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Korringa-Kohn-Rostoker (KKR) Green’s function, multiple-scattering theory is an efficient site-
centered, electronic-structure technique for addressing an assembly of N scatterers. Wave-functions
are expanded in a spherical-wave basis on each scattering center and indexed up to a maximum
orbital and azimuthal number Lmax = (l,m)max, while scattering matrices, which determine spectral
properties, are truncated at Ltr = (l,m)tr where phase shifts δl>ltr are negligible. Historically, Lmax

is set equal to Ltr, which is correct for large enough Lmax but not computationally expedient; a
better procedure retains higher-order (free-electron and single-site) contributions for Lmax > Ltr

with δl>ltr set to zero [Zhang and Butler, Phys. Rev. B 46, 7433]. We present a numerically
efficient and accurate augmented-KKR Green’s function formalism that solves the KKR equations
by exact matrix inversion [R3 process with rank N(ltr + 1)2] and includes higher-L contributions
via linear algebra [R2 process with rank N(lmax + 1)2]. Augmented-KKR approach yields properly
normalized wave-functions, numerically cheaper basis-set convergence, and a total charge density
and electron count that agrees with Lloyd’s formula. We apply our formalism to fcc Cu, bcc Fe
and L10 CoPt, and present the numerical results for accuracy and for the convergence of the total
energies, Fermi energies, and magnetic moments versus Lmax for a given Ltr.

PACS numbers: 71.15.Ap, 71.15.Dx, 61.50.-f

I. INTRODUCTION

Multiple-scattering theory, as formulated by
Korringa,1 Kohn and Rostoker2 (KKR), continues
to be a powerful and efficient method to study the elec-
tronic structure of solids.3 KKR theory is Rayleigh-Ritz
variational, like related Muffin-tin Orbital (MTO) and
Augmented Plane Wave (APW) methods. KKR Green’s
function (GF) techniques have facilitated numerous
successful applications to spectral and energy related
properties, such as surfaces,3 alloys,4–7 interfaces,8,9

quantum criticality,10 and transport.11 Due to its
inherent multiple-scattering nature, KKR-GF are used
extensively to predict and analyze experimental results12

involving low-energy electron diffraction (LEED),13,14

photoemission,15–17 neutron and x-ray scattering.18–20

A key parameter controlling KKR convergence is
the maximum orbital and azimuthal number Lmax =
(l,m)max of the truncated spherical-wave basis on each
scattering center. Historically, at a wave-vector k and
energy E, Lmax was also chosen to control truncation
of the single-site scattering tLL′(E) matrices and KKR
scattering-path operator τLL′(k;E) that dictates spectral
properties of the system. However, τLL′(k;E), i.e., the
Green’s function (G), could be truncated at Ltr < Lmax,
where phase shifts δl>ltr are negligible (set to zero), giv-
ing smaller matrices to invert if we could directly include
the contribution of higher L’s ( Lmax > Ltr ) via single-
site and free-electron part of G.

All electronic-structure methods based on Density
Functional Theory (DFT) involve numerous approxima-

tions from, e.g., exchange-correlation, pseudo-potentials,
and shape of potential. For multiple-scattering theory,
L-truncation yields inherent error often ignored because
of the rapid rise in computational cost with Lmax. In
addition, the errors arising from L-truncation often are
handled in an uncontrollable fashion. For Ltr equal to
Lmax, researchers find apparent convergence in closed-
packed systems using lmax ∼ 3. Yet, a key source of er-
ror is due to normalization of wave-functions (Ψ), affect-
ing the charge density ρ(r) and density of states (DOS)
n(E) calculated from the Green’s functions. As such, if
Ψ is not correctly normalized, the integrated DOS from
the Ltr-truncated basis does not exactly reproduce to-
tal number of electrons in the system, and the Fermi
energy EF is slightly incorrect – a possible issue in sys-
tems with spectral gaps. Also, L-truncation introduces
error in the dipole matrix elements, which couple l and
l±1 states, needed for calculations of transport, electron-
phonon, and atomic forces.

