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The harmonic Kanzaki-Krivoglaz-Khachaturyan model of strain-induced interaction is generalized
to concentrated size-mismatched alloys and adapted to first-principles calculations. The configu-
ration dependence of both Kanzaki forces and force constants is represented by real-space cluster
expansions that can be constructed based on the calculated forces. The model is implemented for
the fcc lattice and applied to Cu1−xAux and Fe1−xPtx alloys for concentrations x = 0.25, 0.5,
and 0.75. The asymmetry between the 3d and 5d elements leads to large quadratic terms in the
occupation-number expansion of the Kanzaki forces and thereby to strongly non-pairwise long-range
interaction. The main advantage of the full configuration-dependent lattice deformation model is
its ability to capture this singular many-body interaction. The roles of ordering striction and an-
harmonicity in Cu-Au and Fe-Pt alloys are assessed. Although the harmonic force constants defined
with respect to the unrelaxed lattice are unsuitable for the calculation of the vibrational entropies,
the phonon spectra for ordered and disordered alloys are found to be in good agreement with ex-
perimental data. The model is further adapted to concentration wave analysis and Monte Carlo
simulations by means of an auxiliary multi-parametric real-space cluster expansion, which is used
to find the ordering temperatures. Good agreement with experiment is found for all systems except
CuAu3 (due to the known failure of the generalized gradient approximation) and FePt3, where the
discrepancy is likely due to the neglect of magnetic disorder.

I. INTRODUCTION

The standard theoretical framework for predicting
phase diagrams and other thermodynamic properties of
alloys requires an adequate representation of the forma-
tion enthalpy in the form of the Ising model with effective
cluster interaction (ECI) parameters.1 The construction
of such models is a major goal of the first-principles alloy
theory.1–6

An important part of the effective configurational in-
teraction in size-mismatched alloys comes from atomic
relaxations.1,7,8 This strain-induced interaction is un-
avoidably long-range, because a local static disturbance
in the atomic positions is propagated through the crystal
by a response function with an anisotropic spectrum that
is gapless thanks to the translational invariance. An ad-
equate real-space cluster expansion of the strain-induced
interaction is therefore often difficult to construct based
on the structure inversion method.9

Two approaches have been widely used to repre-
sent the strain-induced interaction by an effective pair-
wise configurational interaction: the mixed-basis clus-
ter expansion with the so-called constituent strain
(CS) contribution,10–12 and the Kanzaki-Krivoglaz-
Khachaturyan model (KKKM) assuming configuration-
independent force constants and Kanzaki forces that are
linear in occupation numbers.1,7,8,13,14 The long-range
character of the strain-induced interaction is reflected in
the orientation-dependent discontinuity at the Γ point
in reciprocal space. The CS approach determines the
anisotropy of this singularity using the relaxation en-
ergies of coherent superlattices with infinitely separated
parallel phase boundaries. The assumption of a purely
pairwise strain-induced interaction in the entire concen-

tration range appears to be unavoidable in this approach.
In the KKKM approach the full relaxation energy (and
not just its long-range limit) is described by an effec-
tive pairwise interaction, but its assumptions restrict its
quantitative applicability to the case of a dilute alloy with
configuration-independent force constants. In the dilute
limit, first-principles calculations can be performed using
large supercells with isolated impurities.15,16 However,
interactions obtained for a dilute alloy can not gener-
ally be extended to the concentrated case. Force con-
stants in alloys were extensively studied in connection
with phonon spectra and vibrational entropies,17,18 and
they often depend strongly on the configuration. As we
will show below, the Kanzaki forces are strongly non-
linear in occupation numbers in 3d-5d alloys, which we
believe to be a generic situation.

The general structure of the effective strain-induced
interaction in the harmonic approximation involves an
inverse of the force constant matrix contracted on both
sides with the vector representing the Kanzaki forces.
This structure does not, in fact, depend on the sim-
plifying assumptions made within the KKKM. How-
ever, if these assumptions are not satisfied, the effec-
tive interaction is by no means pairwise.19,20 A many-
body representation of the Kanzaki forces based on first-
principles calculations was reported for the Cu0.75Au0.25

alloy system.21 However, the force constants were still
assumed to be independent of the configuration, while
the many-body representation of the Kanzaki forces, as
we show below, did not include the most important term
beyond the traditional KKKM.

An alternative effective tetrahedron method22 assumes
a strictly local but non-pairwise form for the interaction
adapted to a particular crystal lattice. While useful in
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specific cases, particularly as an addition to the coherent
potential calculations in which accurate forces are un-
available, this approximation relies on an guessed form of
the short-range form of the interaction, does not respect
symmetry (predicting, for example, a large relaxation en-
ergy in inversion-symmetric L11 structure), and does not
aim to describe the singular part of the strain-induced
interaction.

An important general feature of the problem should
also be emphasized. The assumption of the continuity
of the crystal lattice implies that all the ensuing pre-
dictions will correspond to coherent phase transforma-
tions. It is a general property of such transformations
in phase-separating alloys that the conventional concept
of an equilibrium phase diagram, with unique boundaries
of single-phase regions, is inapplicable.23–27 In particular,
the concentrations of two phases in equilibrium depend
not only on temperature, but also on the overall com-
position of the alloy. This dependence appears because
the state of strain of the phases in equilibrium depends
on their molar fractions; the common tangent construc-
tion is invalid for coherently stressed solids because the
elastic free energy is not a sum of contributions from the
two phases. The convex hull in the formation enthalpy
diagram likewise loses its clear meaning. It therefore
appears to be unavoidable that a physically meaning-
ful configurational Hamiltonian of a coherently strained
alloy should depend on its overall composition treated
as a macroscopic parameter. The long-range character
of the strain-induced interaction presents an obstruction
to any local representation of this dependence. The com-
monly used methods mentioned above do not respect this
general feature. In particular, although the pairwise in-
teraction potential in the CS approach does depend on
the concentration, in practical applications it is usually
combined with a semi-grand canonical Monte Carlo sim-
ulation, which relaxes the condition of fixed overall con-
centration and yields a universal phase diagram.

There are strong arguments in favor28 (and a long
history6) of using concentration-dependent ECI’s for the
ordering energy. Fe-Pd alloys were recently highlighted
from this point of view.29 The reason is that the for-
mation energy of a random alloy depends non-linearly
on the concentration, and its expansion in configuration-
independent ECI’s contains an infinite number of terms.
The concentration dependence of the ECI’s for the chem-
ical ordering energy comes to a large extent from the
changes in equilibrium volume,6 a feature shared by the
strain-induced interaction.

In this paper we generalize the KKKM based on
controlled cluster expansions for both Kanzaki forces
and force constants that can be constructed using first-
principles calculations. This configuration-dependent
lattice deformation model (CLDM) is designed to capture
the many-body strain-induced interaction on all length
scales. The configurational Hamiltonian by construction
corresponds to a fixed overall composition.

The paper is organized as follows. The CLDM model

is formulated in Section II, and Section III explains the
computational methods. The subsequent sections report
on the application of CLDM to Cu-Au and Fe-Pt alloys.
The cluster expansions for the Kanzaki forces and force
constants are described in Sections IV and V, respec-
tively. The relaxation energies predicted by CLDM are
discussed in Section VI. Section VII deals with the role
of striction (homogeneous strain), and Section VIII with
the anharmonicity. The phonon spectra for ordered and
disordered alloys are calculated and compared with ex-
periment in Section IX. The auxiliary cluster expansion
for the relaxation energy is presented in Section X, and
the effective pair interaction for a nearly random alloy is
analyzed in Section XI. The phase transitions are found
using Monte Carlo simulations in Section XII. Finally,
the conclusions are drawn in Section XIII.

II. CONFIGURATION-DEPENDENT LATTICE
DEFORMATION MODEL

In this section we describe the configuration-dependent
lattice deformation model (CLDM), which generalizes
the Kanzaki-Krivoglaz-Khachaturyan model to concen-
trated alloys and may be readily constructed using first-
principles data. The accuracy of the model can be sys-
tematically improved. The present formulation is re-
stricted to the harmonic approximation; the errors due
to anharmonicity are discussed later in Section VIII.

A. Harmonic Hamiltonian of a concentrated alloy

Following the standard approach,1 we start from the
separation of the formation enthalpy of an ordered struc-
ture in two contributions: the “chemical” part Hchem

corresponding to all atoms fixed at ideal positions of the
parent lattice, and the relaxation part Hrel associated
with displacements away from these ideal positions:

H (Σ, {u}) = Hchem(Σ) +Hrel (Σ, {u}) , (1)

where we used Σ to denote the configuration of the (gen-
erally multi-component and multi-sublattice) alloy, i. e.
occupations of all lattice sites by atoms of different types,
and {u} to denote the displacements of all atoms from
their ideal positions. Although in the following we will
tacitly assume a simple Bravais lattice, the extension to
multi-sublattice alloys30 is straightforward.

Our present focus is on the displacement-dependent
part Hrel. In the harmonic approximation it can be writ-
ten as:

Hrel = −
∑
i

uiFi(Σ) +
1

2

∑
ij

uiÂij(Σ)uj (2)

where Fi is the Kanzaki force13,14 acting on the atom at
site i in the unrelaxed state, and Âij is the configuration-
dependent force constant matrix. Using the fact that the
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energy must be invariant with respect to global transla-
tions after any deformation, one can show∑

j

Âij(Σ) = 0 for any Σ. (3)

To proceed, we will construct cluster expansions for
the forces Fi(Σ) and force constants Aij(Σ). It is natu-
ral to expect that these expansions should quickly con-
verge in real space. A first-principles cluster expansion
of the Kanzaki forces for Cu3Au alloys was undertaken
by Shchyglo et al.21 based on the fit of the total ener-
gies, but, as we will see below, one of the dominant terms
was missed, and the resulting expansion does not provide
an adequate representation of the forces. Configuration-
dependent force constants have been extensively studied
from first principles to understand the role of vibrational
entropy in the thermodynamics of phase transitions.17

It was found that the force constants in the equilibrium
configuration depend strongly on the bond lengths due
to anharmonicity, and this dependence is often taken into
account by introducing explicit distance dependence. In
the present treatment the situation is simpler, because
the relaxation energy (2) is defined with respect to the
ideal lattice, in which all the bond lengths are equal.
Thus, based on the earlier studies one may expect that
a small number of configuration-dependent terms is suf-
ficient to adequately represent the force constants in (2),
and below we will show this to be the case in Cu-Au and
Fe-Pt alloys. We will also see that the anharmonic terms
have a relatively small effect on the relaxation energies
(particularly for the configurations where these energies
are not too large), even though the harmonic force con-
stants referenced from the equilibrium configuration may
deviate significantly from those in (2).

