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When Dirac electrons on the surface of a topological insulator are gapped, the resulting quantum
anomalous Hall effect leads to universal magneto-optical Faraday and Kerr effects in the low fre-
quency limit. However, at higher frequencies different excitations can leave their own fingerprints
on the magneto-optics and can therefore be probed. In particular, we investigate the role of local-
ized in-gap states—which inevitably appear in the presence of charged impurities—on these higher
frequency magneto-optical effects. We have shown that these states resonantly contribute to the
Hall conductivity and are magneto-optically active. These in-gap states lead to peculiar resonant
signatures in the frequency dependence of the Faraday and Kerr angles, distinct in character to the
contribution of in-gap excitonic states, and can be probed in ellipsometry measurements.

PACS numbers: 78.66.Sq,71.55.-i,78.20.Ls

I. INTRODUCTION

Topological insulators (TIs) represent a new class
of solids whose band structure can be characterized
by a topological invariant1–4. As with normal “non-
topological” insulators, their bulk has a filled valence
band with an empty conduction band separated by a
gap. But unlike usual insulators, TIs have very un-
conventional, symmetry-protected surface states. In-
terest in TIs has grown considerably since the dis-
covery of two-dimensional (HgTe5,6) and subsequently
three-dimensional TIs (Bi2Se3, Bi2Te3 and other Bis-
muth based materials7–10). The surface states of three-
dimensional TIs are described by a Dirac equation for
massless particles, but unlike two-dimensional systems
like graphene, there is only one Dirac “cone” (in general,
an odd number) – something that can only be realized
at the surface of a bulk three-dimensional system11,12.
Thus, the surface of a TI is a veritable experimental and
theoretical playground for many interesting phenomena
including but not limited to both topological supercon-
ductivity, which gives rise to exotic Majorana fermions13

(these could potentially be used as building blocks for
quantum computation14) and the anomalous half-integer
quantum hall effect (AQHE)15 (See also Refs. 16 and 17
for a review).

The AQHE occurs when time-reversal symmetry is
broken, opening up a gap in the Dirac surface states.
Without external magnetic field, this effect can be re-
alized by an exchange field that couples to the spins of
the electrons on the surface. The exchange field can be
induced either by the proximity effect with an insulating
ferromagnet18 or by the ordering of magnetic impurities
introduced to the bulk or surface of a TI15,19,20. Recently,

both methods of inducing an exchange field have been
realized experimentally21–24 and the AQHE has been
experimentally confirmed by transport measurements25.
The AQHE is the origin of “image monopole effect” for
an electron in the vicinity of a TI surface26 as well as
reflectionless chiral electronic states localized on domain
walls which separate regions with the opposite exchange
field27.

Another way to probe the AQHE is with the magneto-
optical Faraday and Kerr effects where the polarization
of the transmitted and reflected electromagnetic waves
rotates relative to the wave incident on the TI’s sur-
face. At low frequencies—when dispersion effects can
be neglected—the optics of the TI nanostructures can
described macroscopically with an additional axionic θ-
term in the Lagrangian ∆LAE, which is insensitive to
microscopical details18,28 and given by

∆LAE = θ
e2

2πh

∫
dr E ·B. (1)

Here θ = 0 for ordinary insulators and θ = π for topolog-
ical ones. Moreover for thin film TIs, the Faraday angle
tanϑF = α0 and Kerr angle tanϑK = 1/α0 are predicted
to be universal29,30 and depend only on the fine structure
constant α0 = e2/~c ≈ 1/137.

The theoretical investigation of the Faraday and Kerr
effect beyond the low frequency regime is important not
only because real optical experiments occur at finite fre-
quency but also because single-particle and collective ex-
citations on the surface of TI start to leave their own
fingerprint on optical quantities. Particularly, chiral ex-
citons, collective in-gap excitations in the gapped Dirac
electron liquid, reveal their chiral nature31 by prominent
resonances seen in the frequency dependence of the Fara-
day and Kerr angles32. Here we consider other in-gap
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FIG. 1. (Color online) Here we plot the optical Hall conduc-
tivity in units of half the gap (2∆ is the magnetically induced
gap) taking into account both the effect of localized impurity
states (the subject of this paper) and chiral excitons – which
can be clearly distinguished – and compare it to the pure, non-
interacting optical conductivities (dashed line). The chemical
potential is at µ = −∆ and there is a density N/S = 0.035a−2