So, a balance is struck between convergence of KKR-
GF properties versus lmax and numerical efficiency for in-
verting KKR matrices with rank N(lmax + 1)2. Butler21

investigated the accuracy and convergence of multiple-
scattering theory versus l for two muffin-tin scatterers in
a two-center expansion, showing solution can be made ar-
bitrarily accurate at some numerically costly lmax → 60.
Zhang and Butler22 established a more proper procedure:
Solve the secular equation to Ltr and retain Lmax > Ltr
contributions with δl>ltr set to zero – yielding continuous
and correctly normalized wave-functions and an electron
count from the DOS that agreed with that from Lloyd’s
formula. This formalism was derived in real space, but
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never implemented for realistic materials. No equivalent
KKR-GF in reciprocal space was derived or tested.

We present an augmented-KKR GF formulation that
yields normalized wave-functions, numerically fast basis-
set convergence, and an electron count that agrees with
Lloyd’s formula. Importantly, augmented-KKR agrees
well with standard KKR using exact inversion to Lmax.
We tested convergence of total energy, EF (integrated
DOS) and magnetic moments in three systems: fcc Cu,
magnetic bcc Fe, and magnetic L10 CoPt. The efficiency
of augmented-KKR arises because the matrices of rank
(R) N(ltr+1)2 are solved by direct inversion [R3 process]
and contributions above Ltr are included by a closed-
form (δl → 0) linear algebra [R2 process] augmentation
of the matrices of rank N(lmax + 1)2.

II. FORMALISM

In KKR-GF theory, the site-diagonal Green’s function
at a specific energy E is given by

G(r, r′;E) =
∑
LL′

[ZnL(r, E)τnnLL′(E)ZnL′(r′, E) (1)

−ZnL(r<, E) JnL′(r>, E)δLL′ ],

where L=(l,m) for the site-centered, spherical-harmonic
basis set. Here, r< (r>) denotes one of two vectors r or
r′ with the smaller (larger) absolute value. The tensor

τnn
′

LL′(E) is the scattering-path operator23 describing the
propagation pathway of electrons in an array of scatter-
ing centers. ZnL(r, E) and JnL(r, E) are, respectively, the
regular and irregular solutions of the Schrödinger equa-
tion in the n-th Wigner-Seitz cell. ZnL(r, E) has the form

ZnL(r;E) = κ
∑
L′

φnL′(r, E)[SnL′L(E)]−1, (2)

where κ =
√
E − v0. Here, v0 is an arbitrary reference

energy for an exact theory, but, for approximate cases,
such as muffin-tin (MT) or atomic sphere approximations
(ASA), it can be chosen variationally to match the trace
of eigenvalues of the exact theory.24 φnL′(r, E) is the wave-
functions solution with potential vn(r), i.e.,[

−∇2 + vn(r)
]
φnL(r, E) = EφnL(r, E). (3)

The potential vanishes outside the convex cell, so φnL
joins smoothly to a combination of spherical Bessel jl(κr)
and Neumann nl(κr) functions beyond the circumscrib-
ing sphere (CS) radii around the cell (r > RCS), i.e.,

φnL(r, E) =
∑
L′

[nl′(κr)S
n
L′L(E)− jl′(κr)CnL′L(E)]YL′(r̂)

(4)

The sine S and cosine C matrices are calculated by
matching the continuity of the logarithmic derivative of
φnL across the cell boundary. Notably, JnL(r, E) has the
asymptotic limit

JnL(r, E)→ jl(κr)YL(r̂) ; r > RCS (5)

A. KKR-GF formalism

While constructing τ ijLL′(E), the propagation of elec-
trons from one scattering center i to another j is de-
fined by the free-electron Green’s function gijLL′(E) (in a
spherical-harmonic basis), or in a solid the KKR struc-

ture constant matrix gnn
′

LL′(k;E) with basis sites on n, n′

sublattices. In a solid, with periodic boundary conditions
invoked, τnn

′

LL′(k;E) is given in finite matrix form as

τ = (1− tg)−1t = t + tgt + tgτgt, (6)

where t is the single-site scattering matrix, which in a
cell n is generally given by

tn = −κ−1(Cn − iSn)−1Sn. (7)

For a spherically symmetric scatterer25 (used here), the
single-site t-matrices simplify as

tLL′(E)→ tl(E)δLL′ = −κ−1sin δl(E) eiδl(E). (8)

For MT or ASA scattering centers, the KKR phase-shifts
are determined by matching the free-electron solution on
the sphere boundary.