B. Cluster expansion of the Kanzaki forces

The force term can be written as

Fi(Σ) =
∑
a,P

nianPFia,P (4)

where Fia,P is the contribution to the force acting on
site i occupied by atom of type a due to the occupation
of a cluster P , represented by the projection operator
nP =

∏
jb∈P njb. Here njb is the occupation number

of site j by component b, and the definition of cluster
P includes the set of sites and atom types occupying
them. (nia = 1 if site i is occupied by atom type a or
0 otherwise.) It is assumed that P does not contain i in
(4).

In an n-component alloy there are n − 1 independent
occupation numbers for each site. One of the original
variables nia may be eliminated using

∑
a nia = 1, or one

can introduce a different set of n−1 variables linearly re-
lated to nia. For a binary alloy A-B it is convenient to
use Ising variables σi = niA − niB ; in general there are

σic of n−1 flavors c. Expressing all the occupation num-
bers in (4) through σic (and omitting the summation over
flavors needed in the multi-component case), we obtain

Fi =
∑
P

FiPσP (5)

where the cluster P now can contain site i, and σP =∏
j∈P σj . The sum in (5) does not include the empty

cluster, because this term would correspond to a macro-
scopic force acting on the entire crystal.

Since for any set of σP the total energy should be trans-
lationally invariant, the forces satisfy the condition∑

i

FiP = 0 (6)

To each cluster P one can formally assign a displacement
uP . For a single-atom cluster this should obviously be the
displacement of the corresponding atom. For multi-atom
clusters one can, for example, take the average displace-
ment of the atoms included in P . Using (6), we can then
rewrite the linear term in (2) as

HK = −
∑
iP

(ui − uP )FiPσP (7)

or

HK = −1

2

∑
ij

(ui − uj)Fij(Σ) (8)

where

Fij(Σ) = 2
∑
P3j

FiP
σP
NP

(9)

with a sum over all clusters P containing site j, and NP
is the number of sites in P .

In view of the structure of (8), the forces may always
be taken to be antisymmetric with respect to indices i, j,
i. e. Fij(Σ) = −Fji(Σ). This property will be assumed in
the remainder of this section; it means that the quantity
Fij(Σ) can be interpreted as the force exerted by site j
on site i in the configuration Σ, which obeys Newton’s
third law. However, when we consider specific alloy sys-
tems in the following, it is more convenient to introduce
the expansion directly for Fi, simply requiring that the
condition (6) is satisfied.

In addition to the translational invariance (6), the con-
dition of rotational invariance must be imposed, which
requires that the total torque acting on the crystal van-
ishes in any configuration:∑

i

FiP × ri = 0. (10)

Let us further discuss the symmetry properties of the
expansion. Consider a particular term FiP in the expan-
sion for Fi. The vector FiP can always be chosen to be
invariant under the subgroup GiP of the point group Gi
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of site i that leaves the cluster P invariant (while possibly
permuting some of its sites). Therefore, if we consider the
natural representation of GiP in R3, the dimension of its
invariant subspace ViP gives the number of components
of FiP that may be independently varied. Introducing a
basis eνiP that spans ViP , we write

Fi =
∑
P,ν

fνiPσPe
ν
iP , (11)

and coefficients fνiP play the role of the fitting parame-
ters. (Note that in addition to crystal symmetry they
are subject to conditions (6) and (10).) Consider now
two clusters P and P̄ such that i /∈ P and P̄ = P ∪ {i}.
Since they differ only in the presence of site i, the groups
GiP and GiP̄ are identical, and so are the corresponding
invariant subspaces ViP and ViP̄ . We are therefore free
to select the same basis eνiP for ViP and ViP̄ and rewrite
(11) as

Fi =
∑
P,ν

′ (
fνiP + σif̄

ν
iP

)
σPe

ν
iP , (12)

where the prime indicates that the summation is taken
over clusters P that do not contain i. This representa-
tion is convenient for applications. Note that the terms
f̄νiP were not included in Ref. 21. We will see below that
the nearest-neighbor quadratic term f̄1 is comparable in
magnitude to the conventional Kanzaki term f1, repre-
senting a large asymmetry of the forces with respect to
the interchange of the two components (σi → −σi).

C. Total energy of an ordered supercell

We will be dealing with relaxed or unrelaxed configura-
tions of ions in supercells, for which one can calculate en-
ergies, forces, and strains from first principles. For each
supercell of any particular ordering the displacement of
basis atom i can be written as

ui = uαβ(Rβi −R
β
0 ) + wi (13)

where uαβ is the symmetric strain tensor, R0 is the coor-
dinate of the origin, and wi is the periodic (internal) part
of the displacement of basis atom i (determined with re-
spect to the homogeneously deformed ideal lattice). The
general deformation can be written as (13), because the
antisymmetric part of the homogeneous deformation is
an inconsequential uniform rotation of the lattice.

Substituting the displacement (13) into (2) and taking
into account (8), we find the general expression

Hrel =
1

2

∑
ij

wijFij(Σ) +
1

2

∑
ij

wiÂij(Σ)wj

+
1

2
uαβ

∑
ij

Fαij(Σ)Rβij + uαβ
∑
ij

wγi A
γα
ij (Σ)Rβij

+
1

2
uαγuβδ

∑
ij

Aαβij (Σ)Rγi R
δ
ij , (14)

where Rij = Rj −Ri. If the total energy corresponding
to the volume of one supercell is required, the sum over
i in (14) should be taken over all the basis sites in the
supercell. (Notice that in the last term Rγi then becomes
the internal basis vector.) The sum over j is, however,
taken over all the sites in the infinite lattice, whose range
is limited by the range of the Kanzaki forces and the dy-
namical matrix. Energy per site is obtained by dividing
by the number of basis sites.

The configurational dependence of the force constants
leads to the presence of a bilinear coupling between the
homogeneous strain uαβ and lattice relaxations wi. It
implies that the forces change under a homogeneous
strain deformation even if the atoms remain at their ideal
lattice positions. Conversely, the stress tensor changes
as the atomic positions are relaxed. These features are
obvious in first-principles calculations but absent from
from traditional KKKM based on the assumption of
configuration-independent force constants.

D. Equilibrium conditions and strain-induced
interaction

The equilibrium conditions are obtained by minimizing
Hrel with respect to wi and uαβ . This means that the
forces:

Fαi =
∑
j

[
Fαij(Σ)−Aαβij w

β
ij − uγδA

αγ
ij (Σ)Rδij

]
(15)

where wij = wj −wi, and the stress tensor

V σαβ =
1

4

∑
ij

Fαij(Σ)Rβij +
1

2

∑
ij

wγi A
γα
ij (Σ)Rβij

+
1

2
uνδ

∑
ij

Aανij R
β
i R

δ
ij + {α↔ β} = 0 (16)

vanish in equilibrium. The term with Rβi in σαβ is inde-
pendent on the choice of the origin thanks to the invari-
ance properties of the dynamical matrix. Note that the
quantity σαβ is equal to the physical stress tensor only
if the internal displacements wi correspond to vanishing
forces.

In the harmonic approximation the equilibrium condi-
tions derived above are linear in wi and uαβ . For any
ordered configuration of the alloy (i. e. with any finite
unit cell) the number of variables and equations is finite.
The solution is unique up to a homogeneous translation,
which can be explicitly excluded. By solving the lin-
ear equilibrium conditions and substituting the solutions
back into Hrel, one can calculate the relaxation energy
of the given configuration as a function of the parame-
ters appearing in the cluster expansions for the Kanzaki
forces and force constants.

In this work we concentrate on evaluating the relax-
ation energy for alloys with concentration near a certain
chosen value. Further, in calculations based on CLDM
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we exclude the contribution of the homogeneous strain
induced by ordering (i. e. striction) by setting uαβ = 0.
(The role of striction for the alloys considered here is
discussed in Section VII.) The equilibrium atomic dis-
placements under this restriction are

W = Â−1F (17)

For a supercell with N atoms, F and W are 3N -
dimensional column vectors representing all the force
and displacement components. Although the matrix Â
has three zero eigenvalues corresponding to homogeneous
translations, its inversion is easily conditioned by adding
a fictitious finite stiffness associated with the displace-
ment of the whole crystal. As a result, the displacements
of all basis sites obtained from (17) automatically add up
to zero. Substituting W in Hrel, one finds the relaxation
energy

Erel(Σ) = −1

2

∑
ij

Fi(Σ)Â−1
ij (Σ)Fj(Σ), (18)

where the matrix Â should be conditioned before inver-
sion as explained above. Eq. (18) is exact in the harmonic
approximation.