0

(see Eq. (8)) of Coulomb impurity states with dimensionless
coupling to electrons of α = 0.3. The exciton contribution
is calculated with dimensionless Coulomb coupling between
electron and holes of αc = 0.18 and is calculated in Ref. 32.
(See Section II for discussion of α and αc = e2/ε~vF.)

excitations, localized electronic states, which are present
due to inevitable impurities occurring in the TI bulk or
on its surface. In usual semiconductors, in-gap states
dominate absorption and magneto-optical effects do not
appear without a magnetic field; the exceptions are mag-
netic semiconductors where there are similar effects33.

In this paper, we have shown that localized in-gap
states on the magnetically gapped surface of TI are
magneto-optically active and lead to peculiar resonant
features in frequency dependence of the Faraday and Kerr
angles. In this case, the time reversal symmetry is broken
internally by the exchange field – leading to a nonzero
Hall conductivity. The shapes of the resonant features
differ considerably from the case of chiral excitons, so
they can be easily distinguished, as can be seen in Fig. 1
by the total Hall conductivity taking into account both
effects. The magneto-optical effects are controlled by the
appearance of a nonzero Hall conductivity and similarly,
they inherit frequency dependence from the optical Hall
conductivity – in this manner, Fig 1 represents the crucial
finding of this paper. These localized in-gap states also
lead to prominent resonances in frequency dependence of
the ellipticities of transmitted and reflected waves; thus,
they can be effectively probed in ellipsometry measure-
ments.

In Sec. II we discuss the two-dimensional electronic
structure on the surface of a TI in the presence of charged
impurities. Sec. III is devoted to the calculation of the
optical conductivity tensor on the surface of a TI with
localized states on its surface. The magneto-optics of
such a thin film are analyzed in Sec. IV, and we conclude

with some discussion and a brief summary in Sec. V.

II. LOCALIZED IN-GAP STATES

The single-particle Hamiltonian for Dirac electrons in-
teracting with charged impurities scattered over the sur-
face of a TI is given by

H0 = vF[p× σ]z + ∆σz −
∑
i

Ze2

ε̄|r− ri|
. (2)

Here p is the momentum operator; σ is the vector of
Pauli matrices with components σi; vF is Fermi velocity
of Dirac electrons; ri is position of of ith impurity and Ze
is their charge; ε̄ is the effective dielectric permitivity on
the surface of the TI34; And ∆ parametrizes the out-of-
plane component of exchange field which gaps the surface
spectrum. The in-plane component can be can be gauged
away and is unimportant for the phenomena this paper
is concerned with.

In the absence of impurities the surface spectrum is
εp = ±

√
(vFp)2 + ∆2 (+ for the conduction band; − for

the valence band; separated by a gap 2|∆|). The wave
functions of Dirac states can be presented as |p±〉 =
eip·r/~ |ϕp±〉, where the spinor part is given by

|ϕp±〉 =
1√

2εp(εp ±∆)

(
∆± εp
ivFpe

iθp

)
, (3)

with θp is the polar angle of the wave vector p.
If impurities are dilute enough—the case we consider

below—they can be considered independently. The di-
mensionless effective structure constant α = Ze2/~vFε̄
measures their coupling to Dirac states. Further, we as-
sume positively charged impurities impurities (Z > 0)
and generalization to Z < 0 is straightforward. Each
Coulomb impurity creates numerous localized states with
energies labeled by the quantum numbers n and total an-
gular momentum j

εnj =
∆|n+ γ|√

(n+ γ)2 + α2
, (4)

where γ =
√
j2 − α2, n = 0, 1, 2, . . . for j = 1/2, 3/2, . . .

and n = 1, 2, . . . for j = −1/2,−3/2, . . . (note that for
n = 0, the states are not doubly degenerate). The wave
functions of the localized states take the form

|Ψx;nj〉 =
1√
2π

(
F+
nj(r)e

i(j−1/2)θr

−F−nj(r)ei(j+1/2)θr

)
, (5)

where θr is polar angle in the real space and functions
F±nj(r) are given by35

F±nj(r) =
(−1)nλ3/2

∆Γ(1 + 2γ)

√
Γ(1 + 2γ + n)(∆± εnj)

(~vFj + ∆α/λ)αn!

