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We consider manifestations of topological order in time-reversal-symmetric fractional topological
liquids (TRS-FTLs), defined on planar surfaces with holes. We derive a formula for the topological
ground state degeneracy of such a TRS-FTL, which applies to cases where the edge modes on each
boundary are fully gapped by appropriate backscattering terms. The degeneracy is exact in the limit
of infinite system size, and is given by qNh , where Nh is the number of holes and q is an integer that
is determined by the topological field theory. When the degeneracy is lifted by finite-size effects, the
holes realize a system of Nh coupled spin-like q-state degrees of freedom. In particular, we provide
examples where Zq quantum clock models are realized on the low-energy manifold of states. We also
investigate the possibility of measuring the topological ground state degeneracy with calorimetry,
and briefly revisit the notion of topological order in s-wave BCS superconductors.

I. INTRODUCTION

The robust ground state degeneracy (GSD) that
arises in topologically ordered systems1–3 has been an
object of intense study over the past quarter-century.
Interest in such states of matter has been motivated in
large part by the desire to access quasiparticles with
non-Abelian statistics, whose nontrivial braiding could
be used as a platform for quantum computation.4 Nev-
ertheless, to date there has been no definitive experi-
mental proof that such non-Abelian quasiparticles exist,
nor has there been any direct observation of topological
GSD.

There have been several theoretical proposals for the
experimental detection of topological degeneracy. One
set of proposals for the (putative) non-Abelian ν = 5/2
quantum Hall state focuses on measuring the contribu-
tion of the GSD to the electronic portion of the entropy
at low temperatures. Observable signatures of this con-
tribution include the thermopower5,6 and the tempera-
ture dependence of the electrochemical potential and or-
bital magnetization.7 The thermopower has been mea-
sured on several occasions8,9 with no conclusive signa-
tures. Abelian fractional quantum Hall (FQH) states10

are also topologically ordered, but the bulk GSD in these
systems is only accessible on closed surfaces (e.g., the
torus). This is unnatural for experiments, which are
confined to finite planar systems, although a recent
proposal11 suggests a transport measurement in a bi-
layer FQH system that avoids this handicap by effec-
tively altering the topology of the system.

In this paper, we propose that time-reversal-
symmetric fractional topological liquids (FTLs) may
constitute a promising alternative platform for realizing
the topological GSD in experimentally accessible geome-
tries. FTLs with time-reversal symmetry (TRS) have an
effective description in terms of doubled Chern-Simons
(CS), or so-called BF, theories.12 Examples of time-

reversal-symmetric FTLs with topological order include
fractional quantum spin Hall systems,13–15 certain spin
liquids,16 Kitaev’s toric code,17 and even the s-wave
BCS superconductor.3,18 In the present work we empha-
size FTLs whose edge states in planar geometries can
be completely gapped without breaking TRS, which is
possible when certain criteria are satisfied.19,20 In these
cases, the degenerate ground state manifold is well sep-
arated from excited states and the GSD on punctured
planar surfaces is accessible experimentally.

Our program for this paper is as follows. We first
derive a formula for the GSD of a doubled CS theory
defined on a plane with Nh holes, in cases where all
helical edge modes are gapped by appropriate backscat-
tering terms. This topological degeneracy increases ex-
ponentially with the number of holes, and is exact in the
limit where all holes are infinitely large and infinitely far
apart. We then consider finite-sized systems, where the
degeneracy is split exponentially by quasiparticle tun-
neling processes. In this setting, we argue that the holes
themselves realize an effective spin-like system, whose
Hilbert space consists of what was formerly the degen-
erate ground state manifold. We then examine calorime-
try as a possible experimental probe of the degener-
acy. We argue that, for suitable materials, the contribu-
tion of the GSD to the low-temperature heat capacity
could be observed experimentally, even in the presence
of the expected phononic and electronic backgrounds.
Finally, we also briefly revisit the notion of topological
order in s-wave superconductors, which was suggested
by Wen3 and investigated in detail by Hansson et al. in
Ref. 18. We argue that, for a thin-film superconduc-
tor with (3+1)-dimensional electromagnetism, there is
indeed a ground state degeneracy, which is related to
flux quantization. However, this degeneracy is lifted
in a power-law fashion, rather than exponentially, and
is therefore not topological in the canonical sense of
Refs. 1–3.
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II. THE TOPOLOGICAL DEGENERACY

In this section we derive a formula for the ground state
degeneracy of a TRS-FTL with appropriately gapped
edges. We begin with some preliminary information be-
fore moving on to the derivation.

A. Definitions and notation

A general time-reversal-symmetric doubled Chern-
Simons theory in (2+1)-dimensional space and time has
the form20

LCS ..=
1

4π
Kij ε

µνρ aiµ ∂ν a
j
ρ +

e

2π
Qi ε

µνρAµ ∂ν a
i
ρ,

(2.1a)

where i, j = 1, . . . , 2N , µ, ν, ρ = 0, 1, 2, and summa-
tion on repeated indices is implied. Here, the 2N × 2N
matrix Kij is symmetric, invertible, and integer-valued.
The fully antisymmetric Levi-Civita tensor εµνρ appears
with the convention ε012 = 1. The components Aµ of the
electromagnetic gauge potential are restricted to (2+1)-
dimensional space and time, and the vector Q has inte-
ger entries that measure the charges of the various CS
fields aiµ in units of the electron charge e. The theory
contains N Kramers pairs of CS fields, which transform
into one another under the operation of time-reversal.
We will therefore be particularly interested in scenarios
where the 2N × 2N matrix K has the following block
form, which is consistent with TRS, as was shown in
Ref. 20,

K ..=

(
κ ∆

∆T −κ

)
, (2.1b)

where the N ×N matrices κ = κT and ∆ = −∆T. TRS
further imposes that the charge vector possess the block
form (see Ref. 20)

Q ..=

(
%
%

)
. (2.1c)

The theory (2.1) can also be re-expressed in terms of an
equivalent BF theory21 by defining the linear transfor-
mation ãiµ ..= Rij a

j
µ, where

R ..=

(
1 1
1

2 −1

2

)
, (2.2a)

with 1 the N ×N identity matrix. This linear transfor-
mation induces the K-matrix and charge vector

K̃ ..= (R−1)TKR−1 =

(
0 κ
κT 0

)
, (2.2b)

κ ..= κ−∆, (2.2c)

Q̃ ..= (R−1)TQ =

(
%
0

)
. (2.2d)

Note that the transformation (2.2a) preserves det K
[c.f. Eq. (2.2d)].

When defined on a manifold with boundary, the CS
theory (2.1a) has an associated theory of 2N chiral
bosons φi at the edge. In the most generic case, the
boundary of the system consists of a disjoint union of
an arbitrary number of edges, each with a Lagrangian
density of the form (in the absence of the gauge field
Aµ)20

LE =
1

4π

(
Kij ∂t φi ∂x φj − Vij ∂x φi ∂x φj

)
+ LT, (2.3)

where Kij is the same 2N×2N matrix as before and the
positive-definite, real-valued, symmetric matrix Vij en-
codes non-universal information specific to a particular
edge. The Lagrangian density LT generically contains
all inter-channel tunneling operators,

LT ..=
∑
T∈L

UT (x) cos
(
T TK φ(x) + ζT (x)

)
, (2.4)

where T is a 2N -dimenisonal integer vector, φT =
(φ1 . . . φ2N ), and L is the set of all tunneling vectors
T allowed by TRS and charge conservation (if it holds).
The real-valued functions UT (x) and ζT (x) encode in-
formation about disorder at the edge and are further
constrained to be consistent with TRS (see Ref. 20).
When TRS is imposed, a necessary and sufficient con-
dition for gapping out the bosonic modes in the edge
theory (2.3) is the existence of N 2N -dimensional vec-
tors Ti ∈ L satisfying20,22

T T
i Q = 0, ∀ i (charge conservation), (2.5a)

T T
i K Tj = 0, ∀ i, j (Haldane criterion). (2.5b)

Strictly speaking, the criterion (2.5a) need not hold in
a general system, such as (for example) in the case of a
superconductor. In this case, one replaces charge con-
servation with charge conservation mod 2 (i.e., conserva-
tion of fermion parity), so that T T

i Q is only constrained
to be even. In the next section, we will focus on cases
where the criteria (2.5) are satisfied.