Since both F and Â are represented by cluster expan-
sions, the resulting interaction is by no means pairwise,
contrary to the commonly used form of KKKM. In fact,
if the configuration dependence of the force constants is
taken into account, it contains interactions or arbitrar-
ily high order. One can, in principle, expand Â−1 in
the occupation variables with respect to some “average-
alloy” reference point and obtain an infinite sequence of
many-body interactions, each of which is long-range and
inherits the long-distance singularity of the dynamical
matrix. On the other hand, even in the dilute alloy limit
the configurational dependence of the force constants is
important.7 This can be immediately seen from the ex-
treme case when the force constants binding the impurity
atom to its neighbors are much larger compared to the
host material. In this limit the equilibrium displacements
of the neighbors induced by the Kanzaki forces, and
thereby the strain-induced interaction, are suppressed.

As we will see in the following, in 3d-5d alloys like Cu-
Au and Fe-Pt the asymmetry between the components
leads to large two-body terms in the Kanzaki forces and
thereby to significant non-pairwise strain-induced inter-
actions — even if the configurational dependence of Â is
disregarded. This feature reveals the intrinsic limitation
of the methods designed to describe the strain-induced
interaction using pairwise configurational interaction.

III. COMPUTATIONAL METHODS AND
INPUT DATASETS

For applications we have chosen Cu–Au and Fe–Pt as
typical and well-studied 3d-5d alloy systems. Due to a
fairly large size mismatch (13% and 10%, respectively),

strain-induced interaction in these systems is compara-
ble with the chemical contribution and competes with
it, which makes them appropriate for the application of
CLDM.

In this work we focus on constructing an accurate rep-
resentation of the lattice relaxation energy at a fixed over-
all composition of the alloy. As mentioned in the Intro-
duction, this representation is generally suitable for the
description of coherent phase transformations in combi-
nation with thermodynamic simulations in the canoni-
cal ensemble. For ordering phase transitions occurring
with a narrow two-phase region (e. g. close to a point
of equal concentration) or through a second-order transi-
tion the requirement of a canonical ensemble simulation
is not critical. The Cu-Au phase diagram has points
of equal concentration near CuAu and Cu3Au compo-
sitions, while Fe-Pt alloys have points of equal concen-
tration near Fe3Pt, FePt, and FePt3 compositions. The
low-temperature phases have L10 and L12 orderings. The
Cu-Au system also has an L12-ordered CuAu3 phase ter-
minating at a peritectic point. Thus, for both alloy sys-
tems construct effective configurational Hamiltonians at
three concentrations of 25%, 50%, and 75%.

The input sets for 50% concentration consisted of all
27 ordered structures with up to 6 atoms in the unit
cell. For the 3:1 compositions the input sets included
all 7 structures with 4-atom unit cells and 25 structures
with 8-atom unit cells. The latter included the total of 9
superlattices with A6B2, A5BAB, and A4BA2B stackings
along [100], [110], and [111] directions, which were used
in Ref. 21. In some calculations we also added a 16-atom
special quasirandom structure (SQS16) in each set.

Total energy calculations were performed using the
projected augmented wave (PAW) method31,32 and
the PBEsol33 exchange-correlation functional as imple-
mented in the VASP package.34 The choice of PBEsol was
motivated by the fact that it gives the lattice parameter
of Au in much better agreement with experiment com-
pared to PBE. An energy cutoff of 350 eV was used for
the plane-wave basis set, and the reciprocal-space inte-
gration was performed on a Γ-centered mesh with a den-
sity equivalent to at least 16×16×16 points in the cubic
Brillouin zone of the parent fcc lattice. Structural op-
timizations were performed using the conjugate-gradient
algorithm and the Methfessel-Paxton smearing scheme.

The CLDM parameters are determined from the cal-
culated forces for all input structures calculated either
with ideal atomic positions or with small displacements
of individual atoms, as explained in the following two sec-
tions. All these calculations were performed with an ideal
shape and volume of the unit cell for the following lattice
parameters: 3.688 Å for 25% Au, 3.819 and 3.897 Å for
50% Au, and 3.955 Å for 75% Au in the Cu-Au system,
and 3.679 Å, 3.769 Å, and 3.850 Å for the same concen-
trations of Pt in the Fe-Pt system. Note that we used two
different lattice parameters for the Cu0.5Au0.5 system in
order to check the sensitivity of CLDM to this choice.
The first value 3.819 Å was chosen somewhat arbitrar-
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ily (as they were for the other systems), while the other
value 3.897 Å was designed to minimize the volume relax-
ation energies. This was done as follows. For each input
structure ν the energy per atom Eν was calculated and
fitted as a function of a. Then the sum

∑
ν(Eν−E0

ν) was
minimized with respect to a. We found that the choice
of the lattice parameter has a small effect on the model
parameters and thermodynamic properties, showing that
a reasonably crude choice within 1-2% of equilibrium is
acceptable.

IV. KANZAKI FORCES

In this and subsequent sections we use first-principles
data to construct CLDM for Cu-Au and Fe-Pt alloys
at three concentrations: 0.25, 0.5, and 0.75. Our first
step is to parameterize the Kanzaki forces based on the
general expression (12). For each dataset we fitted the
parameters of (12) to the set of all Hellman-Feynman
forces calculated for the unrelaxed ordered structures in
the dataset. (This information is already available in a
conventional cluster-expansion procedure, and we have
checked that the calculated forces were sufficiently con-
verged with respect to the energy cutoff and k-point
density.) Our strategy was to start with a list of 16
symmetry-respecting terms in the expansion, and for
each dataset with a given alloy composition to include
only those terms that appreciably reduced the cross-
validation score for the forces. This procedure resulted
in 7-8 terms for each dataset.

The simplest cluster type is a single site P = {j}. If j
is a nearest neighbor of i in the fcc (or bcc) lattice, the
invariant subspace Vij is one-dimensional, and the single
basis vector eij is parallel to rij (i. e. central force). The
same applies to second, fourth, and fifth-nearest neigh-
bors in the fcc lattice, but for third-nearest neighbors the
invariant subspace is two-dimensional. We introduced an
orthogonal basis for this two-dimensional subspace, with
one of the basis vectors eij parallel to rij and represent-
ing a central force component, and the other basis vec-
tor e⊥ji. Thus, 10 of the 16 trial terms represent central
forces between pairs of atoms up to fifth-nearest neigh-
bors, and one more term describes the non-central force
from the third-nearest neighbor. The contribution of all
these terms to Fi is

F
(1)
i =

∑
n

(
fn + f̄nσi

) ∑
j∈Sn

σj eji + f ′3
∑
j∈S3

σj e
⊥
ji (19)

where σi = 1 for 5d-elements and −1 for 3d-elements,
and Sn is the set of sites in the n-th coordination sphere
of i. Note that the non-central term with σiσj would
violate the condition (10) and is therefore excluded.

The remaining five terms correspond to coplanar forces

TABLE I. Parameters of the cluster expansion for the Kan-
zaki forces (units of eV/Å). A horizontal line separates two
different fittings.

CuAu3 CuAu Cu3Au FePt3 FePt Fe3Pt
f1 0.205 0.329 0.498 0.195 0.273 0.363
f̄1 0.113 0.167 0.238 0.168 0.193 0.209
f1 0.200 0.323 0.502 0.206 0.262 0.373
f̄1 0.110 0.166 0.237 0.157 0.182 0.247
f2 0.023 0.031 0.041 0.036 0.050 0.061
f̄2 0.003 0.005 0.008
f3 0.003 0.005 0.006 0.015 0.013
f4 −0.011 −0.011 −0.010 −0.035 −0.020
ft 0.003 0.004 0.008 0.015
f̄t 0.031
fl −0.004 −0.032 −0.026 −0.009
fr 0.011 0.022 0.018

from two-site clusters P = {j, k}:

F
(2)
i =

∑
jk

[(ft + σif̄t)ηijk + (fl + σif̄l)ζijk

+frξijk]σjσke
i
jk (20)

where eijk is a unit vector pointing from the midpoint be-
tween j and k towards i, and ηijk, ζijk and ξijk are pro-
jectors selecting specific cluster shapes. Namely, ηijk = 1
only if i, j and k make a triangle of nearest neighbors;
ζijk = 1 only if i, j, k form a two-link straight chain of
nearest neighbors with i at an end; and ξijk = 1 only if
j and k are both nearest neighbors of i and each other’s
second-nearest neighbors (otherwise these factors are 0).
Note that a tentative term with f̄rξijkσiσjσk would not
be allowed without counterterms to enforce translational
invariance.

The resulting sets of fitted parameters are listed in Ta-
ble I below the horizontal line, and the quality of the
fits can be inferred from Fig. 1 (filled circles). For all
six systems the expansion is dominated by two nearest-
neighbor terms f1 and f̄1. For comparison, separate fits
including only these two parameters are also included in
Table I (above the horizontal line) and in Fig. 1 (empty
squares). It can be seen that these two-parameter fits
are already reasonably good, particularly for the Cu-Au
alloys, but the inclusion of additional parameters signif-
icantly improves the quality of the fit. The set of fitted
parameters for Cu0.5Au0.5 with the optimized lattice con-
stant is similar to the one shown in Table I.

An important feature obvious from Table I is that
the f̄1 term is comparable with f1: for Cu-Au alloys
f̄1 ≈ 0.5f1, and for Fe-Pt f̄1 ≈ 0.7f1, and in both cases
the f̄1/f1 ratio decreases slightly with increasing concen-
tration of the 3d-element. The large value of this ratio
indicates that the force acting on an atom placed at a
particular site of a lattice with a certain ordering de-
pends strongly on the identity of this atom. Specifically,
in the model with only f1 and f̄1 non-zero, the force act-
ing on a 3d element at a particular site is proportional
to f1 − f̄1, and if a 5d-element takes its place then this
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FIG. 1. (Color online) Fitting of the calculated forces to many-body Kanzaki force models. Each Cartesian component for
each site is represented by one data point. Data sets for different concentrations are shifted by 2 units along the y axis. Red
open squares: Two-parameter model with nearest-neighbor Kanzaki forces. Blue opaque circles: complete model, see text and
Table I.

factor changes to −(f1 + f̄1). A similar relation applies
to the forces acting on the atoms of 3d and 5d-elements
in a symmetric superlattice at 50% concentration. For
example, in the A2B2 [001] superlattice the calculated
forces acting on Cu and Au atoms are 0.88 and 2.83
eV/Å, respectively, and for the Fe-Pt superlattice they
are 0.49 and 2.72 eV/Å. This large asymmetry is prop-
erly described by our model. On the contrary, the model
of Ref. 21 for Cu3Au does not include any of the f̄iP
parameters in Eq. (11), and the force acting on site i
does not depend at all on its occupation. Therefore, that
model (which was fitted to the relaxation energies of a
few ordered structures and is dominated by the f1 term)
does not give an adequate representation of the Kanzaki
forces.