× (2λr)γ−1/2e−λr[(~vFj + ∆α/λ)F(−n, 1 + 2γ; 2λr)

∓ ~vFnF(1− n, 1 + 2γ; 2λr)]. (6)
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FIG. 2. (Color online) Energies of the first six states localized
on a charged impurity. The vertical line represents the α we
consider for our numerical results.

where λ =
√

∆2 − ε2nj/~vF and F(a, b; z) = 1 + a
b z +

a(a+1)
b(b+1)

z2

2! + · · · is the confluent hypergeometric function.

It should be noted that the state with the lowest energy
(which we refer to as the “lowest state” to differentiate it
from the many-body ground state) is well separated from
excited states which lay in the vicinity of continuum of
delocalized electronic states as seen in Fig. (2). Thus,
we focus on the lowest state with energy ε0 ≡ ε0,1/2 =

∆
√

1− 4α2 and wave functions given by Eq. (5) with
j = 1/2 and

F±0,1/2(r) =
2α

~vF

√
2∆(∆± ε0)

Γ(1 + 2γ)

(
4α

∆r

~vF

)γ−1/2

e
−2α ∆r

~vF ,

(7)

with a effective radius

a0 =
√
〈r2〉 =

~vF

∆

√
3− 4α2 + 3

√
1− 4α2

4α
(8)

∼
√

3

8

~vF

∆

1

α
+O(α). (9)

For α ≥ 0.5, the j = 1/2 bound states become unstable
and classically these bound electrons collapse into the
“nucleus”; this has been extensively discussed in the case
of Dirac fermions in graphene36,37.

We are interested in the resonant contribution of the
localized states to the optical conductivity, so we approx-
imate the delocalized scattering states by the nonper-
turbed delocalized ones as written in Eq. (3). While this
approximation is not exact – the delocalized states will
be modified due to the potential – it does not affect the
resonant feature which is due to the difference in energies.

III. OPTICAL CONDUCTIVITIES

The electromagnetic response on the surface of a TI
is described by the optical conductivity tensor. For non-
interacting electrons, this tensor can be written in the

Kubo-Greenwood formulation as

σµν(ω) =
~e2

iS

∑
αβ

fα − fβ
εα − εβ

〈α|jµ|β〉 〈β|jν |α〉
~ω + εα − εβ + iδ

. (10)

Here ω is the frequency of the incident electromagnetic
wave, S is the surface area, and j = vF[σ×ẑ] is the single-
particle current operator. The sum is over all single-
particle states α, including valence band, conduction
band, and localized states with their corresponding ener-
gies εα and occupation numbers fα. The conductivity can
be broken up into transitions between (1) surface bands,
denoted by σcv, (2) a surface band and the localized
states, denoted by σimp, and (3) localized states, denoted
by σimp-imp. One can separate each of these contributions
to the conductivity tensor as σ = σcv + σimp + σimp-imp.
In this paper, the impurities contribute independently;
this works well when the sample is dilute enough, i.e.
given N impurities, (N/S)a2

0 � 1.
The contribution between bands can be presented as

σcv
µν(ω) = −i~e2

∑
p,γ,γ′

fp,γ − fp,γ′
εp,γ − εp,γ′

× 〈ϕp,γ |jµ|ϕp,γ′〉 〈ϕp,γ′ |jν |ϕp,γ〉
~ω + εp,γ − εp,γ′ + iδ

. (11)

This quantity was evaluated previously and is given by30,

Re[σcv
xx] =

e2

h

π

8

[
1 +

(
2∆

~ω

)2
]

Θ(~|ω| − 2|µ|), (12)

Im[σcv
xx] =

e2

8h

{
4∆2

~ω|µ| +

[
1 +

(
2∆

~ω

)2
]

ln

∣∣∣∣~ω − 2|µ|
~ω + 2|µ|

∣∣∣∣
}
,

(13)

Re[σcv
xy] =

e2

4h

2∆

~ω
log

∣∣∣∣~ω − 2|µ|
~ω + 2|µ|

∣∣∣∣ , (14)

Im[σcv
xy] = −e

2

h

π

4

2∆

~ω
Θ(~|ω| − 2|µ|), (15)

assuming |µ| ≥ ∆ (if |µ| < ∆, let µ→ ∆ in these expres-
sions).