B. Gauge invariance in a system with gapped
edges

The need for the edge theory (2.3) arises from the
failure of gauge invariance in Chern-Simons theories on
manifolds with boundary. For non-chiral Chern-Simons
theories, like those of the form (2.1), the ability to gap
out the edge states necessitates an alternate route to
gauge invariance, as we now show. For simplicity, we
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will work on the disk, although analogous results hold
for manifolds with multiple disconnected boundaries.

To proceed, we rewrite the Lagrangian density (2.1a),
in the absence of the electromagnetic gauge potential Aµ
(which we ignore hereafter), in terms of two separate
sets of N CS fields αi and βi,

LCS =
εµνρ

4π

[
κij

(
αi
µ ∂ν α

j
ρ − βiµ ∂ν βjρ

)
+∆ij

(
αi
µ ∂ν β

j
ρ − βiµ ∂ν αj

ρ

)]
.

(2.6)

Here, i, j ∈ {1, . . . , N}, and the “new” CS fields are
defined as αi

µ(x, t) ≡ aiµ(x, t) and βiµ(x, t) ≡ ai+Nµ (x, t).
We define the CS action on the disk D to be

SCS ..=

∫
dt

∫
D

d2xLCS(x, t). (2.7)

Its transformation law under any local gauge transfor-
mation of the form

αi
µ 7→ αi

µ + ∂µ χ
i
α, βiµ 7→ βiµ + ∂µ χ

i
β , (2.8a)

where i = 1, . . . , N and χiα and χiβ are real-valued scalar
fields, is

SCS 7→ SCS + δSCS (2.8b)

with the boundary contribution

δSCS ..=

∫
dt

∮
∂D

dxµ
εµνρ

4π

[
κij
(
χiα ∂ν α

j
ρ − χiβ ∂ν βjρ

)
+∆ij

(
χiα ∂ν β

j
ρ − χiβ ∂ν αj

ρ

)]
. (2.8c)

Here, the boundary ∂D of the disk D is the circle S1,
and dxµ ..= εµ0σ d`σ, with d`σ the line element along
the boundary.

There are two ways to impose gauge invariance in the
doubled Chern-Simons theory SCS. On the one hand,
if the criteria (2.5) do not hold, we must demand that
there exist a gapless edge theory with an action SE that
transforms as SE 7→ SE− δSCS, so that the total action
SCS + SE is gauge invariant. On the other hand, if
the criteria (2.5) hold, then the edge fields φi become
pinned to the classical minima of the cosine potentials
in LT for large |UT (x)|, and are then no longer dynam-
ical degrees of freedom. In this case, gauge invariance
can be achieved by demanding that the anomalous term
δSCS = 0 identically. The latter option can be accom-
plished by imposing the boundary conditions

χiα|∂D = Tij χ
j
β |∂D, αi

µ|∂D = Tij β
j
µ|∂D, (2.9a)

for all i = 1, . . . , N , where the invertible N ×N matrix
T satisfies the following algebraic criterion:

TT κT − κ+ TT ∆−∆T = 0. (2.9b)

One can show that, in order for the boundary conditions
(2.9a) to be well-defined and consistent with TRS, the
matrix T must have rational entries and satisfy T 2 = 1

(see the Appendix).
It is natural to wonder whether different choices of

the matrix T in Eqs. (2.9) correspond to different ways
of gapping out the edge theory, i.e., to different choices
of the set of N linearly independent tunneling vectors
Ti (i = 1, . . . , N) that satisfy Haldane’s criterion (2.5b).
In the Appendix, we argue that this is indeed the case,
although the correspondence need not be one-to-one. In
particular, while any well-defined choice of the matrix
T implies a particular choice of the set {Ti}, most (but
not all) choices of the set {Ti} imply a particular choice
of T . In the remainder of this paper, we restrict our
attention to cases where the edge theory is gapped in
such a way that this correspondence holds.

We close this section with the observation that the
boundary conditions (2.9) can be defined on manifolds
with multiple disconnected boundaries. For example,
the boundary ∂A of the annulus

A ..= [0, π]× S1 (2.10)

consists of the disjoint union of two circles (∂A =
S1 tS1). In this case, one imposes independent bound-
ary conditions of the form (2.9a) on each copy of S1. If
both edges are gapped in the same way, then the bound-
ary conditions (2.9a) involve the same matrix T on both
edges. It is natural to assume that this is the case when
both boundaries of the annulus separate the TRS-FTL
from vacuum, since both edges have the same symme-
tries and can therefore be expected to flow under RG to
the same strong-disorder fixed point with the N most
relevant tunneling processes described by the same set
of tunneling vectors {Ti}Ni=1. We will therefore make
this assumption in the derivation below.

C. Calculation of the degeneracy

The ground state degeneracy on the torus of a multi-
component Abelian Chern-Simons theory of the form
(2.1a) is known on general grounds to be given by
|det K|.1,10,23 We now present an argument that, for
a doubled CS theory whose K-matrix is of the form
(2.1b), the ground-state degeneracy of the theory on
the annulus is given by the formula

GSD =
√
|det K| =

∣∣∣∣Pf

(
∆ κ
−κ ∆T

)∣∣∣∣ , (2.11)

provided that both edges of the annulus are gapped by
the same tunneling terms of the form (2.4), and provided
that these terms are chosen appropriately. Note that
|det K| is the square of an integer,20,21 so the GSD in
these cases is also an integer.
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FIG. 1: (Color online) Gluing argument for the special case
∆ = 0. In this case, the CS theory consists of two inde-
pendent copies, with equal and opposite K-matrices. The
tunneling processes (dotted lines) that gap out each pair of
counterpropagating edge modes couple the two annuli, and
the conditions (2.9) ensure that the two copies of the theory
can be consistently “glued” together.

The GSD of non-chiral Chern-Simons theories on
manifolds with boundary depends on the details of how
the different edges are gapped (see, e.g., Ref. 24). In
our argument, this dependence will manifest itself in
different choices of the boundary conditions (2.9a) for
the bulk Chern-Simons fields, which affect the counting
of the degeneracy.

Using these boundary conditions, it is possible to
show that Eq. (2.11) follows in much the same way as
its counterpart on the torus, so long as both edges of
the annulus are gapped by the same tunneling terms of
the form (2.4). Before proceeding with the full argu-
ment, we first provide an intuitive picture of why this
is, for the case where ∆ = 0 in Eq. (2.1b). In this
case, Eq. (2.6) describes two decoupled CS liquids, one
with K-matrix κ and the other with K-matrix −κ. We
can imagine that the two CS liquids live on separate
copies of the annulus A, which are coupled by the tun-
neling processes that gap out the edges. The conditions
in Eq. (2.9) ensure that the two coupled annuli can be
“glued” together into a single surface, on which lives a
composite CS theory with a GSD given by |detκ| (see
Fig. 1). Remarkably, these gluing conditions are also
sufficient to treat cases where ∆ 6= 0, as we now show.

1. Wilson loops, large gauge transformations, and their
algebras

Suppose that we are given a doubled Chern-Simons
theory on the annulus of the form (2.1), and that both
edges of the annulus are fully gapped by identical tun-
neling terms of the form (2.4). Let us further impose
boundary conditions of the form (2.9) at each edge, with

the matrix T chosen appropriately (see the Appendix).
We can now use these boundary conditions, arising as
they do from the need to cancel the anomalous boundary
term (2.8c), to construct Wilson loop operators, which
can in turn be used to determine the dimension of the
ground state subspace.