V. FORCE CONSTANTS

Configuration-dependent force constants have at-
tracted much attention, motivated mainly by the need to
understand the effects of vibrational entropy on the ther-
modynamics of phase transitions, as well as by the gen-
eral interest in the effects of ordering on the vibrational
spectra.17,18 However, to our knowledge, they have not
been used in the studies of the strain-induced interaction.
Usually a configuration-independent force constant ma-
trix is introduced and fitted to provide some reasonable
elastic moduli. Here we go beyond this approximation

and construct a configuration-dependent representation
of the force constant matrix using first-principles input
data. Note that the definition of the force constants suit-
able for the evaluation of the relaxation energies is dif-
ferent from those designed to describe the vibrational
entropy. The former are defined as in Eq. (2), where the
reference state with ui = 0 corresponds to the ideal (un-
relaxed) lattice, but the latter are defined with respect
to the equilibrium (relaxed) state, which itself depends
on the configuration. Although in the harmonic approx-
imation the two types of force constants are identical,
anharmonic effects lead to a rather strong dependence of
the force constants on bond lengths.17 Therefore, we do
not expect that the “unrelaxed” force constants obtained
here are sufficiently accurate for the analysis of vibra-
tional entropies or other sensitive measures of the phys-
ical vibrational spectra. They are, however, well-suited
for the calculations of the relaxation energies, which is
our present purpose. As will be further discussed in Sec.
VIII, in Cu-Au and Fe-Pt systems the deviations of the
relaxation energy from the harmonic approximation are
significant only in strongly relaxing configurations, which
are statistically negligible in alloys that are not phase-
separating. Even in such configurations the effect on the
relaxation energy is not very large and can be taken into
account with the help of a simple rescaling correction.

It is well-known that the force constants have to sat-
isfy certain identities following from translational and
rotational invariance of a crystal subjected to an ar-
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bitrary uniform strain and internal displacements.17,35

Since these identities should be satisfied in each configu-
ration of the alloy, each independent term in a cluster
expansion for the force constants should satisfy all of
them. A possible way of constructing such an expan-
sion was suggested in Ref. 36. On the other hand, force
constants corresponding to arbitrary central forces auto-
matically satisfy all the invariance relations.35 We there-
fore used a simple parametrization, in which only cen-
tral (bond-stretching) forces depend on the configuration,
while the non-central force components are configuration-
independent. We also limited the range of the force con-
stants to second-nearest neighbors and assumed that the
central force for bond i− j depends only on the occupa-
tion of sites i and j. The resulting model has 9 parame-
ters including 6 central-force constants (3 per coordina-
tion sphere: for A-A, B-B, and A-B bonds), 2 non-central
force constants for nearest neighbors, and 1 isotropic non-
central constant for second-nearest neighbor. We also
tested more complicated force constant models and found
that, although they improve the fitting of the forces in-
duced by lattice displacements, there is little or no im-
provement in the prediction of the relaxation energies for
the systems we have considered.

There may be different strategies for the fitting of the
force constant model. For example, one might evalu-
ate the force constants for each input structure and fit
them to a model with configuration dependence. How-
ever, for relatively simple structures with a small number
of atoms per unit cell, the calculation of force constants
requires the use of enlarged supercells, which is compu-
tationally inefficient. In order to avoid this complica-
tion, we adopted a different approach, facilitated by the
fact that our input sets at each composition contain a
fairly large number of structures (more than 20). For
each input structure we calculate the extra forces ap-
pearing when one of the atoms is displaced in one of the
three Cartesian directions. For this purpose we employed
the standard procedure implemented in the VASP code,
in which all such inequivalent displacements are auto-
matically generated. While for any given structure this
calculation provides information only about the Γ-point
phonons and is usually insufficient to fix all the force con-
stants, we expect that the inclusion of a sufficient number
of input structures of relatively small but different sizes
and shapes should provide enough information for the
fitting of the configuration-dependent force constant pa-
rameters. The magnitude of atomic displacements was
taken to be 1% of the cubic lattice parameter, and dis-
placements of both signs were included to reduce the fit-
ting errors. The fit is then performed by linear regression
for the set of equations

Fi − Fi0 =
∑
j

Âijuj (21)

where Fi0 is the (Kanzaki) force acting on the atom at
site i in the unrelaxed state with uj = 0.

The resulting fit of the configuration-dependent force

TABLE II. Parameters of the cluster expansion for the force
constants (units of dyn/cm). The notation for the first nearest
neighbor constants is given in a reference frame with direction
R parallel to the bond, Z defined as usual, and T orthogonal
to both R and Z. 1RR and 2XX generate central forces.

Pairs CuAu3 CuAu Cu3Au FePt3 FePt Fe3Pt

A-A
1RR 10398 13944 18993 10691 18738 28657
2XX 14556 9126 5946 20567 13469 4390

B-B
1RR 56877 82571 115172 64987 81150 105670
2XX 5599 3172 −3532 10889 10088 3532

A-B
1RR 20930 31434 45081 25229 33785 49155
2XX 9282 6529 2989 17976 14457 4729

Any
1ZZ −11028 −7826 −5026 −6154 −3628 −7257
1TT −3397 −2758 −2150 −2310 −1606 −3387
2YY −1426 −1554 −642 −1966 −3370 −2148

constants is illustrated in Fig. 2, along with a similar
fit in which the force constants were restricted to be
configuration-independent (as it is done in the KKKM).
It is seen that the calculated forces are reproduced quite
well by a model with configuration-dependent force con-
stants, but the neglect of the configurational dependence
results in poor fits for all datasets.

The fitted force-constant parameters are listed in Table
II. Note that the notation for first nearest neighbor force
constants is given in a rotated reference frame to isolate
the central forces. Specifically, for a (1/2,1/2,0) bond,
the axes are rotated by 45◦ around the z axis so that
the axis x′ lies along the (1,1,0) direction, parallel to the
bond. A1RR is the central force constant in this rotated
frame. One can also write A1RR = (A1XX + A1YY)/2,
A1TT = (A1XX −A1YY)/2.

Examination of Table II shows that the nearest-
neighbor central force constants are the most important
and depend strongly on the identity of the atoms forming
the bond. B-B bonds between larger 5d atoms are stiffer
than the A-A bonds between smaller 3d atoms. This is
a common trend in 3d-5d alloy systems,17 although we
re-emphasize that the force constants used here do not
correspond to equilibrium atomic positions.

VI. HARMONIC RELAXATION ENERGIES

Having constructed the cluster expansions for both
Kanzaki forces and force constants, we are now able to
calculate the relaxation energies in the harmonic approx-
imation, which are given by Eq. (18). The results of
these calculations are illustrated in Fig. 3, and the cor-
responding misfits are listed in Table III. The fidelity
of the full configuration-dependent fits (filled circles) is
very good, particularly for the structures whose relax-
ation energy is not very large. Note that the calculated
relaxation energies were never used in the construction
of this fit. For strongly relaxing structures one can see
a systematic underestimation of the relaxation energy,
with the points falling below the straight line. This un-
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FIG. 2. (Color online) Fitting of the force constants referenced from the ideal fcc lattice for (a) Cu-Au and (b) Fe-Pt alloys.
The forces predicted by the fit are plotted against the calculated forces. Each Cartesian component for each site is represented
by one data point. Data sets for different concentrations are shifted along the y axis. Filled (blue) circles and open squares
correspond to the models with configuration-dependent and configuration-independent force constants, respectively. See text
for details about these models.

derestimation is due to anharmonicity, as discussed be-
low in Section VIII. Fig. 3 also shows the predictions
of the model in which the force constants are assumed
to be configuration-independent (open squares; see also
Fig. 2). It is clear from the figure and from Table III
(first line) that this fit is not very accurate; note that
some predicted relaxation energies for strongly relaxing
structures fall outside the range of the figure.

One can also see that the fitting of the Kanzaki forces
usually does not significantly increase the misfit for the
relaxation energies (compare lines 2 and 3 of Table III).
A notable exception is FePt3, where this fitting increases
the misfit two-fold.

VII. ROLE OF STRICTION

The relaxation energies presented in Section VI were,
as we mentioned above, calculated under the restriction
of zero homogeneous strain. Now we discuss the role of
striction for the Cu-Au and Fe-Pt alloy systems.

Denote the relaxation energy at zero strain Esvrel (fixed

cell shape and volume), at fixed volume Evrel, and Efullrel
under no restrictions. In the previous sections we were

TABLE III. Mean-squared misfits (meV) for the predicted
relaxation energies. First two columns identify the fit as fol-
lows. “Exact” forces refers to the calculated forces, while
“fitted” forces correspond to the multi-parameter model with
the parameters from Table I producing the forces shown by
filled circles in Fig. 1; “fit 2” refers to the 2-parameter model.
“Fixed” force constants are configuration-independent (see
open squares in Fig. 2); “full” force constants correspond to
the model from Table II (see also fits shown by filled circles
in Fig. 2).