The localized states on the Coulomb impuritie are la-
beled by λ = (ri, n, j), and their matrix elements can be
presented in the following form

〈p± |jµ|λ〉 =

∫
d2x 〈ϕp,±|jµ|Ψx−ri;nj〉 eip·x/~ (16)

= eip·ri 〈ϕp±|jµ|Ψp;nj〉 , (17)

where |Ψp;nj〉 is the Fourier transform of |Ψx;nj〉. The
expression for σimp

µν can be futher split

σimp
µν = σimp+

µν + σimp−
µν . (18)

Here σimp+
µν (σimp−

µν ) denotes the contribution due to ex-
citations from localized states to the conduction band
(from valence band to localized states), which is nonzero
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if the localized state is filled (empty). They can be both
be presented in the form

σimp±
µν =

N~e2

iS

∑
ελ≶µ

∑
p

f±λ − fp±
ελ ∓ εp

×

[ 〈λ|jµ|p±〉 〈p± |jν |λ〉
~ω ± εp − ελ + iδ

+
〈p± |jµ|λ〉 〈λ|jν |p±〉
~ω + ελ ∓ εp + iδ

]
. (19)

Here we have summed over all Coulomb impurities. The
phase factor in Eq. (17) depends on the position of the
impurity and is canceled in the product of matrix ele-
ments in Eq. (19). Integrating the matrix elements over
the angle of p and changing variables from p to εp ≡ ε
while taking into account the occupation of the bands,
we obtain

σimp±
xx =

iN~e2

S

∑
ελ≶µ

∫ ∞
max{|µ|,∆}

ε dε

(2π~vF)2

Mλ±
xx (ε)

ε∓ ελ
(20)

×
[

1

~ω ± ε− ελ + iδ
+

1

~ω + ελ ∓ ε+ iδ

]
,

σimp±
xy =

N~e2

S

∑
ελ≶µ

∫ ∞
max{|µ|,∆}

ε dε

(2π~vF)2

Mλ±
xy (ε)

ε∓ ελ
(21)

×
[

1

~ω ± ε− ελ + iδ
− 1

~ω + ελ ∓ ε+ iδ

]
,

(22)

where we defined

Mλ±
xx (ε) ≡

∫ 2π

0

dϑp | 〈p± |jx|λ〉 |2, (23)

Mλ±
xy (ε) ≡ i

∫ 2π

0

dϑp 〈p± |jx|λ〉 〈λ|jy|p±〉 , (24)

and used the fact that these are real functions.

To evaluate these, we use Eq. (17). In position space,
the bound state |λ〉 is of the form shown in Eq. (5) (cen-
tered around ri), so the Fourier transform takes the cor-
responding form

|Ψp;nj〉 =
√

2π

(
F̃+
nj(p)e

iθp(j−1/2)

iF̃−nj(p)e
iθp(j+1/2)

)
(25)

where F̃±nj(p) =
∫∞

0
dr rF±nj(r)Jj∓1/2(pr/~) are Hankel

transforms of their real-space counterparts (which can
be analytically evaluated given Eq. (7)).

In terms of these objects, we can evaluate the inte-
grated matrix elements

Mλ±
xx (ε) =

(2πvF)2

2ε
[(ε∓∆)|F̃+

nj(p)|2 + (ε±∆)|F̃−nj(p)|2]

(26)

Mλ±
xy (ε) =

(2πvF)2

2ε
[(ε∓∆)|F̃+

nj(p)|2 − (ε±∆)|F̃−nj(p)|2]

(27)

with p =
√
ε2 −∆2/vF.

Considering just the lowest state with n = 0 and j =
1/2 (labeled with λ = 0), we obtain

M0±
xx (ε) +M0±

xy (ε) =
2γ(2πvF)2

4α2

(
~vF

∆

)2 Γ
(
γ + 3

2

)2
Γ(2γ + 1)

(ε∓∆)(∆ + ε0)

ε∆
2F1

(
aγ , aγ + 1

2 ; 1;
∆2 − ε2
4α2∆2

)2

(28)

M0±
xx (ε)−M0±

xy (ε) =
2γ(2πvF)2

64α4

(
~vF

∆

)2 Γ
(
γ + 5

2

)2
Γ(2γ + 1)

(ε±∆)(ε2 −∆2)(∆− ε0)

ε∆3 2F1

(
aγ + 1

2 , aγ + 1; 2;
∆2 − ε2
4α2∆2

)2

(29)

where aγ = (2γ + 3)/4 and 2F1 is the (analytic continuation of the) hypergeometric function 2F1(a, b; c;x) = 1 +
ab
c
x
1! + a(a+1)b(b+1)

c(c+1)
x2

2! + · · · .

