the magnetic energy levels is relevant. In-
deed, neglecting E at first approximation, the energy lev-
els would be given by Ei = gµBsz +D(s2z − 21/4). Note
that the positive sign of D implies that the | ± 1/2 >
doublet lies lowest in energy. The highest-lying |±7/2 >
doublet is then (in zero applied field) at 12D/kB ≈ 1.5 K
above the ground state, implying that it is appreciably
depopulated in the temperature range above the ordering
temperature TN = 0.77 K. As a consequence, when an-
alyzing the magnetic heat capacity tail observed above
TN in terms of the T−2 dependence expected in the
high-temperature limit, only the data in the tempera-
ture range T & 3 K should be taken into account. As
is well known, above TN , the magnetic heat capacity de-
pends on temperature as Cm/R ∝ T−2. The expression
for the coefficient of the limiting high-temperature T−2

term is given by the sum of the anisotropy, exchange and
dipolar contributions as23,26,27

CmT 2/R = [D2 + 3E2]s(s+ 1)(2s− 1)(2s+ 3)/45k2B
+µ2

eff [〈B
2
i,ex〉+ 〈B2

i,dip〉]/6k
2
B.

Here µ2
eff = g2µ2

Bs(s + 1), whereas 〈B2
i,ex〉 and 〈B2

i,dip〉
stand for the mean-square averages of the internal fields
on a reference ion in the paramagnetic region due to,
respectively, the exchange and the dipolar interaction.
The exchange term is given by g2µ2

B〈B
2
i,ex〉 = 1

3s(s +

1)
∑

i>j [J
2
xx + J2

yy + J2
zz], the dipolar term is calculated

as24 〈B2
i,dip〉 = 2(µ0/4π)

2µ2
eff

∑

i r
−6
ij , the summation

being over all the other magnetic ions. As it turns out,
the exchange contribution has to be very small compared
to the anisotropy and dipolar contributions. After per-
forming the necessary summations, we find the dipolar
term to amount to 0.92 K2. With the aforementioned
values for D and E, the crystal-field part is calculated as
0.31 K2, hence their sum amounts to CmT 2/R = 1.23 K2,
whereas the experimentally found coefficient of the T−2

term is 1.1 K2. Accordingly, the exchange term appears
to be very small, probably negligible.
The same conclusion can in fact also be drawn from

an analysis of the total magnetic energy, Em = Eex +
ECF + Edip, involved in the magnetic ordering process,
as can be obtained from the integration of the magnetic
heat capacity curve,

∫

CmdT , measured in zero field. As
reported earlier,6 we obtain Em/kB = 2.2(1) K experi-
mentally. The minimum free energy configuration on ba-
sis of the dipolar and anisotropy energies obtained above
and shown in Fig. 6 corresponds to 2.28 K and thus ac-
counts largely for the experimental total magnetic energy.
Taken together, we may state that within the errors in-
volved this leaves a maximum possible exchange contri-
bution of the order of z|J |S2 ≈ 0.1 K, implying a |J |/kB

of ≈ 2 mK only. It is noted that the behavior of the
heat capacity of GdPO4 resembles in several respects the
results obtained for GdCl3 · 6H2O and Gd2(SO4)2,

26 for
which exchange contributions could also be disregarded.
The value |J |/kB ≤ 2 mK found here is respectively 20
and 40 times less than the known values for the related
compounds GdAsO4 and GdVO4, where the ordering is
predominantly driven by the exchange interactions.6 In
all probability this should be ascribed to differences in the
geometries and interatomic distances in the Gd-O-Gd su-
perexchange paths in the monazite compound compared
to the tetragonal zircon structure. A quantitative theo-
retical treatment of this problem is however outside the
scope of the present work.
Although exchange interactions are thus apparently

negligible, it is of interest still to show that the sym-
metry involved in the long-range magnetically ordered
structure of GdPO4 would actually minimize their in-
fluence when present. This is most easily shown within
the mean-field approximation to the exchange term in the
Hamiltonian (5). Let us denote the Gd atom listed in Ta-
ble I as Gd0. The six nearest neighbors Gd1, ..., Gd6 are
at nearly equal distances, ranging from 4.00 Å to 4.24 Å.
We define now the moment at site i as µi = −2µBsi. In
the structure observed, these moments are on four sub-
lattices and we adopt the usual assumption that only in-
teractions (Jij , i 6= j, j = 1-6) between spins on different
sublattices are operative. Neglecting any longer range
interactions, the exchange term can then be written as

Hex =

6
∑

j=1

Jijsi · sj ≃ si ·

6
∑

j=1

Jijsj. (8)

In principle mean-field theory applied to this problem
could lead to several possible ordered antiferromagnetic
structures. Instead, we impose the four-sublattice ar-
rangement established by the combination of dipolar and
CF interactions. Table III lists the components of the
six nearest spin neighbors to a reference Gd0 spin for the
GdPO4 structure and the magnetic mode CxAyCz for
k = (1/2, 0, 1/2). According to Table III, the ground-
state molar exchange energy can be then be written as