Forces FC CuAu3 CuAu Cu3Au FePt3 FePt Fe3Pt
Exact Fixed 8.0 20 45 4.1 19 24
Exact Full 2.7 9.0 8.9 2.4 5.2 5.1
Fitted Full 2.8 9.3 9.7 5.7 5.5 5.8
Fit 2 Full 3.6 13.2 14.1 12.5 11.9 8.2

dealing only with Esvrel. Now we define Eshape = Evrel −
Esvrel and Evol = Efullrel − Evrel and calculate them for all
input structures. The mean values and standard devia-
tions of these energies for each system are listed in Table
IV.

The volume relaxation energies Evol for all three com-
positions of the Fe-Pt system are small and may be safely
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FIG. 3. (Color online) Relaxation energies predicted using
the lattice-deformation model with configuration-dependent
(filled circles) or fixed (open squares) force constants. All
data for the Fe-Pt system are shifted upwards by 100 meV.
Some data points for the model with fixed force constants
corresponding to strongly relaxing structures are beyond the
field of the figure.

TABLE IV. Mean values and standard deviations of the relax-
ation energies corresponding to shape and volume striction.

Alloy
Relaxation energy, meV

Shape Volume
Fe3Pt 38± 29 1.0± 1.3
FePt 3.3± 3.0 1.3± 0.8
FePt3 0.6± 0.7 1.1± 0.6
Cu3Au 9± 9 9± 5
CuAu (3.819 Å) 14± 9 11± 5.5
CuAu (3.897 Å) 8.6± 5.8 3.8± 2.1
CuAu3 7± 9 6± 2

neglected. For CuAu3 the standard deviation of Evol is
only 2 meV, which means its effect on the phase tran-
sitions should be very small. For Cu3Au and CuAu at
a = 3.819 Å the standard deviations of Evol are some-
what larger at 5-6 meV. A more detailed inspection shows
that in both cases the variance of Evol is dominated by in-
put structures with total formation enthalpies lying well
above the random alloy. For CuAu the mean Evol and
its variance are greatly reduced by choosing the lattice
parameter by requiring that the volume relaxation en-
ergy is minimized on the average (a = 3.897 Å). Overall,

in all cases the neglect of the volume relaxation energy
appears to be a reasonable approximation.

The situation with the shape relaxation energies is
more complicated. First, we notice that Eshape is very
large and has a large variance for the Fe3Pt system. Us-
ing a structural filter employed earlier for a similar Fe-
Pd alloys,37 we found that a large fraction of Fe0.75Pt0.25

structures relax to bcc-like final configurations with an
accompanying large energy gain. The lowest-energy
structures are bcc-like [001] superlattices, suggesting that
at low temperatures the system should phase-separate
with the precipitation of α-Fe. This conclusion appears
to be consistent with the experimental phase diagram ex-
trapolated to low temperatures; in this respect the Fe-Pt
system is similar to Fe-Pd.37 It may be expected that
lattice vibrations stabilize the fcc phase at higher tem-
peratures due to the gain in the vibrational entropy. This
stabilization should suppress the tendency toward large
shape relaxation for most orderings. Therefore, for the
evaluation of the high-temperature ordering phase transi-
tion it is reasonable to exclude the shape relaxation in the
calculation of the relaxation energies for this system, and
this is what we do in the following. For FePt and FePt3

systems the shape relaxation energies are uniformly small
and may be neglected.

In the Cu3Au input set there are several structures
with Eshape exceeding 20 meV, all of which lie above the
random alloy; Eshape tends to be relatively large for [001]
superlattices. Since the L12 ground state and the random
alloy have no shape relaxation, one can expect that the
shape relaxation energy has a small effect on the ordering
phase transition. However, more delicate properties such
as short-range may require Eshape to be included.

For the CuAu composition the shape relaxation is very
important, because it stabilizes the L10 ground state
which has a large tetragonal distortion with the theoreti-
cal c/a ratio as low as 0.925 (compare to 0.963 for FePt).
The corresponding Eshape is 17.5 meV at a = 3.819 Å

and 12.4 meV at a = 3.897 Å. Strong shape relaxation
of [001] superlattices is thus shared with the Cu3Au sys-
tem. We found that if Eshape is not included, at least one
16-atom structure comes within 2-3 meV of the forma-
tion enthalpy of L10 and tends to appear in Monte Carlo
simulations due to a small error in the refitted cluster
expansion (see below). This structure is shown in Fig.
4. Its shape relaxation energy is less than 1 meV, and
the inclusion of Eshape therefore strongly favors the L10

ordering; it is clear that this must be taken into account
in thermodynamic calculations (see Section XII).

In the CuAu3 input set there are three structures with
Eshape of about 30 meV accounting for most of the vari-
ance, which are all [001] superlattices. Their fully re-
laxed formation enthalpies are nearly degenerate, lie at
the lower end of the spectrum of all the calculated struc-
tures, which is about 10 meV lower than the L12 struc-
ture. This is a reproduction of the known result that
GGA predicts an incorrect ground state for CuAu3.11

Moreover, these lowest-energy structures are also nearly
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FIG. 4. (Color online) 16-atom structure X competing with
L10 in the CuAu system.

degenerate with two other structures whose shape relax-
ation energies are only about 4 meV, and which, there-
fore, remain lower than L12 even if Eshape were neglected.
Thus, even if we assume that the shape relaxation energy
is suppressed at higher temperatures and should be ne-
glected, the L12 phase remains unfavorable based on its
formation enthalpy. The results reported in Section XII
show that this phase indeed does not appear at elevated
temperatures under this assumption.

In principle, the uniform strain contribution could be
evaluated by minimizing Hrel with respect to both wi

and uαβ . We found, however, that the stress tensor∑
ij

Fαij(Σ)Rβij calculated at wi = 0 in Eq. (14) is not

well predicted using the fitted Kanzaki forces in any of
the studied input sets. For Cu-Au systems the mispre-
diction could be largely eliminated by multiplying the
stress tensor by an overall factor, but for the Fe-Pt sys-
tems the prediction barely correlates with the calculated
stress tensor. It is likely that the calculation of the stress
tensor converges slowly in real space, even though for
the forces it is sufficient to include interactions from only
a few coordination spheres. In order to study the con-
vergence of the stress tensor in real space it would be
necessary to design an automatic procedure to construct
a complete basis set for the cluster-expanded Kanzaki
forces. Leaving this problem for future studies, here we
resort to a conventional cluster expansion to represent
the uniform strain contribution in the Cu0.5Au0.5 system
as explained in Section XII.

VIII. ANHARMONICITY

In Section VI we saw that Eq. (18) systematically un-
derestimates the relaxation energy for structures where
it is large. This inaccuracy could be due to an imper-
fect representation of the forces and force constants in
the model and due to anharmonicity. For some insight
into this issue, we focussed on the Cu0.5Au0.5 system.

We picked 8 input structures including some with rela-
tively large relaxation energies, and added the structure
that was predicted by Monte Carlo calculations based on
CLDM to be the ground state if uniform strain is ne-
glected (see below). For each of these structures we took
the calculated equilibrium atomic displacements weq

i , de-
fined a continuous path wi(t) = tweq

i , and calculated the
relaxation energy Erel as a function of t ∈ [0, 1]. For all
structures Erel can be well approximated by a third-order
polynomial

Erel = −ft+
1

2
at2 +

1

3
bt3 (22)

The parameters f and a can be directly compared with
the predictions of the CLDM fits. Further, in our har-
monic CLDM with b = 0 the equilibrium value of t is t0 =
f/a, and the relaxation energy is Eharmrel = −f2/(2a). (In
this crude treatment we disregard the fact that the re-
laxation path itself depends on the choice of the model.)
The results of this analysis are listed in Table V.

TABLE V. Parameters of Eq. (22) fitted to VASP calculations
and relaxation energies compared to CLDM predictions (see
text for details). All values are in meV.

Structure Source f a −b Eharm
rel Erel

A2B2 [001]
VASP 261.1 179.9 33.9 94.7 115.0
CLDM 262.8 185.6 0 93.0

A2B2 [011]
VASP 110.3 56.0 0.9 54.3 55.2
CLDM 105.6 59.9 0 46.6

A2B2 [111]
VASP 242.5 163.1 30 90.1 109.1
CLDM 243.3 175.0 0 84.6

A3B3 [001]
VASP 347.9 232.3 40.3 130.2 155.6
CLDM 345.8 237.7 0 125.8

A3B3 [111]
VASP 293.0 191.6 32.0 112.0 133.2
CLDM 292.9 198.7 0 107.9

A2B2AB [001]
VASP 179.1 125.6 24.9 63.8 78.2
CLDM 179.4 130.1 0 61.8

A2B2AB [111]
VASP 167.3 120.6 25.9 58.0 72.4
CLDM 168.2 128.1 0 55.3

A2B2AB [133]
VASP 112.8 69.6 8.9 45.8 52.1
CLDM 113.5 70.2 0 45.9

X
VASP 86.0 44.9 1.3 41.1 42.3
CLDM 89.7 43.0 0 46.8

As can be seen from Table V, the “force” and “stiff-
ness” parameters f and a given by the CLDM fits agree
quite well with those obtained from VASP, and the re-
laxation energies predicted by CLDM are close to the
harmonic approximation Eharmrel based on VASP results.
The largest discrepancy of nearly 8 meV occurs for the
A2B2 [011] structure, where f is underpredicted by 4.3%
and a is overpredicted by 7%. On the other hand, the
error introduced by neglecting the anharmonicity reaches
20-25 meV for strongly relaxing structures. For all struc-
tures shown in Table V the parameter b is negative, which
leads to an underestimated relaxation energy in the har-
monic approximation. Negative b means that the force
constants decrease (i. e. bonds soften) in the course of the
relaxation. Note that the actual predictions of CLDM
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are closer to the VASP values compared to those found
in Table V, because the relaxation path in CLDM differs
from the one in the full calculation.