If two bound states are at different positions, then by
our diluteness assumption (insignificant wave function
overlap) transitions between them will not contribute to
the conductivity significantly. However, if the chemical
potential is in between two bound states that live at the
same position (e.g. the ground and excited states of a sin-

gle impurity), then transitions between those states can
contribute to the conducivity; this contribution is given



5

by

σimp-imp
xx = N

~e2

iS

∑
εnj<µ
εmj′>µ

(Φnjmj′)
2δj+1,j′ + (Φmj

′

nj )2δj,j′+1

εnj − εmj′

×
[

1

~ω + εnj − εmj′ + iδ
+

1

~ω + εmj′ − εnj + iδ

]
,

(30)

and

σimp-imp
xy = N

~e2

S

∑
εnj<µ
εmj′>µ

(Φnjmj′)
2δj+1,j′ − (Φmj

′

nj )2δj,j′+1

εnj − εmj′

×
[

1

~ω + εnj − εmj′ + iδ
− 1

~ω + εmj′ − εnj + iδ

]
,

(31)

where we have defined

Φnjmj′ ≡ v2
F

∫ ∞
0

rdr F+
mj′(r)F

−
nj(r). (32)

The integral in Eq. (32) can be calculated analytically for
the functions given in Eq. (6); the result is in terms of
Appell hypergeometric functions and can be calculated
with the use of an integral identity38. Notice that tran-
sitions can only occur between states that only differ by
a quantum of angular momentum as expected from the
form of the single-particle current operator. For our cal-
culations we do not consider these transitions since the
higher excited states merge with the continuum – leading
to at most a decreasing and smoothing of the threshold.

For the calculation of the frequency dependent conduc-
tivities shown in Fig. 3, we use the dimensionless param-
eters α = 0.3, (N/S)a2

0 = 0.035. For a charge on the
surface of a bulk TI α ∼ 0.09Z; however, in a thin film
geometry where the localized state has a radius a0 & d
where d is the thickness of the thin film, the situation is
more complicated. If a0 � d, then we expect α ∼ 3.5Z,
but we are in an intermediate region where the energy
level due to the more complicated potential34 is more ac-
curately captured by α ∼ 0.3Z. Also, we use four values
of the chemical potential corresponding to four differ-
ent occupation situations, illustrated in Fig. 3a. In-gap
states correspond to resonance features in Figs. 3b and
3c which are well below the threshold of 2max(∆, |µ|). If
the in-gap states are empty, an additional peak appears
at ε0 + max{∆, |µ|}. If they are occupied, it appears at
frequency max{∆, |µ|} − ε0. The shape of the resonance
weakly depends on the value of chemical potential and
its height disappears at µ/|∆| � 1. Thus, the main role
of the chemical potential, if it is outside the gap, is shift-
ing of resonant frequencies, and in the next section on the
magneto-optical effects of a topological insulator film, we
exclusively consider the chemical potential to be situated
inside the gap.

It should be noted that in the above calculation we
neglected the Drude contribution, which appears if the
chemical potential lies outside the gap. The Drude con-
tribution dominates transport but it is not as important
for the optical conductivity at frequencies ω � 1/τ . We
further assume that we have only one localized state:
the lowest bound state in Eq. (7). The excited in-gap
states violate diluteness criterion: electrons can hop be-
tween these states due to significant wave function over-
lap; hence, these states will merge with continuum of
delocalized states.

IV. FARADAY AND KERR EFFECTS

We consider the Faraday and Kerr effects at normal
incidence and in a thin film geometry. These conditions
are the most favorable for observing the effects of sur-
face states on the optics. While the Faraday and Kerr
effects are quite insensitive to oblique incidence39, they
considerably decrease (especially the Kerr effect) in the
presence of a mismatch of dielectric constants on the TI
film surfaces and due to longitudinal conductivity30,40.
This mismatch – of bulk dielectric constant to surface
effects – can be neglected only if the film thickness is
considerable smaller than the optical wavelength in it,
d� λ/εTI. In real samples, the bulk contributes consid-
erably to the longitudinal conductivity, which could be
reduced in TI films. Further, we assume that the direc-
tion of the exchange field (sign of ∆) is the same on each
surface of the TI; in the opposite case, the effects of both
plates on the optics cancel one another.