2Eex

R
= Ps2⊥ +Qs2y = (P −Q)s2⊥ +Qs2, (9)

where P = 2(J4−J1)+J3−J2, Q = 2(J1−J4)+J3−J2
and s⊥ = sxux + szuz is the projection of s on the ac
plane, and the four intra-sublattice exchange constants
Jij are denoted by Ji, i = 1-4.
A number of interesting conclusions can be extracted

from equation (9). First, in the most general case, the
exchange energy is seen to be the sum of differences be-
tween four similar exchange terms. Therefore, in case the
Ji are similar in magnitude and in sign, the result will
be quite small even for finite values for Ji. Indeed, in
the special case J1 = J2 = J3 = J4, the exchange energy
would even be exactly zero because of the symmetry of
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Table III: Spins s1, ..., s6 of the six nearest neighbors, Gd1,...,Gd6, with respect to the Gd atom listed in Table I, here renamed
as Gd0. In the first column, “label” stands for the label used in Table II. Third, fourth, and fifth columns give the coordinates
of the site and spin for the CxAyCz configuration, respectively. The sixth column lists the distance and exchange constant.
The last four columns list the rotation and translation applied in order to obtain the nearest neighbors from Gd0. The spin
should be inverted when tx+ tz = odd, due to the propagation vector k = (1/2, 0, 1/2).

Label in Table II Atom x, sx y, sy z, sz d(Å), Ji Symm. tx ty tz

(1) Gd0 0.282 0.155 0.097 0 1 0 0 0
s0 sx sy sz

(2) Gd1 0.218 −0.345 0.403 4.00 21 0 −1 0
s1 −sx sy −sz J1

(2) Gd2 0.218 0.655 0.403 4.00 21 0 −1 0
s2 −sx sy −sz J1

(3) Gd3 −0.282 −0.155 −0.097 4.24 1̄ 0 0 0
s3 −sx −sy −sz J2

(3) Gd4 −0.718 −0.155 −0.097 4.00 1̄ 1 0 0
s4 sx sy sz J3

(4) Gd5 −0.218 0.345 −0.403 4.17 n −1 0 −1
s5 sx −sy sz J4

(4) Gd6 0.782 0.345 0.597 4.17 n 0 0 0
s6 sx −sy sz J4

the CxAyCz mode with k = (1/2, 0, 1/2). Mean-field the-
ory then predicts the system to remain in the disordered,
paramagnetic state down to T = 0, similar to a frus-
trated antiferromagnet, such as the well-studied gadolin-
ium gallium garnet.3 However, in view of the known dif-
ferences in the superexchange paths between the nearest
neighbors this situation will not likely occur. Obviously,
if the exchange interactions would have been substan-
tial, i.e. of the same order as the dipolar interactions or
the CF anisotropy energy, the system could have ordered
in a completely different antiferromagnetic arrangement,
for instance as found in the previously published Monte
Carlo simulations.6

V. CONCLUSIONS

We have determined the magnetic structure of GdPO4,
which undergoes a transition to a magnetically ordered
state below TN = 0.77 K. The present data unambigu-
ously show the magnetic structure to be a four-sublattice
compensated antiferromagnetic arrangement, which is
found to be favored by the dipolar interaction in com-
bination with the local crystal-field site symmetries at
the four Gd3+ sites in the unit cell. The magnetic su-
perexchange is found to be negligible compared to the
dipolar and crystal-field energies, making this compound
an interesting example of a dipolar antiferromagnet.
The magnetocaloric effect is found to exceed by a

considerable margin the maximum values reported to
date, as were measured for Gd formate.4 GdAsO4 and
GdVO4 have much higher TN in spite of larger distances.
Probably in these cases, the magnetic order is domi-
nated by the exchange interaction. These compounds
are worthy of further research. A proposed strategy to
produce high magnetocaloric materials is to find high
magnetic density compounds where dipolar, exchange,
and anisotropy compete (rather than trying to make
them very small, when the dipolar energy increases with
the magnetic density in any case), preventing ordering
down to very low temperatures.
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19 C. Thiriet, P. Javorský and R. J. M. Konings, Sol. St.
Comm. 134, 409 (2005).

20 A. M. Tishin and Y. I. Spichkin, The Magnetocaloric Ef-
fect and its Applications, IOP Publishing Ltd., Bristol and
Philadelphia, ISBN 0-7503-0922-9 (2003).

21 M. Rappaz, M. M. Abraham, J. O. Ramey, and L. A. Boat-
ner, Phys. Rev. B 23, 1012 (1981).

22 M. T. Hutchings, Solid State Physics (eds. F. Setiz and D.
Turnbull, Academic Press, New York), vol. 16, 227 (1964).

23 K. D. Bowers and J. Owen, Rep. Progr. Phys. 18, 304
(1955).

24 J. H. van Vleck, J. Chem. Phys. 5, 320 (1937).
25 M. Rappaz, L. A. Boatner and M. M. Abraham, J. Chem.

Phys. 73, 1095 (1980).
26 R. F. Wielinga, J. Lubbers and W. J. Huiskamp, Physica

37, 375 (1967).
27 A. Abragam and B. Bleaney, Electron Paramagnetic Reso-

nance of Transition Ions (Clarendon Press, Oxford, 1970),
Appendix A.

28 See supplementary material at URL for details of the nu-
clear and magnetic structure determinations.