These results strongly suggest that the underestima-
tion of the relaxation energies in our implementation of
CLDM is primarily due to its reliance on the harmonic
approximation. Although the accuracy of its predictions
for Cu-Au and Fe-Pt systems is acceptable (particularly
because the largest discrepancies occur in strongly re-
laxing structures that tend to have large total formation
enthalpies and are therefore statistically insignificant),
we see that further improvement may be achieved by
going beyond the harmonic approximation. This could
be done by including and cluster-expanding higher-order
terms in Eq. (2) and replacing the simple expression (18)
by nonlinear equilibrium conditions which must be solved
numerically. This extension is beyond the scope of the
present work.

IX. PHONON SPECTRA

The configuration-dependent representation of the
force constants makes it possible to evaluate the phonon
spectra for any given configurational state of the alloy.
The spectrum of the stable ordered structure and that of
the random alloy can be compared with experiment and
are therefore of primary interest. One property of great
importance that is governed by the phonon spectrum is
the vibrational entropy, which contributes to thermody-
namics and modifies the transition temperatures.17

In the harmonic approximation the force constants do
not depend on the reference state, be it the ideal lattice or
equilibrium positions. In reality, however, anharmonic-
ity makes the force constants depend rather strongly on
bond lengths in alloys with large size mismatch.17 There-
fore, within the harmonic model we can only obtain a
rough approximation for the phonon spectrum of the ran-
dom alloy. In particular, we found that this approxima-
tion is not suitable for the evaluation of the vibrational
entropy: The force constants for the random alloy are
too large, and the vibrational entropy change under or-
dering often comes out positive in contradiction with ear-
lier results.17 An anharmonic extension of the CLDM can
provide a reasonable approach to such calculations. (See
Ref. 38 for an application of a similar model to finite-
temperature lattice dynamics in pure compounds.) Nev-
ertheless, we expect that the general effects of alloy dis-
order on the phonon spectra should be reasonably well
captured even within the harmonic approximation.

In order to calculate the phonon density of states
(DOS), we construct a cubic supercell with the given con-
figurational state of the alloy (either fully ordered L10

or L12 or disordered), compute the phonon frequencies
for this supercell using the force constants from Table
II and assuming periodic boundary conditions, and plot
the DOS using Gaussian smearing. The phonon DOS is
practically identical for different realizations of the ran-

dom alloy in a cubic 2048-atom supercell. Apart from
the contribution of the low-frequency acoustic phonons,
this calculation therefore provides a good representation
of the phonon DOS. In addition to the total DOS, we
calculated the partial contributions of the two alloy com-
ponents using the eigenvectors of the phonon modes. The
results are shown in Fig. 5, which also includes some of
the available experimental data from Refs. 39 and 40.
In comparing the calculated and experimental data for
Cu-Au alloys, we need to bear in mind that neutrons
are scattered more strongly by phonons dominated by
Cu displacements compared to Au-dominated phonons,
by a factor of about 3.21.39 Therefore, the intensities of
the peaks for Cu-dominated phonons are strongly over-
weighted, but the positions of the peaks should in most
cases be close to those for the true DOS.

The phonon spectrum for both ordered and disordered
Cu3Au are quite similar to experimental data.39 The po-
sitions of the peaks for the L12 structure at 9, 13, 22 and
28 meV can be matched with the experimental peaks at
9, 13, 21, and 25 meV. In agreement with Ref. 39, the 9
meV peak is a resonance dominated by the motion of Au
atoms, as can be seen from the partial DOS. The peak
at 13 meV has a larger total Cu weight, which translates
to the Au atoms oscillating with about twice as large an
amplitude as the Cu atoms. The peak at 22 meV cor-
responds to an almost pure Cu oscillation, and the peak
at 28 meV has similar amplitudes for all atoms. The
comparison with experiment for the ordered alloy is, of
course, simply a basic validation of the fit for the force
constants; this spectrum could be calculated directly us-
ing the force constants for this particular structure.

In the disordered Cu3Au alloy we observe a strong
broadening of all peaks, while the high-energy peak
moves down by about 2 meV. This downward shift is
in agreement with experiment. The Au resonance is still
visible, but it is weakened compared to the ordered alloy
and shifted a little higher to 10 meV. The peaks at 13 and
22 meV are smeared out into one broad maximum with
a substantial Au spectral weight. The latter was inter-
preted as the result of the removal of the constraints on
the motions of the Cu atoms imposed by the framework
of the heavy Au atoms due to disorder.39

In disordered CuAu we also observe an Au resonance
at 8-9 meV producing a shoulder in the spectrum in good
agreement with experiment.39 The peak at 15 meV also
agrees with experiment, while the high-energy peak at 23
meV is about 2 meV higher.

In CuAu3 the Au resonance broadens and only a weak
shoulder remains. The peaks at 12 and 20 meV can be
matched with the broad shoulder at 12-13 meV and a
peak at 18-19 meV in experiment.39 Thus, all the spectral
features for Cu-Au alloys are in good agreement with ex-
periment, except that the positions of the high-frequency
peaks are about 2 meV too high. This overestimation
may be due to the softening of the force constants un-
der relaxation due to the anharmonic terms that are ne-
glected here.



13

FIG. 5. (Color online) Phonon spectra calculated using a 8 × 8 × 8 cubic cell containing 2048 atoms and the fitted force
constants. Solid lines: random alloy. Dashed lines: fully ordered alloy (L10 for 50% and L12 for 1:3 compositions). Black
lines: total phonon DOS; red and blue lines: partial DOS for 3d and 5d elements, respectively. Green circles: neutron-weighted
phonon DOS for disordered Cu-Au alloys from Fig. 1 of Ref. 39. Green dot-dashed line for Cu3Au: phonon DOS for the L12

phase corrected for neutron weighting from Ref. 39. Green dot-dashed lines for FePt3 and Fe3Pt: phonon DOS for the L12

phases calculated in Ref. 40 from the force constants fitted to experimental phonon dispersions.

The frequency scale is in meV; DOS is in arbitrary units.

For the Fe-Pt system, to our knowledge, the exper-
imental data are only available for ordered Fe3Pt and
FePt3. The phonon spectrum of ordered FePt3 shows
a Fe-dominated peak at 25 meV in excellent agreement
with experimental data.40,41 Similar high-energy peaks
are observed in ordered FePt and Fe3Pt, the latter in
good agreement with Ref. 40.

In the disordered Fe-Pt alloys the lower-energy peaks
broaden, while the highest-energy peak shifts slightly
down. Overall, the spectra for the Fe-Pt alloys are simi-
lar to Cu-Au, but the highest frequencies are higher, and
the corresponding peaks sharper. This is due to Fe hav-
ing a smaller mass and the Fe-Fe and Fe-Pt bonds being
stiffer compared to Cu-Cu and Cu-Au. The spectrum for
Fe3Pt reveals a Pt resonance at 10 meV, which is similar
to the Au resonance in Cu3Au.

X. AUXILIARY CLUSTER EXPANSION

In thermodynamic or kinetic Monte Carlo simulations
the formation enthalpy of a simulation cell with at least a
few thousand atoms has to be calculated multiple times.
The chemical part Hchem (see Eq. 1) can be represented
by a conventional real-space cluster expansion. Unfortu-
nately, the CLDM expressions for the relaxation energy
can not be employed directly in Monte Carlo simulations
due to a prohibitive cost of inverting, at each Monte

Carlo step, the matrix Â in Eq. (18) whose dimension
scales with the number of atoms in the simulation cell.
On the other hand, for a qualitative analysis of order-
ing tendencies and phase transformation kinetics, it is
often useful to analyze the energetics of an alloy that is
close to random using the concentration-wave method.7,8

While more sophisticated approximations can be envis-
aged, here we address both of these needs by fitting the
CLDM relaxation energy to an auxiliary many-body real-
space cluster expansion. Such an expansion can have a
much larger number of parameters compared to those
based directly on first-principles data, because a large
number of structures can be included in the fit at a small
computational cost. Because of this, the problem of con-
vergence in real space is greatly alleviated. The price to
pay for this simplification is, of course, the loss of infor-
mation about the long-range part of the interaction. This
loss is likely not critical for systems undergoing homo-
geneous ordering, but it is troublesome whenever phase
separation is involved. Indeed, the long-range part of the
interaction is responsible for the non-additive contribu-
tion to the relaxation energy which is crucial in coherent
phase separation.23–27 Since our present focus is on or-
dering systems, we expect the auxiliary cluster expansion
for the CLDM energy to be a good approximation.

We have calculated the CLDM relaxation energies for
a few hundred structures at each target composition for
Cu-Au and Fe-Pt systems, and used them to construct
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real-space cluster expansions for each of the three con-
centrations by means of the Alloy Theoretic Automated
Toolkit (ATAT).5 All input structures were generated at
the exact target concentration. The basis sets and over-
all quality of these expansions are displayed in Table VI
(see the lines labeled R). A more detailed picture is pro-
vided by Fig. 6. It can be seen that the misfits introduced
by the re-expansion of the CLDM relaxation energy are
smaller than 3 meV. In addition, the CV scores are only
marginally larger than the average misfits, reflecting the
stability of the fits thanks to the fact that there are many
more input structures than fitting parameters. Note that
these misfits reflect only the additional error introduced
by re-expanding the CLDM expressions; the accuracy of
the CLDM itself was discussed in Section VI.

TABLE VI. Parameters of the real-space cluster expansions
used in Monte Carlo simulations. The column Clusters lists
the number of 2-body, 3-body, 4-body, and larger (for CuAu)
cluster types in the basis set. The CV and misfit are given in
meV. Notation: GS, tentative ground state predicted by the
full cluster expansion; OV, at optimized volume; R, relax-
ation energy from CLDM; C, chemical part of the formation
enthalpy; S, contribution from striction; NM, not meaning-
ful; [001] SL, several [001] superlattices are nearly degenerate.
Structure Y for FePt3 is a [001] A2BA2M superlattice, where
M is a mixed A/B layer; it is nearly degenerate with L12.