In experiments, the incident wave is usually linearly
polarized E = E0x̂. For calculational purposes, it is
convenient to present the incident wave as combination
of two circularly polarized waves and calculate their re-

flection r± = |r±|eiΦ
r
± and transmission t± = |t±|eiΦ

t
±

amplitudes. In this basis, the reflected and transmit-
ted waves are respectively Er = E0(r+e+ + r−e−) and
Et = E0(t+e+ + t−e−) where e± = x̂ ± iŷ represent
the two directions of circular polarization. The transmit-
tance through the film is given by T = (|t+|2 + |t−|2)/2;
the transmitted wave’s polarization rotates through an
angle ϑF = (Φt+ − Φt−)/2 (the Faraday angle) and
has ellipticity δF = (|t+| − |t−|)/(|t+| + |t−|); and the
reflected wave’s polarization rotates through an angle
ϑK = (Φr+ − Φr−)/2 (the Kerr angle) and has ellipticity
δK = (|r+| − |r−|)/(|r+|+ |r−|).

The amplitudes of the reflected and transmitted waves
can be found from Maxwell’s equation taking into ac-
count the electric currents excited by the incident elec-
tromagnetic wave. They are given by

t± =
e2/h

e2/h+ α0σtot
±
, r± = − α0σ

tot
±

e2/h+ α0σtot
±
. (33)

where σtot
± = σtot

xx ∓ iσtot
xy , e2/h is the quantum of con-

ductance, and α0 ≈ 1/137 is the fine structure constant.
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µ = −1.4∆ µ = −∆

µ = ∆ µ = 1.3∆

(a) The four cases for the chemical potential. The solid line in
the middle of the gap is the bound state.
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(b) Longitudinal conductivities.
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(c) Hall conductivities.

FIG. 3. (Color online) Given the four positions of the chemical
potential illustrated in (a), Coulomb coupling α = 0.3, and a
density of N/S = 0.035a20, (b) and (c) show the longitudinal
and hall conductivities respectively. Note that the largest
features are at 2|µ|, when the electromagnetic waves excite
electrons from the valence to the conduction band. The lower
frequency features occur when electromagnetic waves excite
electrons from the valence to the bound states (µ ≤ −∆) or
when electromagnetic waves excite electrons from the bound
state to the conduction band (µ ≥ ∆).
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FIG. 4. (Color online) The transmittance of the electromag-
netic wave for a thin film of Bi2Se3 in the case of a filled
valence band and unoccupied bound state (µ = −∆) and oc-
cupied bound state (µ = ∆).

Additionally, both sides of the thin film contribute to the
optical conductivity, so σtot

µν = 2σµν . If we expand in the

fine structure constant, we have ϑF ∼ 2αReσxy/(e
2/h),

δF ∼ 2α Imσxy/(e
2/h), and T ∼ 1 − 4αReσxx/(e

2/h).
Thus, these quantities track the respective optical con-
ductivities quite well.

For the numerical calculations, we have used the fol-
lowing parameters, in addition to the dimensionless pa-
rameters taken previously (α = 0.3 and (N/S)a2

0 =
0.035), we take the parameters for Bi2Se3 for the gap
to be the maximum achievable by magnetic doping22

∆ = 25 meV and Fermi velocity vF = 6.2 × 105 m/s.
With these numbers, our density is N/S = 38µm−2 and
a0 = 30 nm. It should be noted that N/S is not the to-
tal concentration of impurities, but the concentration of
impurity states with a definite energy ε0 inside the gap.
The generalization to the realistic case is discussed in the
Conclusions.

The dependence of transmittance on frequency is pre-
sented in Fig. 4. As one can easily see, the in-gap
states lead to absorption below the threshold (i.e. when
~ω ∼ 2|µ|), but it is small, not impeding the observation
of transmission. The decrease can be understood from
the relation of the longitudinal conducitivity to trans-
mission, and hence why even magneto-optically inactive
states affect transmission.