Generally, the full GF (1) can be rewritten by Eq. 6 in
terms of single-site and multiple-scattering pieces, i.e.,

G(r, r′;E) = (ZtZ− ZJ) + Z(τ − t)Z (9)

= (ZtZ− ZJ) + Zt(g)tZ + Zt(gτg)tZ.

Each quantity above is a super matrix in a space of an-
gular momentum [rank (l + 1)2] and of unit cell size N ,
giving a total rank of R = N(l + 1)2.

The three major computational expenditures in KKR-
GF theory are calculations of (1) structure constants g;
(2) wave-functions Z and J; and, most costly, (3) τ from
Eq. 6, which requires an R3 operation for the inversion.
Now, with N fixed, L is usually truncated in numerical
calculations to a small, but necessary value (e.g., L = 3)
above which the phase-shifts δl are assumed to be zero,
but which is not an L where the higher-order terms can
necessarily be ignored – an error.

B. Augmented-KKR-GF

While free-electron contributions remain at all L’s, the
phase shift δl for a spherical scatterer decays rapidly
(at standard temperatures and pressures) with increasing
value of L. Thus, while the first line of Eq. 9 is convenient
numerically (e.g., for pole cancellation and contour in-
tegration, and finite-temperature Matsubara sums26–28),
the second line provides a simple means to account for
KKR multiple-scattering solutions exactly the same way
as in the conventional KKR-GF theory up to Ltr and
then augment with single-site and free-electron contribu-
tions from Ltr < L ≤ Lmax, while maintaining symmetry
and relative accuracy.
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So, in augmented-KKR, we analytically evaluate Eq. 9
to include L > Ltr (in the limit δl → 0) terms via linear
algebra, rather than full matrix inversion. First, gLL′

is calculated for L ≤ Lmax to where augmentation is
desired. Second, for L ≤ Ltr, the terms in Eq. 9 are
evaluated as usual, while, for L > Ltr in δl → 0 limit,
the first two terms can be analytically simplified using,

Zt −−−→
δl→0

+j(κr)

(ZtZ− ZJ) −−−→
δl→0

−κ j(κr) [i j(κr)− n(κr)] . (10)

Equation 10 is derived (see Appendix) rigorously using
expressions for spherical potentials, which vanish outside
of spheres inscribed within each cell. They do not hold
for full-cell potentials, where non-diagonal L,L′ terms
can contribute generally, but can be derived.

Lastly, the most crucial step is evaluating the last term
in Eq. 9. Positing negligible scattering for large L’s, the
last term is calculated in three steps:

1. Calculate τL1L2
= [(1− tg)−1t]L1L2

for Li ≤ Ltr
by exact inversion.

2. With gLL′ (∀ L,L′ = Lmax > Ltr), calculate gτg
using;

(gτg)LL′ =

Ltr∑
L1

Ltr∑
L2

(gLL1)(τL1L2)(gL2L′) (11)

3. Having gτg, multiply (Zt)LL′ from both sides to
get G(r, r′, E) for all L = Lmax.

With this, one needs to perform inversion (R3 operation)
only for matrices up to Ltr, and the higher-L contribu-
tions are included by matrix multiplication (gτg), which
is computationally much faster (R2 operation).

For non-spherical potentials, one can derive expres-
sions similar to Eq. 10 having off-diagonal (L,L′) compo-
nents. So, our three-step process to get the last term of
Eq. 9 remains unchanged, except that t is non-diagonal.
As such, the advantage of a rank-one update is lost when
multiplying diagonal and off-diagonal matrices, i.e., t
with g or Zt with gτg. Yet, the scaling for the multiple-
scattering calculations remains unaltered. The solution
of the non-diagonal components of the matrices, such as
t, are more rapidly calculated using the analytic diago-
nal solutions and iterating Dyson’s equation until conver-
gence, with integrations performed over convex Voronoi
polyhedra, rather than spheres.29 For full-potentials in-
volving arbitrarily-shaped convex polyhedra, we have de-
veloped an efficient 3D-isoparametric method30 to per-
form the integrations for solution of Schrödinger and
Poisson’s equations.31 This method is more accurate and
multiple orders of magnitude faster than conventional
shape-function methods. Implementing the augmented
KKR-formalism for full-potentials is planned. Because
the numerical effort of solving the multiple-scattering is
the same for both spherical and non-spherical potentials,

the additional effort for full-potential case in KKR scales
linearly with the number of non-equivalent atoms.