Alloy Term Inputs Clusters CV Misfit GS

Fe3Pt
R 440 39,50,20 1.8 1.0

L12C 33 4 3.6 3.2

FePt
R 1936 39,50,20 1.8 1.6

L10C 28 4,0,1 6.0 4.7

FePt3
R 440 39,50,20 1.4 1.0

Y
C 33 3,2 3.8 3.1

Cu3Au
R 439 39,50,35 2.8 1.0

L12C 33 4 1.5 0.6

CuAu
R 1195 39,50,30,17,20 2.4 2.1

L10C 29 7 1.3 1.0
S 26 7,1,5 NM 2.9

CuAu
(OV)

R 1195 39,50,30,17,20 2.0 1.7
L10C 29 6 1.2 0.9

S 47 7,1,5 6.1 3.3

CuAu3
R 439 39,50,35 2.0 1.3

[001] SL
C 33 4 1.8 1.5

Fig. 7 illustrates the dependence of the ECI’s repre-
senting the CLDM relaxation energy on the size of the
cluster (i. e. largest distance between any two sites within
the cluster). Two-body and many-body ECIs are shown
separately, and they are multiplied by the factor giving
the number of clusters of a given type per lattice site. It
is seen that the many-body ECIs are comparable with
pair ECIs. Moreover, although many-body clusters with
size larger than 2a were not included in the basis sets,
Fig. 7 strongly suggests that many-body ECIs, similarly
to the pair ones, decay slowly with the cluster size. This
feature agrees with expectations based on the general
structure of CLDM and the fact that the Kanzaki forces
are strongly non-pairwise.

The “chemical” (fixed lattice) contribution to the for-
mation enthalpy is represented by a conventional real-
space cluster expansions, whose parameters are listed in
Table VI (lines labeled C). The inputs for these expan-
sions were the same as those used in the fitting of the
forces and force constants. The Cu-Au set also included
structure X shown in Fig. 4 which competes with L10

if the striction term is not included. As noted in Sec-
tion VII, this striction is important for the stabilization
of the L10 ground state and must be included in ther-
modynamic simulations. Since our representation of the
forces and force constants does not provide an adequate
mapping of the stress tensor within CLDM, for this sys-
tem we utilized an additional real-space cluster expan-
sion to represent the striction part of the formation en-
thalpy Eshape + Evol (in the notation of Section VII).
The data for the construction of these cluster expansions
is taken from first-principles calculations with fixed and
optimized dimensions of the unit cell. The parameters of
this expansion are also included in Table VI. The struc-
ture shown in Fig. 4 is not invariant under relabeling of
the component species, which introduces a three-body
term in the cluster expansion. If this is the only such
structure in the input set, the CV score becomes mean-
ingless. Therefore, in the fit at the optimized volume
we have included several additional structures. Based on
the discussion in Section VII, the contribution of stric-
tion was neglected for the other five systems considered
here.

XI. EFFECTIVE INTERACTION IN THE
RANDOM ALLOY

Let us now consider the effective pair interaction that
may be suitable for the analysis of the stability of the
random alloy with respect to the formation of concentra-
tion waves.7,8 While short-range order may complicate
the situation considerably, here we restrict ourselves to
the consideration of an ensemble with statistically inde-
pendent atomic site occupations representing alloy con-
figurations that are only slightly inhomogeneous. This
means that the average occupations are 〈σi〉 = σ0 + δi
where δi are small. The effective interaction potential is
then defined by pairwise ECI’s:

Jeff
ij =

∂2〈E〉
∂δi∂δj

. (23)

If the energy is represented by a many-body real-space
cluster expansion, these ECI’s can be readily calculated:

Jeff
ij =

∑
P⊃{i,j}

mPN
P
ijJPσ

NP−2
0

mij
(24)

where mP is the multiplicity factor of cluster type P ,
NP is the number of sites in P , and NP

ij the number of
edges of P that are equivalent by symmetry to the pair
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FIG. 6. (Color online) Accuracy of the real-space cluster expansions of the CLDM relaxation energy for (a) Cu-Au and (b)
Fe-Pt alloys. Each structure is represented by a data point. Data sets for different concentrations are shifted along the y axis.

{i, j}. Note that for an equiconcentrational alloy we have
σ0 = 0, and only pair clusters contribute to Jeff

ij .

Figure 8 shows the Fourier transform Jeff(k) of the to-
tal effective potential along with its strain-induced and
chemical parts. Jeff(k) describes the energy of a con-
centration wave at a wave vector k in the random alloy.

Although the data sets used to construct the auxiliary
cluster expansions for the relaxation energy include hun-
dreds of structures, the shortest k vectors represented
by these structures are only on the order of 10% of the
reciprocal lattice vector, and the number of structures
with such short k vectors is relatively small. Therefore,
the auxiliary cluster expansion fit is insensitive to the
behavior of the effective interaction in the vicinity of the
Γ point. In this small region in the Brillouin zone the
interactions are shown by dotted lines in Fig. 8 to em-
phasize that they are not captured correctly by the fit.
On the other hand, ordering tendencies are most sensi-
tive to the behavior of Jeff(k) at the periphery of the
Brillouin zone where it is reliably captured by the fit.
In systems under consideration Jeff(k) reaches its min-
imum at the zone boundary (at or near the X point),
and the inaccuracy of Jeff(k) near the Γ point is unlikely
to lead to incorrect predictions for the phase transitions.
As it was mentioned above, the situation is different is
systems undergoing spinodal decomposition, where it is
important to know Jeff(k) near the Γ point.

We can see from Fig. 8 that in most cases the plots of
Jeff(k) for the strain-induced contribution display abrupt
turns near the Γ point where the fit can no longer capture
the k dependence correctly. These errors are harmless in

all systems except CuAu3 where the total effective inter-
action reaches minimum at the Γ point. In this system
the auxiliary cluster expansion leads to an unacceptable
loss of accuracy.

Inspection of Fig. 8 shows that the overall shape of the
total effective interaction is quite similar in Cu0.75Au0.25

and Cu0.5Au0.5 systems, as well as in Fe-Pt alloys at
all three compositions. The global minimum of Jeff(k)
is reached at the X point in all systems with 50% and
75% of the 3d element (Cu or Fe). The minimum at the
X point in the Cu3Au alloy agrees with the conclusions
of Ref. 42.43 The minimum at the X point is sharper
in the CuAu system compared to Cu3Au, and in Fe-Pt
alloys compared to Cu-Au. In Fe0.25Pt0.75 there is a flat
region of Jeff(k) near the X point, with the minimum
shifted away from X. This splitting of the minimum at X
also does not have immediate consequences, because it is
likely to be modified by magnetic disorder (see Section
XII for further discussion).

XII. MONTE CARLO SIMULATIONS

In the previous sections we have been occupied with
the construction of configurational Hamiltonians includ-
ing the relaxation energy, and now we are ready to exam-
ine the thermodynamic properties. The configurational
Hamiltonian in our approach corresponds to a fixed over-
all composition. It is thus potentially suitable for the
prediction of coherent phase transformations in a fixed-
concentration alloy in a typical quench-and-anneal ex-
periment as long as the thermodynamic simulations are
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FIG. 7. (Color online) Effective cluster interactions (ECI) representing the strain-induced interaction in Cu-Au (left panel)
and Fe-Pt (right panel) alloys. Red circles: pair ECI; blue diamonds: many-body ECI. Large empty symbols: these ECIs were
divided by 5 to fit in the figure. The ECIs are multiplied by the multiplicity factor giving the number of the corresponding
clusters per lattice site. OV: optimized volume.

also performed at a fixed composition, i. e. within the
canonical ensemble. As it was mentioned in the introduc-
tion, this general scheme (composition-dependent Hamil-
tonian plus particle-conserving thermodynamic or kinetic
simulation) appears to be necessary on general physical
grounds for the description of a coherent phase transfor-
mation involving phase separation. The procedure devel-
oped in this work is, however, not ready for this purpose,
because in a phase-separated state the crucial long-range
part of the elastic interaction is not captured by the auxil-
iary cluster expansion. Clearly, a more sophisticated ap-
proximation to the CLDM relaxation energy is necessary
that would both represent the long-range many-body in-
teraction faithfully and either be computable at the rate
required in Monte Carlo simulations or be amenable to a
reasonably accurate statistical approximation (such as a
suitably adapted cluster variation method). Another is-
sue is the difficulty in describing the homogeneous strain
within CLDM, which we have discussed above. As long
as the computational cell is filled by all possible domain
types of the product phases, the macroscopic symmetry
of the disordered phase is not broken. If the latter is cu-

bic, the traceless part of the uniform strain tensor van-
ishes. In this situation, which is typical at early stages
of a kinetic Monte Carlo simulation, the homogeneous
strain problem is not of major importance. However,
when the domain size becomes comparable with the size
of the computational cell (which is typical in Monte Carlo
simulations), the homogeneous strain can generally not
be ignored.

These problems will need to be addressed in order to
apply the CLDM to describe phase transitions involving
phase separation. Our present goal is, however, more
modest: we are interested in finding the ordering phase
transitions at compositions that are close to the points
of equal concentration in the phase diagrams. In this sit-
uation the long-range part of the interaction is of minor
importance, and we expect the auxiliary cluster expan-
sion to be quite adequate. Once the CLDM expression
for the relaxation energy has been replaced by the finite-
range auxiliary cluster expansion, the choice of the sta-
tistical ensemble is of no consequence. Therefore, the
Monte Carlo simulations were performed using the effi-
cient semi-grand canonical ensemble as implemented in
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FIG. 8. (Color online) Effective pair interaction Jeff(k) (meV units) in Cu-Au and Fe-Pt alloys for small deviations from the
random alloy. “OV” stands for optimized volume. Dashed green: chemical contribution; solid blue: strain-induced contribution;
dotted red: homogeneous strain contribution (only for CuAu); thick black lines: total effective interaction. The dotted segments
of the lines near the Γ point show the region where the strain-induced contribution is not correctly captured by the auxiliary
cluster expansion.

the ATAT package.44 In this approach the chemical po-
tential difference for the two components is fixed, and the
temperature of the phase transition is signalled either by
the discontinuity of the concentration or by a singularity
in the heat capacity. For the present purposes we se-
lect the chemical potential in such a way that the phase
transition occurs at the target concentration (i. e. the
same concentration at which the configurational Hamil-
tonian has been constructed). The discontinuity of the
concentration at the target concentrations was found to
be small, validating the applicability of the model.