The Faraday and Kerr angles’ dependence on fre-
quency is presented in Figs. 5a and 5c respectively. As
with transmittance, the largest feature is at the thresh-
hold. Since the Faraday angle strongly depends on the
real part of the Hall conductivity, we see that it matches
it and has a similar resonant structure. The Kerr an-
gle is more sensitive to the real part of the longitudinal
conductivity though and we see corresponding features
at these points – decreasing the Kerr angle from its large
90◦ rotation at zero frequency when the frequency is on
resonance with the localized state. In both cases, the ef-
fect due to impurities is similar in nature to the resonant



7

...

..

0

.

5

.

10

.

15

.

20

.

−1.2

.

−1

.

−0.8

.

−0.6

.

−0.4

.

−0.2

.

0

.

µ = ∆

.

µ = −∆

.

frequency (THz)

.

ϑ
F

(◦ )

(a)

.....

0

.

5

.

10

.

15

.

20

.0 .

0.4

.

0.8

.

1.2

.

1.6

.

µ = ∆

.

µ = −∆

.

frequency (THz)

.

δ F
(1

0−
2 )

(b)

.....

0

.

5

.

10

.

15

.

20

.0 .

15

.

30

.

45

.

60

.

75

.

90

.

µ = ∆

.

µ = −∆

.

frequency (THz)

.

ϑ
K

(◦ )

(c)

.....

0

.

5

.

10

.

15

.

20

.0 .

0.25

.

0.5

.

0.75

.

1

.

µ = ∆

.

µ = −∆

.

frequency (THz)

.

δ K

(d)

FIG. 5. (Color online) The measurable optical quantities of the (a) Faraday angle, (b) ellipticity of the transmitted wave, (c)
Kerr Angle, and (d) ellipticity of the reflected wave for Bi2Se3 in the case of a filled valence band with an unoccupied bound
state (µ = −∆) and an occupied bound state (µ = ∆). As expected, the features correspond to the features in the optical
conductivities.

feature at threshold ω = 2∆.
Lastly, we show the frequency dependence of elliptic-

ities of transmitted and reflected waves in Figs. 5b and
5d respectively. Again, we see features when the incident
electromagnetic wave is on resonance with the impurity
state. The ellipticity of the transmitted wave follows the
imaginary part of the Hall conductivity, and the reflected
wave again is quite sensitive to resonant effects. Thus,
in-gap states can be probed effectively with ellipsometry.

V. CONCLUSIONS

We have shown that in-gap localized states dominate
both the absorption and magneto-optics for TI films with
magnetically gapped surfaces. In particular, they lead to
peculiar resonances in the frequency dependencies of the
Faraday and Kerr effects. This is similar to magnetic
semiconductors33, though in non-magnetic semiconduc-
tors in-gap states usually require a magnetic field to be-
come magneto-optically active. In the system considered

in this paper, the surface spectrum does not respect time-
reversal symmetry due to the gap induced by exchange
field. Hence, we can conclude that the effect we observe is
insensitive to details such as electron-hole asymmetry41,
hexagonal corrections42 to the Dirac spectrum, or to the
profile of impurity potential which we assumed to be the
Coulomb potential. We also assumed that all Coulomb
impurities have the same charge and are located on the
surface of TI; they can also be in the bulk of the TI,
and their coupling to the electronic Dirac states will de-
pend on their distance to the surface. If they are dilute
enough, they will also contribute to the optical conduc-
tivity, which can be represented as

σimp
µν (ω) =

∫ |∆|
−|∆|

dε0P (ε0)σimp
µν (ω, ε0), (34)

where σimp
µν (ω, ε0) is the contribution of a single impurity

bound sates with energy ε0 and P (ε0) is concentration of
the corresponding states. The finite distribution of lev-
els, originating from different coupling of impurities with
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Dirac states, can make the calculated resonance features
shallower and considerably wider. Additionally, there
are variations of the chemical potential δµ which cor-
respond to electron and hole puddles for δµ > 2∆43,44.
For δµ < 2∆, the variations can lead variation of oc-
cupation numbers of impurity states in different regions
which does not qualitatively modify our results. In or-
der for our results to qualitatively still make sense, we
require the variations in chemical potential δµ < 2∆.