To do this, we first perform a change of basis on the
CS Lagrangian (2.1a) by defining the linear combina-
tions

ai+,µ ..= Tij α
j
µ + βiµ

ai−,µ ..=
1

2

(
αi
µ − Tij βjµ

)
,

(2.12a)

where i = 1, . . . , N . In terms of these fields, the trans-
formed CS Lagrangian reads

LCS =
εµνρ

4π

(
κij a

i
+,µ ∂ν a

j
−,ρ + κT

ij a
i
−,µ ∂ν a

j
+,ρ

+κ̃ij a
i
−,µ ∂ν a

j
−,ρ

)
, (2.12b)

where we have defined the N ×N matrices

κ ..= κT − TT ∆T, (2.12c)

κ̃ ..= κ−∆T − TT ∆T − TT κT. (2.12d)

Before we continue, note that the linear transformation
defined by Eq. (2.12a) has determinant ±1, so that this
change of basis leaves |detK| invariant. Consequently,
we have that

|detK| = |detκ|2. (2.12e)

Furthermore, observe that, in the case T = 1, the ma-
trix κ above coincides with the one defined in Eq. (2.2c).
For reasons that will be made clear below, we restrict
our attention to cases where the matrix T can be chosen
such that the matrix κ has integer entries.

In this new basis, the gluing conditions (2.9) become
Dirichlet boundary conditions on the (−) fields,

χi−|∂A = 0, ai−,µ|∂A = 0, (2.13)

for i = 1, . . . , N . Rewriting the Lagrangian density in
the gauge ai±,0 = 0 (this can be done using a gauge
transformation obeying the gluing conditions), we ob-
tain

LCS =
1

4π

[
κij

(
ai+,2 ∂0 a

j
−,1 − ai+,1 ∂0 a

j
−,2

)
+κT

ij

(
ai−,2 ∂0 a

j
+,1 − ai−,1 ∂0 a

j
+,2

)
+κ̃ij

(
ai−,2 ∂0 a

j
−,1 − ai−,1 ∂0 a

j
−,2

)] (2.14a)

supplemented by the 2N constraints arising from the
equations of motion for ai0 (i = 1, . . . , N),

∂1 a
i
+,2−∂2 a

i
+,1 = 0, ∂1 a

i
−,2−∂2 a

i
−,1 = 0. (2.14b)
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FIG. 2: (Color online) Coordinate system on the annulus
A = [0, π]× S1. The inner boundary is at x1 = 0, while the
outer boundary is at x1 = π. The coordinate x2 is defined
on the circle S1.

The constraints (2.14b) are met by the decompositions

ai±,1(x1, x2, t) = ∂1 χ
i
±(x1, x2, t) + āi±,1(x1, t), (2.15a)

ai±,2(x1, x2, t) = ∂2 χ
i
±(x1, x2, t) + āi±,2(x2, t), (2.15b)

of the CS fields, provided that χi±(x1, x2, t) are every-
where smooth functions of x1 and x2, while āi±,1(x1, t)

and āi±,2(x2, t) are independent of x2 and x1, respec-
tively. Furthermore, the geometry of an annulus is im-
plemented by the boundary conditions

χi±(x1, x2 + 2π, t) = χi±(x1, x2, t) (2.16a)

for the fields parametrizing the pure gauge contributions
and

χi−(0, x2, t) = χi−(π, x2, t) = 0, (2.16b)

āi−,1(0, t) = āi−,1(π, t) = 0, (2.16c)

āi−,2(x2, t)|x1=0 = āi−,2(x2, t)|x1=π = āi−,2(x2, t) = 0,

(2.16d)

for the gluing conditions. The coordinate system em-
ployed in these definitions is depicted in Fig. 2.

The next step is to show that the barred variables
decouple from the remaining (pure gauge) degrees of
freedom. This can be done by inserting the decom-
position (2.15) into the action and using the bound-
ary conditions (2.16). In the course of this calculation,
the terms containing κ̃ that involve barred variables are
found to vanish due to the fact that āi−,2(x2, t) = 0 for
all x2 and t, and to the periodicity in x2 of the functions
χi−(x1, x2, t). We then find an action involving only the
matrix κ that governs the barred variables alone,

Stop =
1

2π

∫
dt κijA

i
2 Ȧ

j
1, (2.17a)

where, for all i = 1, . . . , N , we have defined the global
degrees of freedom

Ai
1(t) ..=

π∫
0

dx1 ā
i
−,1(x1, t), (2.17b)

Ai
2(t) ..=

2π∫
0

dx2 ā
i
+,2(x2, t). (2.17c)

In Eq. (2.17a), we employ the notation Ȧj
1 = ∂tA

j
1 ≡

∂0A
j
1. According to the topological action (2.17a), the

variable κijA
i
2/(2π) is canonically conjugate to the vari-

able Aj
1. Canonical quantization then gives the equal-

time commutation relations[
Ai

1, A
j
2

]
= 2πiκ−1

ij , (2.18a)[
Ai

1, A
j
1

]
=
[
Ai

2, A
j
2

]
= 0, (2.18b)

for i, j = 1, . . . , N . We may now define the Wilson loop
operators

W i
1 ..= eiAi

1 , W i
2 ..= eiAi

2 , (2.19a)

whose algebra is found to be

W i
1 W

j
2 = e−2πiκ−1

ij W j
2 W

i
1 , (2.19b)[

W i
1 ,W

j
1

]
=
[
W i

2 ,W
j
2

]
= 0. (2.19c)

There is still a set of symmetries that imposes con-
straints on the dimension of the Hilbert space associated
with Stop. In particular, the path integral is invariant
under the “large gauge transformations”

Ai
1,2 7→ Ai

1,2 + 2π (2.20)

for any i = 1, . . . , N . The large gauge transformations
are implemented by the operators

Ui
1 ..= e+iκij A

j
2 , Ui

2 ..= e−iκij A
j
1 , (2.21a)

which satisfy the algebra

Ui
1 U

j
2 = e−2πiκij U

j
2 U

i
1 ,[

Ui
1 , U

j
1

]
=
[
Ui

2 , U
j
2

]
= 0, (2.21b)

for any i, j = 1, . . . , N . Because we require that κ is
an integer matrix, this means that[

Ui
1 , U

j
2

]
=
[
Ui

1 , U
j
1

]
=
[
Ui

2 , U
j
2

]
= 0 (2.22)

for all i, j = 1, . . . , N . Hence, all Ui
1 , Ui

2 with i =
1, . . . , N can be diagonalized simultaneously. Since any
one of Ui

1 and Ui
2 generates a transformation that leaves

the path integral invariant, the vacua of the theory must
be eigenstates of any one of Ui

1 and Ui
2 for i = 1, . . . , N .
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2. Dimension of the ground-state subspace

In order to determine the GSD of the theory, it suffices
to determine the number of eigenstates of any one of Ui

1

and Ui
2 for i = 1, . . . , N . To do this, we follow the

argument of Wesolowski et al.,23 which can be adapted
to our case with only minor modifications.