In an all-electron, ab initio calculation for real systems,
l truncation enters at several places and collectively af-
fects, e.g., the cell DOS, and charge and magnetization
densities. In turn, the Fermi energy EF and magnetiza-
tion M, defined from the sum rules,

N(EF) =

∫ EF

Ebot

[n↑(E
′) + n↓(E

′)] dE′ = Zval

M =

∫ EF

Ebot

[n↑(E
′)− n↓(E′)] dE′ (12)

are affected, as is the total energy. Here, Ebot designates
the bottom of the valence band, n↑(n↓) is the spin ma-
jority (minority) DOS, and Zval is the average number
of valence electrons. As will be shown, l truncation plays
a significant role in correctly evaluating the EF and M.

III. COMPUTATIONAL DETAILS

An all-electron, density functional theory (DFT)
KKR-GF code32 is used to perform the calcula-
tions, as previously done.4,7,8 For the present results,
the von-Barth–Hedin33 local spin-density approxima-
tion (LSDA), as parameterized by Moruzzi, Janak and
Williams,34 was used. Each site-dependent Voronoi poly-
hedra were represented within an ASA sphere,35 with
multi-component cases handled by an optimal basis,24

where ASA spheres are adjust by saddle-points in the
electronic density. Complex energy contour integration
with 24 energy points are used to integrate the Greens
function. Monkhorst and Pack36 special k-point method
is used for Brillouin zone integration.

Following the above theory, in distinction to conven-
tional KKR where L is truncated where δL(E) ≈ 0
(rather than where free-electron contributions are small,
which is E, L, and temperature dependent), two distinct
Ltr and Lmax indices are used. All the calculations up
to Ltr are performed in the standard way, i.e., for each
energy E, we evaluate (Z,J), t and g and get τ by in-
version. For augmented-KKR, beyond Ltr, we calculate
the truncated τ for L,L′ ≤ Ltr, and use the full gLL′ -
matrix to augment g + gτg Eq. (11) up to Lmax, which
can be chosen manually or to be below a specified tol-
erance for GF error. Recall from Eq. 9, we know the
analytic form of ZtZ− ZJ and Zt for L > Ltr, so the
only effort in evaluating the matrix elements of g + gτg
for Ltr < L ≤ Lmax.

IV. RESULTS AND DISCUSSION

We apply the ab-initio augmented-KKR formalism to
fcc Cu, bcc Fe, and L10 CoPt. The first two systems
provide a stringent test of our formalism for a simple
non-magnetic and magnetic system, respectively. The
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FIG. 1: (Color online) (Left) Convergence properties of total
energy E (bottom) and Fermi level EF (top) vs. lmax using
different ltr for 1-atom/cell fcc Cu. (Right) Same as left,
but for a 1 Cu-site plus 1 octahedral-hole-site per cell. E0 is
defined by the ltr = 4, lmax = 8 result. EF is different on the
left because of the Madelung potential inherent on the right.

third illustrates application to a multi-sublattice, mag-
netic example.

A. Convergence of Total Energy and Fermi Energy

Figure 1 shows the convergence of total energy (bot-
tom) and Fermi energy (top) versus the augmentation
lmax, with ltr = 2, 3, 4 for fcc Cu in our KKR-ASA
code.32 The left (right) panel indicate the results for a ba-
sis of one Cu atom (atom + octahedral hole). The right
panel shows improvement both in augmentation and ba-
sis set, as the hole-site makes the Voronoi polyhedra for
each scattering site (atom and hole) more spherical, and
the atom is better represented by an ASA sphere (and
reduces the ASA overlap error), while the interstitial vol-
ume is greatly reduced.