There have been multiple optical experiments prob-
ing topological insulators which measure the Kerr and
Faraday effects. Jenkins et al. studied the Kerr and re-
flectivity for a fixed frequency and varying the magnetic
field45. Time-domain spectroscopy has been utilized on
strained HgTe46,47. The large Kerr effect and thickness
independent Drude peaks have also been observed48. Ad-
ditionally, the quantized Faraday angle has been seen
with passivated Bi2Se3 in a terahertz experiment as well
as observation of a shifted Dirac cone49,50. Time-domain
spectroscopy was also used in BSTS to see both the sur-
face state and a bulk impurity band51. And recently the
same technique was used on (Bi1−xInx)2Se3 to observe a
topological phase transition as x is varied52. At present,
all observed features originate from the bulk physics, but
recently new ultrathin magnetically gapped TI films have
been grown53,54 and for these samples all conditions ness-
esary for the observation of magneto-optical effects are
satisfied.

In these ultrathin films, the tunneling between oppo-
site surfaces can become important. The tunneling splits
the bands and ‘splits’ the threshold, leading to features55

similar to impurity states.
Resonant features from localized in-gap states and

from chiral excitons appear below the threshold 2|∆|, but
their shapes have completely different characters. The
localized impurity states are single-particle excitations
while excitons are two-particle excitations. Continuous
transitions from valence band to a localized state (or from
the localized state to conduction band) contribute to op-
tical conductivity, hence the additional peak can be in-
terpreted as a splitting of the threshold 2|∆| → |∆|+ ε0
(or to |∆| − ε0 if the state is occupied). On the other
hand, excitons lead to a sharp feature in the two-particle
spectrum, corresponding to their dispersion law Eex(q).
Since only excitons with zero momentum are optically
active, they lead to features of a single, resonant shape
in the magneto-optics32.

To conclude, we have investigated the role of localized
in-gap states on the surface of a topological insulators in
the magneto-optical Faraday and Kerr effects. These in-
gap states resonantly contribute to both the longitudinal
and Hall conductivities which in turn leads to peculiar
resonances in the frequency dependence of the Faraday
and Kerr angles as well as to the ellipticities of transmit-
ted and reflected waves. These resonant features that we
have predicted can be directly measured by optical ex-
periments. In fact, their specific shape of these resonant
features allows them to be easily separated from other
in-gap excitations.
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H. Buhmann, L. W. Molenkamp, and A. Pimenov, Phys.
Rev. B 87, 121104 (2013).

48 R. Valdés Aguilar, A. V. Stier, W. Liu, L. S. Bilbro, D. K.
George, N. Bansal, L. Wu, J. Cerne, A. G. Markelz, S. Oh,
and N. P. Armitage, Phys. Rev. Lett. 108, 087403 (2012).

49 G. S. Jenkins, A. B. Sushkov, D. C. Schmadel, M.-H. Kim,
M. Brahlek, N. Bansal, S. Oh, and H. D. Drew, Phys.
Rev. B 86, 235133 (2012).

50 G. S. Jenkins, D. C. Schmadel, A. B. Sushkov, H. D. Drew,
M. Bichler, G. Koblmueller, M. Brahlek, N. Bansal, and
S. Oh, Phys. Rev. B 87, 155126 (2013).

51 C. S. Tang, B. Xia, X. Zou, S. Chen, H.-W. Ou, L. Wang,
a. Rusydi, J.-X. Zhu, and E. E. M. Chia, Sci. Rep. 3, 3513
(2013).

52 L. Wu, M. Brahlek, R. Valdés Aguilar, a. V. Stier, C. M.
Morris, Y. Lubashevsky, L. S. Bilbro, N. Bansal, S. Oh,
and N. P. Armitage, Nat. Phys. 9, 410 (2013).

53 Z. Zhang, C.-Z. Chang, Z. Zuocheng, J. Wen, X. Feng,
K. Li, M. Liu, K. He, L. Wang, X. Chen, Q.-K. Xue, X. Ma,
and Y. Wang, Nat. Commun , 574 (2011).

54 C.-Z. Chang, J. Zhang, M. Liu, Z. Zhang, X. Feng, K. Li,
L.-L. Wang, X. Chen, X. Dai, Z. Fang, X.-L. Qi, S.-C.
Zhang, Y. Wang, K. He, X.-C. Ma, and Q.-K. Xue, Ad-
vanced materials (Deerfield Beach, Fla.) 25, 1065 (2013).

55 M. Lasia and L. Brey, arXiv:1404.7040 (2014).
56 W. Richter and C. R. Becker, Phys. Status Solidi 84, 619

(1977).