The results of Monte Carlo simulations for Cu-Au and
Fe-Pt alloys, are presented in Table VII. For each sys-

tem we list two values of the critical temperature Tc: one
obtained using only the cluster expansion for Hchem and
another based on the representation of the full Hamilto-
nian.

The ordering temperatures Tc for Fe3Pt and FePt are
in good agreement with experimental data. The vibra-
tional entropy neglected here is expected to reduce Tc (in
Cu-Au systems this reduction is45 about 15%). There-
fore, the agreement with experiment for Fe3Pt is very
good, which appears to validate the neglect of the shape
relaxation energy. On the other hand, for FePt the model
appears to underestimate Tc, and for the FePt3 system Tc
comes out at half the experimental value. The calculated
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Tc in FePt is in good agreement with the value of 1514
K obtained previously46 using Monte Carlo simulations
based on the short-range pair interaction which was fitted
using the Connolly-Williams structure inversion method.

TABLE VII. Ordering temperatures Tc (K) and phases ap-
pearing in Monte Carlo simulations. For FePt3 the boundary
of the disordered region at 25% Cu is listed. For CuAu3 the
results are not meaningful (NM).

Fe3Pt FePt FePt3

Tc Phase Tc Phase Tc Phase
Hchem only 1580 L12 2000 L10 1350 L12

Full 1200 L12 1460 L10 840 β2 +A1
Ref. 46 — — 1514 L10 — —

Experiment49 1015 L12 1535 L10 1500 L12

Cu3Au CuAua CuAu3

Tc Phase Tc Phase Tc Phase
Hchem only 1630 L12 1275 (1000) L10 875 L12

Full 850 L12 670 (740) L10 NM NM
Ref. 50 460 L12 430 L10 — —
Ref. 11 530 L12 660 L10 750 β2 +A1

Experiment51 663 L12 683 L10 473 L12

a Reference lattice at a = 3.819 Å or 3.897 Å (the latter in
brackets).

The FePt3 alloy undergoes phase separation, which,
strictly speaking, invalidates our procedure involving an
auxiliary cluster expansion. However, since the effective
interaction Jeff(k) is very large at the Γ point in this sys-
tem, the ordering tendencies are likely to be correctly re-
produced. The emergence of the β2 phase agrees with the
results of Barabash et al.47 who found that it makes a ver-
tex on the convex hull, while the ferromagnetic L12 phase
lies on a tie-line connecting other phases. (The β2 phase
was also reported in calculations for Cu-Au,11 Fe-Pd47,
and Co-Pt48 systems.) We found that a small change in
the cluster expansion brought about by including input
structures in a finite concentration range of 66-86% stabi-
lizes the L12 phase and yields an ordering temperature of
740 K. However, the experimental ordering temperature
for the L12 phase is about twice higher (1500 K). This
discrepancy (and perhaps also the underestimation of Tc
for FePt) can be tentatively attributed to our neglect of
magnetic disorder. Indeed, all energies and forces have
been calculated in the ferromagnetic state, while the or-
dering phase transitions occur in the paramagnetic state.
The influence of magnetic order on the structural ener-
getics of Fe-Pt alloys was also discussed by Barabash et
al.47 who found that antiferromagnetic order places the
L12 FePt3 phase on the convex hull instead of the β2

phase. Thus, the stability of the L12 phase is underesti-
mated.

For a more detailed treatment of this problem, the
CLDM can be extended by including the dependence of
forces and force constants on the magnetic configuration
of the alloy. The simplest spin-dependent terms that can
be added to the cluster expansions for Fi and Âij are

proportional to SiSj , where Si is the spin moment of a
magnetic atom at site i. Once these terms are fitted using
different spin configurations of the ordered structures, the
spin products can be replaced by their thermodynamic
averages. The development of this approach is left for
future work.

Turning to the Cu-Au system and bearing in mind the
expected reduction of Tc due to the contribution of vibra-
tional entropy,45 we see that the predictions for Cu3Cu
and CuAu compositions are quite satisfactory. For CuAu
the model based on the optimized volume predicts a 10%
higher transition temperature. This variation may be
taken as an indication of the uncertainty built into the
model. Indeed, the total energy differences taken from
first-principles calculations do not depend on the choice
of the reference volume, which only affects their formal
partitioning between the chemical and strain-induced
parts. It is quite natural that the choice of the opti-
mized reference volume significantly reduces the relative
magnitude of the strain-induced interaction, as can be
seen from the predicted values of Tc for CuAu in Table
VII (compare the data labeled “Hchem only” and “Full”).
The value of 740 K based on the optimized volume should
be viewed as more reliable, because this choice reduces
the errors due to anharmonicity.

For CuAu3 the simulation predicts phase separation
at a temperature above 2000 K, which is not meaning-
ful and clearly due to the failure of the auxiliary cluster
expansion to capture the long-range part of the interac-
tion. On the other hand, as mentioned in the Introduc-
tion, the semi-grand canonical Monte Carlo simulation is
also problematic for a system undergoing coherent phase
separation. Since semi-local exchange-correlation func-
tionals including GGA fail to predict the ground state
in this system, we did not attempt to improve its de-
scription. We have, however, checked that the CLDM,
in good agreement with first-principles calculations, pre-
dicts that several structures in the input set have energies
below that of L12. It has been recently shown that the
use of hybrid exchange-correlation functionals eliminates
this failure of semi-local functionals,52 which may lead
to a better description of the Au-rich side of the phase
diagram.

Comparison of the transition temperatures obtained
including (lines labeled “Full” in Table VII) and neglect-
ing (lines labeled “Hchem only”) the strain-induced in-
teraction illustrates the relative magnitude of the lat-
ter. For example, in FePt it reduces the predicted Tc
by 27%. This reduction agrees very well with a rough
estimate that could be made based on the results of first-
principles calculations. Indeed, the relaxation energy of
the Fe0.5Pt0.5 SQS16 structure is 38 meV, while the en-
ergy difference between the unrelaxed SQS16 and L10

structures is 135 meV; thus the Tc reduction could be
roughly predicted to be 28%. Note that the average
volume relaxation in FePt is only 1.3 meV (see Table
IV), and therefore the relative magnitude of the strain-
induced interaction can not be materially reduced by se-
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lecting a different reference volume. On the other hand,
in Ref. 46 the traditional KKKM was employed to es-
timate the strain-induced interaction in FePt using the
elastic constants of Pt and the concentration expansion
coefficient. The strain-induced interaction was found to
be very small, only reducing Tc by about 60 K. This dras-
tic failure of KKKM shows that its approximations are
too drastic even for rough estimates of the strain-induced
interaction in concentrated 3d-5d alloys.

XIII. CONCLUSIONS

We have presented a configuration-dependent lat-
tice deformation model (CLDM) designed to repre-
sent the strain-induced interaction in concentrated size-
mismatched alloys, which systematically generalizes
the Kanzaki-Krivoglaz-Khachaturyan formalism. Our
present treatment is done within the harmonic approx-
imation. Both the Kanzaki forces and force constants
referenced from the undistorted lattice are given by
many-body cluster expansions constructed based on first-
principles calculations. This model has been applied to
Cu-Au and Fe-Pt alloys, treating three compositions near
25%, 50%, and 75% as separate systems. Large asymme-
try between the two components leads to a strongly non-
pairwise strain-induced interaction in all systems. The
ability to capture these singularly long-range many-body
interactions is the main advantage of CLDM.

The model was found to provide a rather accurate rep-
resentation of the relaxation energy under the restriction
of constant uniform strain, with the main source of error
being the neglect of anharmonicity in strongly relaxing
configurations. However, the configuration-dependent
stress is not adequately represented by the models, which
may be due to the slow real-space convergence of the cor-
responding lattice sums. As a result, the contribution of
striction (i. e. relaxation of the unit cell shape) must be
included separately when it is important.

The phonon spectra of random alloys based on the

configurationally-dependent force constants are in good
qualitative agreement with the available experimental
data, but an accurate calculation of the vibrational en-
tropy is not possible without the inclusion of anharmonic
terms.

For further applications, the CLDM relaxation energy
is refitted to a multi-parameter real-space cluster expan-
sion using several thousand input structures. The effec-
tive pair interaction Jeff (k) obtained from this fit (Fig.
8) can be used to analyze the ordering tendencies in a
disordered alloy.

The calculated ordering transitions (Table VII) are in
good agreement with experiment with the exception of
FePt3 where the stability of the L12 phase is underes-
timated due to the neglect of magnetic disorder, and
CuAu3 due to the known failure of GGA to predict the
correct ground state.

Overall, the CLDM provides an accurate and practi-
cal approach for the description of strain-induced interac-
tion in concentrated alloys. Some natural future develop-
ments may include the incorporation of spin-dependent
forces and force constants in magnetic systems to de-
scribe the interplay between structural and magnetic dis-
order, and the inclusion of anharmonic terms to im-
prove the prediction of relaxation energies and to en-
able the calculation of the vibrational entropy. The rea-
sons for the failure of the current models to represent the
configuration-dependent stress tensor also require further
analysis.
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