The energies are not converged with ltr = 2 and large
lmax compared to converged values. By lmax = 5 the
total energy (EF) reaches an asymptotic value, and ltr =
2 value is higher by 9 mRy (4 mRy) relative to those
calculated with ltr = 4. Beyond lmax = 5, the error in
total energy (EF) is less than 0.05 mRy (0.01 mRy), i.e.,
the order of 1×10−5Ry. For 1-atom Cu basis (left panel),
the total energy (EF) with ltr = 4 converged to within
1 mRy (0.1 mRy) compared to that with ltr = 3. With
an octahedral hole added to the basis (right panel) the
results are exactly the same for ltr = 3 or 4. This is due to
the use of a better basis set. As such, a faster convergence
in the l-space can be achieved by an improved basis set,
but with a concomitant increase in R3 process.

Moghadam et al.37 carried out a test of l convergence
for fcc Cu in a real-space KKR, linear-scaling multiple-
scattering (LSMS) method. The difference between the
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FIG. 2: (Color online) (Left) Convergence of total energy E
(bottom), EF (middle) and magnetic moments (top) vs. lmax

at different ltr for a 1-atom bcc Fe, and (right) for a 2-atom
L10 CoPt. E0 is Lmax = 8 reference value.

total energy (EF) for lmax = 3 and lmax = 8 is 7 mRy
(6 mRy). For the k-space-based, augment-KKR the dif-
ferences are 6.5 mRy (8 mRy) for 1-Cu-site basis, and
5 mRy (7 mRy) for a basis with a Cu plus an octahedral
hole. The present method, however, is computationally
faster due to the augmentation used to evaluate the con-
tribution of higher l’s.

Figure 2 shows the convergence of total energy (bot-
tom), EF (middle) and magnetic moments (top) for mag-
netic bcc Fe (left panel) and L10 CoPt (right panel). As
in the case of fcc Cu, total energy and EF converges by
lmax = 5 with ltr = 4. The converged moment of bcc Fe is
2.30 µB , which compares well with experimental value38

of 2.2 µB . The Co and Pt moment in L10 CoPt converges
relatively slower compared to that of Fe. This is due to a
slight c/a distortion in the L10 structure (c/a = 0.984).
Calculated moments for Co and Pt are 1.91 and 0.396
µB , respectively, compared to 1.76 and 0.35 µB from ex-
periment at finite temperature.39

Lastly, for comparison of matrix elements from full-
KKR versus augmented-KKR, we first calculated τ for
L,L′ ≤ Lmax by direct inversion, and then calculated
T = g + gτg matrix using both full and truncated τ
matrices. Figure 3 shows the absolute error (∆T) in the
matrix elements of the larger (L > Ltr) block of aug-
mented T-matrix calculated using full τ and truncated
τ for fcc Cu. With ltr = 2, the augmentation is com-
pared for lmax = 3 (lmax = 4) in the top (bottom) panel.
For fcc symmetry, there are four (five) distinct matrix
elements in the l = 3 (l = 4) block of the T-matrix,
which are labeled along the horizontal axis. Clearly,
augmented-KKR well reproduces the higher l-block of
T-matrices compared to full-KKR inversion (quite well
below 1×10−6), showing that the computationally faster
augmentation has very good accuracy.
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B. Comparison to Lloyd’s Formula

The Lloyd’s formula is the N-site generalization of the
Friedel (single-site) sum-rule, or optical theorem, for the
electronic integrated DOS:

N(E) = Nfree(E) +
2

π

∑
`

(2`+ 1)δ`(E) , (13)

where Nfree(E) is the integrated DOS of the free
electrons, known analytically in 3-dimensions, i.e.,
E3/2/(6π2). [For complex E, Eq. (13) is incorrect, but
can be generalized via scattering matrices.] The KKR
Lloyd’s formula for an ordered system can be written in
spectral representation at any complex E as40–42

N(E) = Nfree(E) +
1

π
Im log||α(E)||

− 1

Nk
Σk

1

π
Im log||1− t(E)g(k, E)|| (14)

for discrete samples in k-space, with α(E) defined by
the scattering solutions of v(r) near the scattering cen-
ters. The determinant is performed over both basis-site
and angular-momentum indices, and it is equivalent to
an eigenvalue sum, albeit done by constant-E scan. The
formula is also related to Krein’s theorem.43,44 Lloyd’s
formula is an amazing result being the closed-form ex-
pression for the integrated DOS at any E (total elec-
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E = (−0.76, 0.003) Ry. Similar accuracy is found along the
entire semi-circular contour of integration. For spherically
symmetric scatterers with Lmax = 3 (4), there are 4 (5) dis-
tinct matrix elements in the L = 3 (4) block of the T-matrix.
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FIG. 4: (Color online) EF by real-space GF (circle) relative
to spectral Lloyd’s formula (square) for Cu (left) and Cu plus
hole (right) for Ltr = Lmax. E0 is a reference energy.