First, we define the eigenstates of any one of Ui
1 and

Ui
2 for i = 1, . . . , N by

Ui
1 |Ψ〉 = eiγi1 |Ψ〉 , Ui

2 |Ψ〉 = eiγi2 |Ψ〉 . (2.23)

Since Ai
1 and Aj

2 do not commute, we may choose to rep-
resent the state |Ψ〉 in the basis for which Ai

1 is diagonal
by

ψ({Ai
1}) ..= 〈{Ai

1}|Ψ〉 . (2.24)

The representation ψ({Ai
2}) follows from the represen-

tation ψ({Ai
1}) by a change of basis to the one in which

Ai
2 is diagonal. The large gauge transformations (2.21a)

are represented by

Ui
1 ..= e2π ∂/∂Ai

1 , Ui
2 ..= e−iκij A

j
1 , (2.25)

in the basis (2.24). The eigenvalue problem then be-
comes

Ui
1 ψ({Ai

1}) ..= ψ
(
A1

1, . . . , A
i
1 + 2π, . . . , AN1

)
≡ eiγi1 ψ({Ai

1}), (2.26a)

Ui
2 ψ({Ai

1}) ..= e−iκij A
j
1 ψ({Ai

1})

≡ eiγi2 ψ({Ai
1}). (2.26b)

Equation (2.26a) implies that we can write the following
series for ψ,

ψ({Ai
1}) ≡ ψ(A1) = eiγ1·A1/2π

∑
n

d(n) ein·A1 , (2.27)

where n = (n1, . . . , nN )T ∈ ZN , A1 = (A1
1, . . . , A

N
1 )T ∈

RN , and γ1 = (γ1
1 , . . . , γ

N
1 )T ∈ RN .

Second, we seek the constraints on the real-valued
coefficients d(n) entering the expansion (2.27) that, as
we shall demonstrate, fix the dimension of the ground-
state subspace. To this end, we extract from the N ×N
matrix κ that was defined in Eq. (2.2c) the family

κ =..

k
T
1
...
k T
N

 (2.28a)

of N vectors from ZN and from its inverse κ−1 the fam-
ily

κ−1 =..
(
`1 . . . `N

)
(2.28b)

of N vectors from QN . By construction, these vectors
satisfy

ki · `j = δij. (2.28c)

Using these vectors, we observe that inserting the series
(2.27) into the left-hand side of Eq. (2.26b) gives

Ui
2 ψ(A1) = eiγ1·A1/(2π) e−iki·A1

∑
n

d(n) ein·A1

= eiγ1·A1/(2π)
∑
n

d(n+ ki) e
in·A1

= eiγi2 ψ(A1), (2.29)

which implies

d(n+ ki) = eiγi2 d(n) (2.30)

for all i = 1, . . . , N . The constraint (2.30) is automati-
cally satisfied by demanding that

d(n) = eiγ2·(κ
−1)Tn d̃(n) (2.31a)

with

d̃(n) = d̃(n+ ki), (2.31b)

since

γ2 · (κ−1)T ki = γ
j
2(`j · ki) = γi2. (2.31c)

Hence, insertion of (2.31a) into the expansion (2.27)
that solves the eigenvalue problem (2.26a) gives the ex-
pansion

ψ(A1) = eiγ1·A1/(2π)
∑
n

eiγ2·(κ
−1)Tn d̃(n) ein·A1

(2.32)

that solves the eigenvalue problem (2.26b).
Third, condition (2.31b) implies that the set of vec-

tors {n} forms a lattice with basis vectors {ki}. The
number of inequivalent points in the lattice is therefore
given by

r ..=
∣∣det

(
k1 . . . kN

)∣∣ =
∣∣det κT

∣∣ = |det κ|. (2.33)

This means that we can decompose any n as

n = vm + pi ki, (2.34)

where pi ∈ Z and we have introduced r linearly inde-
pendent vectors vm. We can therefore rewrite

ψ(A1) =

r∑
m=1

d̃m fm(A1), (2.35a)

where

d̃m ..= d̃(vm + pi ki) = d̃(vm), (2.35b)
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and

fm(A1) ..= eiγ1·A1/(2π)

×
∑

p1,...,pN

eiγ2·(κ
−1)T(vm+pi ki,) ei(vm+pi ki)·A1 .

(2.35c)

Since any ψ(A1) in the ground-state manifold can be
written in this way, we have demonstrated that there
are r = |det κ| linearly independent ground-state wave-
functions fm(A1) in the topological Hilbert space. In
other words, we have shown that

GSD = |det κ| =
√
|detK|, (2.36)

with K defined in Eq. (2.1b). This is precisely the re-
sult advertised in Eq. (2.11). Note that because κ is an
integer-valued matrix, it has an integer-valued determi-
nant. Consequently,

√
|detK| = |detκ| is an integer.

3. Generalization to manifolds with multiple holes

It is instructive to consider generalizing these argu-
ments to the case of a system with the topology of an
Nh-punctured disk. In this generalization, the bound-
ary can be viewed as the disjoint union of Nh + 1 copies
of S1. Since each of these edges is gapped, anomaly
cancellation enforces independent gluing conditions for
each copy of S1. In principle, a different matrix T could
be chosen for each boundary. This could happen if, for
example, different edges are gapped by different sets of
tunneling vectors T that enter Eq. (2.4). If this is the
case, then it may not be possible to find a linear trans-
formation of the form (2.12a) such that N of the CS
fields obey Dirichlet boundary conditions on all edges,
as in Eq. (2.13). The remainder of the argument pre-
sented here for counting the degeneracy then breaks
down. Finding an alternative argument that applies in
these cases is an interesting problem for future work,
but is beyond the scope of this paper.

In the case where all boundaries are gapped in the
same way, however, one obtains a set of Wilson loops like
those in Eqs. (2.19a) for each hole. [See, e.g., Eqs. (3.1)
in the next section.] Since these sets of Wilson loops
are completely independent, one obtains a degeneracy
of size |det K|Nh/2.

III. APPLICATIONS

With the results of Sec. II in hand, we now explore
some of the consequences of Eq. (2.11). We begin by ex-
amining the fate of the topological degeneracy in finite-
sized systems, before considering the possibility of us-
ing calorimetry to detect experimental signatures of the

(a)

d

D

R

(b)

W i
2,j W i

2,j+1

W i
1,j+1W i

1,j

W i
1,j j+1

FIG. 3: (Color online) A punctured TRS-FTL with gapped
edges. (a) Schematic representation of an “artificial” spin-
like system. In the limit D � d,R, each hole (white square)
carries with it a q-fold topological degeneracy that is split
exponentially by tunneling processes that encircle (red lines)
or connect (green lines) the holes. (b) Wilson loops defined
in Eqs. (3.1). The dashed line represents the product of the
two Wilson loops above it, which connects the two holes.

degeneracy. We close the section by re-evaluating the
proposed18 topological field theory for the s-wave BCS
superconductor in light of the results of this paper.

A. Finite systems: clock models and beyond

On closed manifolds, the topological degeneracy is ex-
act only in the limit of infinite system size. This is a
result of the fact, pointed out by Wen and Niu,2 that
quasiparticle tunneling events over distances of the or-
der of the system size lift the topological degeneracy by
a splitting that is exponentially small in the linear size
of the system. This observation was also confirmed nu-
merically for the case of the (2+1)-dimensional Abelian
Higgs model on the torus by Vestergren et al. in Refs. 25
and 26. A similar splitting occurs for manifolds with
boundary, like those studied in this work. For a planar
system with many holes, each of which carries a q-fold
degeneracy (where q ..=

√
|det K|) in the limit of infi-

nite system size, there are two kinds of tunneling events
that can lift the degeneracy. These are (1) tunnelings
that encircle a single hole and (2) tunnelings between
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boundaries. Below we argue that, in a finite-sized sys-
tem with Nh holes, the array of Nh coupled q-state de-
grees of freedom can be modeled as a spin-like system
[see Fig. 3(a)].

To see how this arises, we first note that for a system
with Nh holes it is possible to define a set of Wilson
loops for each hole. Analogously to Eqs. (2.19a), for
any i = 1, . . . , N we define

W i
1,j ..= exp

(
i

∫
C1,j

d` · āi−(x, t)

)
, (3.1a)

W i
2,j ..= exp

(
i

∮
C2,j

d` · āi+(x, t)

)
, (3.1b)

where the open curve C1,j connects the j-th hole to the
outer boundary, and the closed curve C2,j encircles the j-
th hole [see Fig. (3)(b)]. Each set of operators obeys an
independent copy of the algebra (2.19c). Furthermore,
for any pair of holes j and k, the Wilson loop

W i
1,jk ..= W i †

1,jW
i
1,k (3.1c)

connects these holes. More generally, any number of
holes can be connected by compositions of the Wilson
loops defined in Eqs. (3.1). In an infinite system, the
topological protection of the degeneracy (2.36) arises
because the Wilson loops defined in Eqs. (2.19a) are
nonlocal operators and are therefore forbidden from en-
tering the Hamiltonian. In a finite system, however, the
Wilson loops are no longer nonlocal degrees of freedom
and can therefore enter the effective theory. In princi-
ple, all powers and combinations of the Wilson loops are
allowed to enter the effective Hamiltonian

Heff ..=

N∑
i=1

Nh∑
j=1

(
hi1,jW

i
1,j + hi2,jW

i
2,j +

Nh∑
k=1

Ji
jkW

i
1,jk

+ . . .

)
, (3.2)

where the omitted terms include higher powers of the
Wilson loops as well as all necessary Hermitian con-
jugates. In practice, however, all couplings in Heff
are exponentially small in the shortest available length
scale, which limits the tunneling rates. For example,
Ji
jk ∝ e−c djk/ξ, where c is a constant of order one, djk

is the distance between holes j and k [see Fig. 3(a)],
and ξ is a length scale associated with quasiparticle
tunneling.27

It is interesting to note that the Hamiltonian Heff
admits a certain amount of external control – the holes
can be arranged in arbitrary ways, and the magnitudes
of the couplings can be tuned by changing the length
scales R, djk, and D defined in Fig. 3. In particular,

many terms in Heff can be tuned to zero by varying
these length scales. We will make use of this freedom
below.

To illustrate in what sense the effective Hamiltonian
(3.2) can be thought of as a spin-like system, we consider
a specific class of examples. In particular, we consider
the family of TRS-FTLs defined by

K ..=

(
q 0
0 −q

)
, Q ..=

(
2
2

)
, (3.3)

where q is an even integer. One verifies using Eq. (2.5)
that a single tunneling term of the form (2.4) with T =
(1,−1)T is sufficient to gap out the counterpropagating
edge modes without breaking TRS as defined in Ref. 20.
(The gluing conditions (2.9) can be implemented by the
1 × 1 gluing “matrix” T = 1.) In this case, Eq. (2.11)
predicts a q-fold degeneracy per hole. To obtain the
explicit effective Hamiltonian, we define

σj ..= W1,j , τj ..= W2,j , (3.4a)

whose only nonvanishing commutation relations arise
from the algebra [recall Eq. (2.19b)]

σj τj = e−2πi/q τj σj . (3.4b)

One can check by writing down explicit representations
of σj and τj that they also satisfy

σqj = τ qj = 1. (3.5)

For example, in the case q = 2 we may use Pauli matri-
ces, e.g.,

σj = σz, τj = σx, (3.6)

and in the case q = 4 we may use

σj ..= diag
(

1, e−iπ/2, e−iπ, e−i 3π/2
)
, (3.7a)

τj ..=

0 0 0 1
1 0 0 0
0 1 0 0
0 0 1 0

 . (3.7b)

For a system with Nh holes of size R arranged in a one-
dimensional chain with lattice spacing d, the effective
Hamiltonian in the limit D � d,R (with D, d,R defined
in Fig. 3) becomes that of a one-dimensional Zq quan-
tum clock model (see Ref. 28 and references therein),

Heff ..=

Nh−1∑
i=1

Ji

(
σ†i σi+1 + H.c.

)
+

Nh∑
i=1

hi (τi + H.c.) ,

(3.8)
where Ji ∝ e−c1 d/ξ and hi ∝ e−c2 R/ξ, with the real
constants c1 and c2 of order unity. For simplicity, we
have constrained the couplings Ji and hi to be real,
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although their magnitude and sign is allowed to vary
from hole to hole (hence the subscripts i). Note that
in the above Hamiltonian, terms linear in σj do not
appear, as the associated couplings are suppressed by
factors of order e−c3D/ξ � e−c1 d/ξ, e−c2 R/ξ. Similarly,
longer-range two-body terms, as well as higher powers
of the σj and τj , are also omitted, as they correspond
to higher-order tunneling processes.

The Hamiltonian of the clock model (3.8) is invariant
under the symmetry operation

Heff 7→ SHeff S−1 (3.9a)

generated by

S ..=

Nh∏
i=1

τ †i . (3.9b)

Indeed, under conjugation by S, τ †j 7→ τ †j and σ†j 7→
e−2πi/qσ†j for all j. This Zq symmetry can be thought

of as a remnant of the qNh-fold topological degeneracy
of the TRS-FTL, which would be present in the limit
d,R,D →∞.

Before closing this section, we point out that quan-
tum clock models like the one discussed in this sec-
tion have arisen in various contexts elsewhere in the re-
cent literature, especially in quantum Hall systems with
defects.11,29–31

B. Probing the topological degeneracy with
calorimetry

In this section, we consider experimental avenues to
detect the topological degeneracy of a punctured TRS-
FTL. We focus our attention on calorimetry as a possi-
ble probe. In a sample with Nh holes, the ground state
degeneracy provides a contribution SGSD = Nh kB ln q,

where kB is the Boltzmann constant and q =
√

detK,
to the total entropy Stot. If the areal density of holes
is kept fixed, then for a sample of length L, we have
SGSD ∼ L2 for the topological contribution, which is ex-
tensive. This suggests that, were a suitable material to
be discovered, one might be able to detect the topolog-
ical degeneracy of a punctured TRS-FTL by measuring
its heat capacity. Such a measurement is feasible with
current technology, as membrane-based nanocalorime-
ters enable the determination of heat capacities CV in
microgram samples (and smaller), to an accuracy of
δCV /CV ∼ 10−4–10−5 down to temperatures of order
100 mK.32–35

We first determine the topological contribution to the
heat capacity for some particular examples. To do this,
we return to the class of TRS-FTLs defined in Eq. (3.3).
The heat capacity in this case is easiest to determine
from the clock model of Eq. (3.8) in the paramagnetic

limit Ji → 0, which is achieved for d� R [see Fig. 3(a)].
Setting hi = h for convenience, we see that the clock
model can be rewritten, after a change of basis, as

Heff = h

Nh∑
i=1

(
σi + σ†i

)
= 2h

Nh∑
i=1

cos

(
2π

q
ni

)
, (3.10)

where ni = 0, . . . , q − 1. Consequently the partition
function is given by

Z =

(
q−1∑
n=0

e−2β h cos(2π n/q)

)Nh

, (3.11)

where β ..= 1/(kB T ) and T is the temperature. The

topological heat capacity at constant volume, Ctop
V , is

then determined from the partition function by stan-
dard methods. For example,

Ctop
V = Nh

h2

kB T
2
×


4 sech2

(
2h
kB T

)
, q = 2,

2 sech2
(

h
kB T

)
, q = 4,

9 cosh
(

h
k
B

T

)
+cosh

(
3h

k
B

T

)
+8[

2 cosh
(

h
k
B

T

)
+cosh

(
2h

k
B

T

)]2 , q = 6,

(3.12)
and so on.

To date, there has been no experimental realiza-
tion of a TRS-FTL or fractional topological insulator.
Since background contributions to the heat capacity are
material-dependent, it is difficult to provide a precise
estimate of the observable effect. However, we can nev-
ertheless identify some constraints on the possible ma-
terials that would favor such a measurement.

To do this, let us estimate the various background
contributions to the heat capacity of a TRS-FTL. First,
we note that, because any TRS-FTL must have a gap
∆, the electronic contribution Cel

V to the heat capacity
is

Cel
V ∝

∆

T
e−η∆/(kB T ), (3.13a)

where η is a constant of order one. The exponential sup-
pression of Cel

V implies that this contribution is always
negligible at sufficiently small temperatures.