trons)! Moreover, variation of Lloyd’s formula with re-
spect to potential v(r) yields the density at any energy
ρ(r;E) to second-order in changes in the self-consistent
potential (e.g., higher-order L’s), and, hence, in EF.4

Because the KKR determinant passes through zero at
every Bloch solution, it picks up a phase of π at these
locations giving the number of electrons up to E. Equa-
tion (14) counts jumps in phases in the KKR determinant
(“Im log” operation). There is a practical implementa-
tion issue: At a given E the phase is known to modulo 2π
(or total electrons within a whole number), but trivially
handled with a good EF estimate from real-space GF.
Thus, Lloyd’s formula gives an exact (no L-truncation)
EF and electron count from a few values of E.

Importantly, here, the augmented-KKR is expected to
yield a EF consistent with that obtained by Lloyd’s for-
mula. Also, for thermodynamics of a system, an analytic
expression for the free-energy functional can be directly
derived from Lloyd’s formula using a Gibbs relation,4

which we use to calculate the total (free) energy. At fi-
nite temperature it directly yields Mermin’s theorem, or
Kohn-Sham theorem at zero Kelvin.4 Hence, the spec-
tral Lloyd’s formula specifies the thermodynamics and
correct Fermi surface at EF.

To assess the augmented-KKR EF and electron count,
we must compare three results: (1) Convergence of
augmented-KKR spectral GF – Lloyd’s formula; (2) Con-
vergence of augmented-KKR real-space GF, as given by
the trace of Eq. 9; and (3) Convergence of items 1 and 2
with improved basis. Notably, approach (2) is used in a
typical self-consistent-field (scf) KKR-GF for computa-
tional expediency because G(r, r′;E) is always handy.

To be clear, results from (1) and (2) should agree for
an exact method. However, these values will differ if
there is any approximation that is not handled equiva-
lently in k-space and real-space – as in the ASA. For (1)
above, G(r, r′;E) is evaluated within an ASA sphere and
then Fourier transformed to obtain G(k;E) commensu-
rate with the Brillouin zone of the full unit cell; hence, for
ordered systems, it is a calculation of the volume enclosed
by the Fermi surface, and corresponds to the count over
a non-spherical charge distribution. In contrast, for (2),
the trace of G(r, r′;E) is evaluated in an ASA sphere,
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which does not account for the volume as done in (1),
and it must suffer a modest error because only a spher-
ical charge density is considered. Therefore, (1) above
should be correct, and a small error may appear from
(2), which will decrease with, say, improving basis.

For comparison, a wavefunction approach using the
ASA solves the secular equation after Fourier transform
by diagonalization to get the eigenvalues, and EF is then
obtained by counting states within volume enclosed by
the Fermi surface, then the remaining quantities are de-
termined by referencing only k-space. As such, it is equiv-
alent to the value from spectral Lloyd’s formula, Eq. 14.

From the scf-KKR , Figure 4 compares EF versus Lmax
(=Ltr) from real-space Green’s function (circle) and from
spectral (k-space) Lloyd’s formula (square) for basis with
one Cu (left) and for one Cu plus an octahedral-hole
(right). These results agrees with those from augmented-
KKR with Ltr = 3 but evaluated for each Lmax ≤ 8. As
is apparent, the spectral Lloyd’s results converge rapidly,
whereas those from real-space converge slower and suffer
a small error because only a spherical charge density is
considered. As is obvious from Fig. 4, the discrepancy
in EF obtained from the two methods reduces when an
octahedral hole is inserted into the fcc cell (right panel)
because the ASA then better represents the real-space
volume; the k-space result is also improved because the
non-spherical charge density is better represented.

As will be discussed elsewhere (e.g., for applications to
warm-dense matter), further improvements to the agree-
ment between real-space and k-space results (not shown)
are possible, which leads to much less than 1 mRy dis-
crepancy. Example changes include: improve normaliza-
tion of scattering functions (Z, J), and include Nfree(E)
analytically (infinite L sum), as in Lloyd’s formula, while
simultaneously removing the L-truncated free-electron
Green’s function contributions from the KKR Green’s
function during the scf-cycle.