However, one must also consider the phononic con-
tribution, which follows a Debye power law at low tem-
peratures. This contribution scales with the sample vol-
ume, which could be three-dimensional if the TRS-FTL
is formed in a heterostructure, as is the case in quan-
tum Hall systems. This fact, which was noted in Ref. 7,
poses the greatest challenge to detecting the topologi-
cal contribution to the heat capacity, which scales with
the area of the two-dimensional sample. In principle,
however, one may assume that the TRS-FTL lives in
a strictly two-dimensional sample, or at least in a thin
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q = 6

q = 4

q = 2

Background

0.1 0.2 0.3 0.4 0.5
T HKL

0.00145

0.00155

0.00165

0.00175

0.00185

0.00195

CV

Na kB T2
H1�K2L

FIG. 4: (Color online) Total heat capacity for a monolayer
TRS-FTL with Na = 1014. The topological contribution is
shown (above background) for q = 2, 4, and 6. The parame-
ters used for the topological contribution were ν = 5× 10−6

(∼ 220002 holes) and h/kB ≈ 0.321 K, which leads to a max-
imum excess (for q = 6) of ∼ 30% over the background (blue
curve) near T = 0.1 K.

film. In this case, we have that the phononic contribu-

tion Cph
V to the heat capacity is

Cph
V ∝ kB (T/TD)2, (3.13b)

where TD is the Debye temperature (100 K, say).36 We
verified numerically, by simulating a square lattice of
masses and springs, that the presence or absence of holes
has little effect on the phonon spectrum as long as the
holes are sufficiently small. We therefore expect the
Debye law to hold both with and without holes, as long
as one takes into account the excluded volume due to
the holes.

The total heat capacity is obtained by adding the
three contributions:

CV (T ) = Na

[
Ctop
V (T ) + ν Cph

V (T ) +
1

Na

Cel
V (T )

]
,

(3.13c)

where Na is the number of atoms in the sample and
ν ..= Nh/Na determines the number of holes. The above
formula leads to the estimate of the specific heat curve
presented in Fig. 4. A square array of 22000 holes on a
side produces an excess of up to 30% (for q = 6) on top
of the background at T = 0.1 K, which is well above the
experimental error δCV /CV ∼ 10−4.

We now comment on possible difficulties with this
measurement. Perhaps the most important of these
is the fact that the energy scales Ji and hi entering
Eq. (3.8) are unknown. It may be possible to circum-
vent this issue by exploiting the exponential sensitivity
of the couplings to the length scales R and d. For exam-
ple, one could prepare samples with d� R to eliminate

the first term in Eq. (3.8), and compare results for dif-
ferent values of R to determine whether it is possible to
resolve the effect. As long as h & 0.1 ∆, it should be
possible to tune R such that the effect is visible.

The presence of disorder in the sample is another po-
tential source of difficulty, as localized states due to dis-
order can also contribute to the entropy. However, in-
tuition from noninteracting systems, where these states
provide a logarithmic correction to the entropy,37 sug-
gests that this contribution would be subleading as com-
pared to the power-law contribution SGSD ∼ L2 that we
predict for a fixed areal density of holes.

C. Are superconductors topologically ordered?

In an insightful paper, it was argued by Hansson et
al. in Ref. 18 that ordinary s-wave BCS superconduc-
tors are topologically ordered. In fact, it was shown
that, when the electromagnetic gauge field is treated
dynamically and confined to (2+1) dimensional space
and time, the superconductor admits a description in
terms of a BF theory like the one defined in Eqs. (2.2),
with

K̃ =

(
0 2
2 0

)
. (3.14)

Furthermore, it was shown that the edge states that
arise when the above theory is defined in a finite planar
geometry are generically gapped by Cooper pair cre-
ation terms. The proposed theory is consistent with the
time-reversal symmetry of the s-wave superconductor
and captures the statistical phase of π that is acquired
by an electron upon encircling a vortex. This effective
theory, which is the same as that of the Z2 lattice gauge
theory in its deconfined phase, predicts a four-fold GSD
on the torus, whose exponential splitting in finite sys-
tems was verified numerically in Refs. 25 and 26.

Since the theory defined by Eq. (3.14) falls squarely
within the class of theories studied in this paper, it is
tempting to draw the conclusion that the s-wave su-
perconductor exhibits a two-fold GSD on the annulus.
Below we argue that, while this is indeed the case, the
degeneracy is not exponential but power-law in nature,
and therefore is not what one might call a topological de-
generacy in the canonical sense of Refs. 1–3. The reason
for this is that the topological nature of the supercon-
ductor results from the dynamics of the electromagnetic
gauge field, which, in a real planar superconductor, is
not confined to the sample itself, but rather extends
through all three spatial dimensions. Consequently, the
true electromagnetic gauge field that is present in the su-
perconductor can be measured by local external probes.

To see how this coupling to the environment lifts the
degeneracy in a power-law fashion, let us consider the
origin of the two-fold degeneracy. Recall that for an an-
nular superconductor (a thin-film mesoscopic ring, for
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�0

V

FIG. 5: (Color online) Trapping a flux quantum inside a su-
perconducting ring. Confining the flux inside the ring costs
no energy for the electrons inside the superconductor, but
there is an electromagnetic energy cost obtained by integrat-
ing the enclosed magnetic field intensity over the interior of
the dashed cylinder, which we denote V.

example), the phase of the superconducting order pa-
rameter winds by 2π around the hole if a flux quan-
tum φ0 = h/2e is trapped inside. This indicates that
the electronic spectrum of the superconductor cannot be
used to distinguish between cases where an even (φ = 0
mod φ0) or odd (φ = 1 mod φ0) number of flux quanta
penetrate the hole. This is precisely the origin of the
degeneracy. However, because the electromagnetic field
also exists outside the sample, there is an additional
electromagnetic energy cost associated with having a
flux quantum trapped in the hole. If we assume for sim-
plicity that the flux is distributed uniformly over the
hole (radius R) and does not penetrate into the super-
conductor, then the energy cost is proportional to∫

V

d3r |B|2 =
φ2

0

2π R2
Lz, (3.15)

where V is the interior of the cylinder in Fig. 5, and Lz
is the height of the cylinder. Strictly speaking, because
the magnetic field lines must close outside the annulus,
one needs to replace Lz by a length scale bounded from
below by the outer radius of the annulus. This energy
cost vanishes as 1/R for R,Lz →∞, which means that
the ground state degeneracy is lifted as a power law,
rather than exponentially.

The reason underlying this power-law splitting is the
fact that the electromagnetic gauge field is not an emer-
gent gauge field in the same sense as the Chern-Simons
fields that are present in, say, a fractional topological
insulator with gapped edges. To elaborate on this dis-
tinction, we first recall that the topological degeneracy
derived in Ref. 18 arises from a dynamical treatment
of the electromagnetic gauge field in (2+1)-dimensional
space and time. The topological sectors in which this
degeneracy is encoded reside in the Hilbert space of the
electromagnetic gauge field, which is in turn entangled

with the Hilbert space of the electronic degrees of free-
dom. Since the photonic degrees of freedom in a real
annular superconductor also exist outside the sample,
there is nothing to prevent the environment from fixing
a topological sector. For example, the presence of an ex-
ternal magnetic field in the hole can privilege one topo-
logical sector over the other by fixing the flux through
the hole.

It is crucial to contrast this with the case of a “true”
TRS-FTL, where the Chern-Simons fields arise natu-
rally from electron-electron interactions. In this case,
the topological sectors reside in the Hilbert space of the
electrons alone, and the CS fields do not exist outside
the sample. Inserting an electromagnetic flux through
the hole of an annular TRS-FTL switches between topo-
logical sectors, but does not betray any information
about the identity of the initial or final sector. For this
reason, the degeneracy of different topological sectors is
completely protected from the environment in the limit
of infinite system size.

IV. SUMMARY AND CONCLUSION

In this paper we have derived a formula for the topo-
logical ground state degeneracy of a time-reversal sym-
metric, multi-component, Abelian Chern-Simons the-
ory. The formula, which holds when the edge states
of the theory are gapped by appropriate perturbations,
says that the GSD of the system on a planar surface
with Nh holes is given by |det K|Nh/2, where K is the
K-matrix. We then examined the situation where this
topological degeneracy is split exponentially by finite-
size effects, and found that the set of Nh holes admits
a description in terms of an effective spin-like system
whose couplings can be tuned by varying the sizes and
arrangement of the holes. We also considered calorime-
try as a possible means of detecting the topological de-
generacy. The proposed experiment would measure the
contribution of the topological degeneracy to the heat
capacity at low temperatures, which we argued could be
visible on top of the expected electronic and phononic
backgrounds as long as the host material is sufficiently
thin. Finally, in light of these results, we revisited the
notion that ordinary s-wave superconductors are topo-
logically ordered. We argued that, while thin-film super-
conductors do indeed possess a ground state degeneracy
on punctured planar surfaces, this degeneracy is lifted
in a power-law, rather than an exponential, fashion due
to the (3+1)-dimensional nature of the electromagnetic
gauge field.

We close by pointing out several possible extensions
of this work. First, we believe that the correspondence
suggested in this paper between gluing conditions (2.9)
and gapped edges of TRS-FTLs would benefit from fur-
ther study. Sharpening this correspondence could pro-
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vide a viewpoint on fractionalized phases with gapped
edges that is complementary to the classification of such
edges in terms of Lagrangian subgroups.38–41 Second, we
note that our results concerning the ground state degen-
eracy may still apply to TRS-FTLs where the backscat-
tering terms of Eq. (2.4) do not respect time-reversal
symmetry. One could therefore also consider extending
the results of this paper to fractional topological insula-
tors whose protected edge modes are gapped by pertur-
bations that break TRS, as is done in Refs. 42 and 43.
Third, it would be interesting to determine what other
kinds of “artificial” spin-like systems could be realized
in TRS-FTLs with more complicated K-matrices than
those in the class of Eq. (3.3). It is conceivable that
remnants of the topological degeneracy may manifest
themselves as exotic properties of these less conventional
models. Finally, we must point out that a fractionalized
two-dimensional state of matter with time-reversal sym-
metry has not yet been discovered experimentally, and
that the search for such a state must remain a priority.
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Appendix: Details on the gluing conditions (2.9)

1. Consistency conditions and constraints from
TRS

In this section, we point out various consistency con-
ditions that constrain the gluing conditions (2.9). Let
i = 1, . . . , N .

First, let us understand why the scalar fields χiα and
χiβ are related by the same linear transformation T as

are the gauge fields αi
µ and βiµ appearing in Eq. (2.9a).

To see this, suppose that we replace Eq. (2.9a) by

χiα
∣∣
∂D

= Tij χ
j
β

∣∣
∂D
, αi

µ

∣∣
∂D

= Uij β
j
µ

∣∣
∂D
, (A.1a)

where U and T are both invertible linear transforma-
tions. In order for the alternative boundary conditions
(A.1a) to be well-defined, we must demand that Uij β

j
µ

transforms in the same way under gauge transforma-
tions as αi

µ, i.e.,

αi
µ 7→ αi

µ + ∂µχ
i
µ, (A.1b)

Uij β
j
µ 7→ Uij β

j
µ + ∂µ(Uij χ

j
β)

= αi
µ + ∂µ(Uij T

−1
jk χk

α). (A.1c)

Equating the two expressions, we find that U T−1 = 1,
or, equivalently,

U = T. (A.1d)

Next, we demonstrate that the matrix T entering
Eqs. (2.9) must have rational-valued entries in order
for the bosonic edge theory with the Lagrangian den-
sity (2.3) to support point-like excitations. To see this,
recall [c.f., e.g., Ref. 21] that the bulk-edge correspon-
dence implies that

αi
1

∣∣
∂D

(t, x) = ∂xφi(t, x) =.. ∂xφ
i
α(t, x), (A.2a)

βi1
∣∣
∂D

(t, x) = ∂xφi+N (t, x) =.. ∂xφ
i
β(t, x). (A.2b)

The gluing conditions (2.9a) therefore require that

∂x φ
i
α(t, x) =..Tij ∂xφ

j
β(t, x). (A.2c)

Integrating this equation over the whole boundary
(which we take to have length L) gives

φiα(t, L)− φiα(t, 0) = Tij [φjβ(t, L)− φjβ(t, 0)]. (A.2d)

In order for the vertex operator exp
(
−iKkl φl(t, x)

)
with

k = 1, . . . , 2N to obey well-defined periodic boundary
conditions (see Ref. 20),

2π Z2N 3K [φ(t, L)− φ(t, 0)]

=

(
κ ∆

∆T −κ

)(
φα(t, L)− φα(t, 0)
φβ(t, L)− φβ(t, 0)

)
=

(
κ ∆

∆T −κ

)(
T [φβ(t, L)− φβ(t, 0)]
φβ(t, L)− φβ(t, 0)

)
,

(A.2e)

which is only possible if the elements of the N × N
matrix T are rational valued. The vertex operators
exp

(
− iKkl φl(t, x)

)
then define point-like particles for

k = 1, . . . , 2N .
Finally, we show that time-reversal symmetry implies

the constraint

T = T−1. (A.3a)

TRS (implemented by the operator T ) acts on the
Chern-Simons fields as (see Ref. 20)

αi
µ(t,x) −→

T
−gµν β i

ν (−t,x), (A.3b)
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so that on the boundary Eq. (2.9a) gives

αi
µ(t,x) −→

T
−gµν βiν(−t,x)

= −gµν T−1
ij αj

ν(−t,x).
(A.3c)

A second application of time-reversal yields

αi
µ(t,x) −→

T 2
T−1
ij βjµ(t,x)

= T−1
ij T−1

jk αk
µ(t,k).

(A.3d)

Demanding that T 2 = +1 for the CS fields implies that
(T−1)2 = T 2 = 1.

2. Connection between gluing conditions and
gapped edges

In this section, we elaborate on the relationship be-
tween gluing conditions of the form (2.9) and gapped
edges of TRS-FTLs. In particular, we show that a par-
tial correspondence holds. Given any matrix T satisfy-
ing Eq. (2.9b), it is possible to construct a gapped edge
of a TRS-FTL. Conversely, given a particular gapped
edge of a TRS-FTL, it is possible to construct an appro-
priate gluing condition provided that a criterion, related
to the tunneling vectors that enter Eq. (2.4), is satisfied.
While we believe that it may be possible to strengthen
the latter direction of the correspondence, we leave this
for future work.

a. Constructing a gapped edge given a gluing condition

Suppose that we are given an invertible, N × N ,
rational-valued matrix T that satisfies Eq. (2.9b) and
respects TRS, i.e., it satisfies T 2 = 1. We would like to
construct from the matrix T a set of N linearly inde-
pendent vectors satisfying the Haldane criterion (2.5b).

Given such a matrix T , we can construct the 2N ×N
matrix (

T
±T

)
(A.4a)

satisfying(
TT ±TT

)( κ ∆
∆T −κ

)(
T
±T

)
= 0. (A.4b)

Therefore, given a matrix T (with elements Tij, where

i, j = 1, . . . , N) that satisfies Eq. (2.9), we automati-
cally obtain at least two sets (one for each sign of the
lower N×N block) of N vectors in Q2N that satisfy the
Haldane criterion, namely{

T̃i ..= (T1i . . . TNi | ± T1i . . . ± TNi )
T
}N
i=1

.