C. Convergence of Structural Parameters

Up to now we have investigated the convergence prop-
erties at a fixed lattice parameter. Another important
thing to check is how convergence affect the accuracy
of equilibrium (groundstate) lattice parameter. Figure 5
shows the energy versus lattice constant (a) for fcc Cu
(top) and bcc Fe (bottom) at different sets of l trunca-
tion. Notably, for both the systems, the energy curve
with ltr = 4 and lmax = 6 is almost indistinguishable
from that with lmax = 8, indicating the convergence by
lmax = 6. Already ltr = 3 finds a similar minima to that
from larger ltr; however, ltr = 2 is not a reliable choice for
converged results. The calculated 0 K lattice constants
for fcc Cu and bcc Fe are 6.72 and 5.26 a.u., respectively,
which compare well with room-temperature experimen-
tal values (6.82 and 5.42 a.u., respectively), and previous
LSDA results.

D. Estimate of Numerical Savings

In the current implementation the augmented-KKR
requires

[
N3(ltr + 1)3 +N2(lmax+1 + 1)(ltr + 1)

]
opera-

tions compared to [N(lmax + 1)]
3

operations in standard
KKR. For reliable convergence in the present examples,
we found ltr = 3 and lmax = 8 to be sufficient for lat-
tice constants and structural energy differences, in which
case we require (64N3 + 36N2) operations as opposed to
278N3 operations. Hence, about 3− 4 times less compu-
tational time is required for cells with 1-10 atoms. An
estimate that holds the calculations done here.

V. CONCLUSION

Motivated by physics and resulting numerical effi-
ciency, we have presented and implemented an augment-
KKR Green’s function formalism that accurately handles
multiple-scattering (where phase shifts are not zero) by
direct inversion of smaller Ltr-truncated basis and in-
clude higher L > Ltr by linear algebra for necessary
single-site and free-electron contributions. We applied
the augmented-KKR formalism to three systems and
showed very good convergence properties and accuracy
compared to KKR with direct inversion to Lmax, al-
though we discovered that a larger L-basis is needed over
that generally assumed. To be mathematically consis-
tent, the L-sum truncation for wavefunctions and scat-
tering matrices needs to be done in tandem with each
other (see Eq. 9) due to a normalization factor occurring
in both the single-site wavefunctions and t-matrices. By
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FIG. 5: (Color online) Total energy vs. a for various sets of
augmentation (Ltr, Lmax) for Cu (top) and Fe (bottom).
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identifying this common normalization, one can analyti-
cally evaluate the δl → 0 limit to include higher L’s via
simple linear algebra, instead of the exact inversion as re-
quired in conventional KKR, saving significant computa-
tional effort while improving accuracy. For non-spherical
potentials, one can derive the expressions with t’s no
longer diagonal, but the approach and the scaling for
the multiple-scattering calculations remains unchanged.
Augmented-KKR can be extended to the coherent poten-
tial approximation (CPA) and dynamical cluster approx-
imation (DCA) to handle disorder, as will be presented
elsewhere.
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VII. APPENDIX: DERIVATION OF EQ. 10

To derive Eq. 10, consider the matrix representation
of Eq. 2, 4, 5 and 7. In the limit δl → 0, the sine and the
cosine matrices S and C goes to, respectively, zero and
unitary matrix, where |C| ∼ |eiφ| = 1. Then, accounting
for cancellations of sine matrices in the numerator and
denominator, we find

Zt = −(nS− jC)e+iδl −−−→
δl→0

j(κr) (15)

Similarly,

ZtZ = −κ (nS− jC)(nS− jC)e+iδl

S

ZJ = κ
(nS− jC)j

S

As δl → 0, and we apply limit evaluation rules, we find:

ZtZ −−−→
δl→0

−κ [i j(κr) j(κr)− 2 j(κr) n(κr)]

ZJ −−−→
δl→0

+κ j(κr) n(κr)

Therefore,

ZtZ− ZJ −−−→
δl→0

−κ j(κr) [i j(κr)− n(κr)] (16)
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