(A.5)

It remains to show that we can construct from these
vectors a set of N linearly independent vectors in Z2N

that satisfy the Haldane criterion. To do this, we first
observe that, since the T̃i are rational-valued vectors,
we can define the rescaled set{

Ti ..= mi T̃i ∈ Z2N
}N
i=1

, (A.6)

where mi is the smallest integer such that Ti ∈ Z2N .
This rescaling can be achieved by

T 7→ T M, M ..= diag (m1, . . . ,mN ) , (A.7)

which leaves Eq. (A.4b) invariant. Furthermore, the
rescaling does not alter the linear dependence or inde-
pendence of the set {T̃i}Ni=1 – in other words, proving
that the Ti are linearly independent for all i = 1, . . . , N

is equivalent to proving that the T̃i are linearly inde-
pendent for all i = 1, . . . , N . To do this, we first sup-
pose (for contradiction) that the set {T̃i}Ni=1 is linearly
dependent. This implies that there exists a set of real
numbers λj with j = 1, . . . , N such that

N∑
i=1

λi T̃i = 0. (A.8)

Recalling Eq. (A.5), this implies in particular that

N∑
i=1

λi (T1i . . . TNi)
T

= 0. (A.9)

In other words, the columns of the matrix T are linearly
dependent. As a result, detT = 0. However, this con-
tradicts the assumption that T is an invertible matrix.
We conclude that the set {Ti}Ni=1 consists of N linearly
independent integer vectors satisfying Haldane’s crite-
rion.

The choice of sign in the definition of the vectors
T̃i in Eq. (A.5) determines whether the tunneling pro-
cesses encoded by the vectors Ti conserve charge or
fermion parity. To see this, we consider contracting all
of the vectors Ti with the charge vector Q defined in
Eq. (2.1c). This can be written in terms of the matrix-
vector product [recall that M is defined in Eq. (A.7)](

(T M)T ±(T M)T
)(

%
%

)
=
[
(T M)T ± (T M)T

]
%

=


2 (T M)T%,

0,

(A.10)

if one chooses the positive or negative option, respec-
tively. Since the N ×N matrix T M has integer-valued
entries, we conclude that the positive option conserves
fermion parity (since T T

i Q is an even integer for any
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i = 1, . . . , N), while the negative option conserves
charge [since T T

i Q = 0 for any i = 1, . . . , N , as in
Eq. (2.5a)].

Furthermore, the vectors Ti for i = 1, . . . , N are by
construction eigenvectors of the 2N × 2N matrix

Σ1 =

(
0 1

1 0

)
(A.11)

with eigenvalues ±1, so that the edge is gapped in a
way that does not explicitly break TRS. [For an expla-
nation of this, see the next section, or, alternatively,
Ref. 20.] We leave aside the question of whether the
tunneling vectors Ti with i = 1, . . . , N lead to sponta-
neous breaking of TRS via, e.g., the mechanism pointed
out in Refs. 20 and 45. We nevertheless note that the
spontaneous breaking of TRS may be unavoidable for
certain choices of K-matrices and gluing matrices T .

b. Constructing a gluing condition given a gapped edge

In this section we show that a gapped edge of a dou-
bled Chern-Simons theory implies a particular associ-
ated gluing condition, so long as an invertibility crite-
rion is satisfied.

To prove this, suppose we are given N linearly-
independent tunneling vectors T1, . . . ,TN ∈ Z

2N that
satisfy the Haldane criterion (2.5b). Let us now build
the N ×N matrices

T ..=


(T1)1 (T2)1 . . . (TN )1

(T1)2 (T2)2 . . . (TN )2
...

... . . .
...

(T1)N (T2)N . . . (TN )N

 (A.12a)

and

S−1 ..=


(T1)N+1 (T2)N+1 . . . (TN )N+1

(T1)N+2 (T2)N+2 . . . (TN )N+2
...

... . . .
...

(T1)2N (T2)2N . . . (TN )2N

 .

(A.12b)
As the set {Ti}Ni=1 satisfies the Haldane criterion, then
the matrices T and S−1 can be used to build a 2N ×N

matrix satisfying the equation

0 =
(
TT (S−1)T

)( κ ∆
∆T −κ

)(
T
S−1

)
= TT κT − (S−1)T κS−1 + TT ∆S−1 + (S−1)T ∆T T.

(A.13)

Let suppose for the moment that both T and S−1 are
invertible matrices. If this is true, then we can multiply
Eq. (A.13) on the left by ST and on the right by S, to
obtain

(T S)T κT S − κ+ (T S)T ∆−∆ (T S) = 0, (A.14)
i.e., the matrix TS exists, is invertible, and satisfies
Eq. (2.9b). This invertibility requirement is the caveat
advertised at the beginning of this section. It is unclear
whether it is possible to construct a gluing matrix with
the desired properties if this requirement is not satisfied.

Let us now impose the additional constraint that the
set {Ti}Ni=1 of tunneling vectors does not lead to the
explicit breaking of time-reversal symmetry. We will
show that this assumption implies that the matrix T S
satisfies the TRS condition for gluing matrices, namely
(T S)2 = 1. To see this, recall that time-reversal acts
on the chiral bosons φ as (see Ref. 20)

φ(x, t) −→
T

Σ1 φ(x,−t) + πK−1 Σ↓Q, (A.15a)

where the 2N × 2N matrices

Σ1 =

(
0 1

1 0

)
, Σ↓ =

(
0 0
0 1

)
. (A.15b)

For a generic tunneling term of the form

LT =
∑

T∈{Ti}Ni=1

UT (x) cos
(
T TK φ+ ζT (x)

)
, (A.16)

time-reversal acts as

LT −→T
∑

T∈{Ti}Ni=1

UT (x) cos
(
T TK Σ1φ+ ζT (x) + π T T Σ↓Q

)
=

∑
T∈{Ti}Ni=1

UT (x) cos
(
− (Σ1 T )TK φ+ ζT (x) + π T T Σ↓Q

)
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=
∑

T∈{Ti}Ni=1

UT (x) cos
(

(Σ1 T )TK φ− ζT (x)− π T T Σ↓Q
)

!
= LT. (A.17)

The requirement of time-reversal invariance therefore implies that, for any T ∈ {Ti}Ni=1, there exists a T ′ ∈ {Ti}Ni=1

such that

UT ′(x) cos
(

(T ′)TK φ+ ζT ′(x)
)

= UT (x) cos
(

(Σ1T )TK φ− ζT (x)− π T T Σ↓Q
)
. (A.18)

This is only possible if T ′ = ±T . [In addition, there are
constraints on the function ζT (x) under T 7→ Σ1 T that
are detailed in Ref. 20.] In other words, the set {Ti}Ni=1

of tunneling vectors must map onto itself, possibly up
to a signed permutation, under time reversal,

Σ1

(
T
S−1

)
=

(
S−1

T

)
=

(
T P
S−1 P

)
, (A.19)

where P is a signed permutation matrix. (We multiply
from the right because we want to permute only the
columns of T and S−1.) The second equality above
implies that

S−1 = T P, T = S−1 P. (A.20a)

Observe that, since P is invertible, the invertibility of T
is automatic provided that S−1 is invertible, and vice
versa. Furthermore, note that the tunneling vectors

constructed in the previous section satisfy Eq. (A.20a)
(with P = 1), and therefore do not explicitly break
TRS. Multiplying the second equality in Eq. (A.20a)
from the right by P and using the first equality, we find
that P obeys

S−1 P 2 = S−1, (A.20b)

which implies that P 2 = 1 if we assume that S−1 is
invertible (as we must in order to construct the gluing
matrix T S). Combining this with Eq. (A.20a), we can
prove that (T S)2 = 1. Indeed,

T S = S−1 P S =⇒ (T S)2 = S−1 P S S−1 P S = 1,
(A.21)

as desired.
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