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We report on nonlinear transport measurements in a GaAs/AlGaAs quantum well exhibiting a
colossal negative magnetoresistance effect. Under applied dc bias, the magnetoresistance becomes
nonmonotonic, exhibiting distinct extrema that move to higher magnetic fields with increasing
current. In the range of magnetic fields corresponding to the resistivity minimum at zero bias,
the resistivity increases linearly with current and the rate of this increase scales with the inverse
magnetic field. The latter observation is consistent with the theory, proposed more than 35 years
ago, considering classical memory effects in the presence of strong, dilute scatterers

The interest to low-field magnetotransport in two-
dimensional electron systems (2DES) has been recently
revived owing to several experiments reporting unexpect-
edly strong negative magnetoresistance in GaAs/AlGaAs
heterostructures1–8. One prominent example is the
observation of a colossal negative magnetoresistance
(CNMR), which is marked by a sharp drop of the resis-
tivity ρ(B) followed by a saturation at the magnetic field
B ≈ B⋆ ≈ 1 kG, close to ρ⋆ ≡ ρ(B⋆) . 0.1ρ0, at temper-
ature T . 1 K7. While classical memory effects due to
a unique disorder landscape appear to be the most likely
origin of the observed CNMR, comparison with existing
theories9–11 revealed huge discrepancy in the character-
istic B range where the effect is expected to occur. It is
thus clear that more studies are needed to shed light on
this mysterious phenomenon. In particular, it is very de-
sirable to get insight into the specifics of the underlying
disorder potential in the 2DES exhibiting CNMR.

The most frequently used and readily available char-
acteristic of the disorder is the electron mobility µ =
(eneρ0)

−1, where ne is the electron density and ρ0 is
the resistivity at B = 0. At low T , the mobility can
be expressed as µ−1 = µ−1

L + µ−1
S , where µL and µS

account for scattering off long-range (smooth) disorder,
e.g. from the remote ionized impurities, and short-range

(sharp) disorder, e.g. from the residual background
impurities, respectively. Since magnetoresistance sen-
sitively depends on the interplay between smooth and
sharp contributions9,10, it is important to know not only
the total µ, but also at least one of its constituents, i.e.
µL or µS .

In principle, µS can be obtained from non-linear trans-
port measurements, which are known to reveal Hall-field
induced resistance oscillations (HIRO)12–19. HIRO ap-
pear in differential resistivity r and originate from elec-
tron transitions between Hall field-tilted Laudau levels
due to electron backscattering off impurities. The corre-
sponding scattering rate relies on the commensurability
between the cyclotron diameter 2Rc and the spatial sep-
aration between the levels, and, as a result, is a periodic
function of ǫj ≡ 2eERc/ωc, where E is the Hall field
and ωc is the cyclotron frequency. Since backscattering
is strongly dominated by sharp disorder, the HIRO am-

plitude is proportional to µ−1
S . The full result reads15:

r

ρ0

=
(4λ)2

π

µ

µS
cos 2πǫj , (1)

where λ = exp(−π/ωcτq) is the Dingle factor and τq is the
quantum lifetime. The analysis of the HIRO amplitude
can therefore be used to obtain both τq and µS , which
are essential in understanding the correlation properties
of the disorder potential.
In this Rapid Communication we report on nonlinear

transport measurements in a Hall bar-shaped 2DES ex-
hibiting CNMR, marked by ρ⋆ ∼ 0.1ρ0 at B⋆ ≃ 1 kG7,
over a wide range of B and direct currents I. While the
differential resistivity exhibits at least two distinct types
of extrema, which both move to higher B with increas-
ing I, none of them can be described by Eq. (1). On
the other hand, in a wide range of B, corresponding to
the broad resistivity minimum at zero bias, ρ increases
linearly with I and the rate of this increase scales with
1/B. This remarkable finding is in excellent agreement
with the theory considering classical memory effects in
the presence of strong, large, and dilute scatterers, which
was put forward more than 35 years ago9.
Our sample is a Hall bar (width w = 200 µm) fabri-

cated from a symmetrically doped, 29 nm-wide GaAs/
AlGaAs quantum well, with the Si δ-doping layers sep-
arated from the 2D channel by d = 80 nm. At T ≃ 1.5
K, our 2DES has µ ≈ 1.1 × 106 cm2/Vs and density
ne ≈ 3.0 × 1011 cm−2. Measurements of the differential
resistivity r = dV/dI were performed in sweeping B us-
ing a standard lock-in technique at T ≈ 1.5 K at I up to
350 µA. Photoresistance was measured under continuous
illumination by microwaves of frequency f = 86 GHz.
In Fig. 1 we present the differential resistivity r(B)

measured at T = 1.5 K under different I from 0 to 350
µA, in steps of 50 µA. At zero current, r(B) ≡ ρ(B)
exhibits CNMR7, which is marked by a sharp drop of
the resistivity terminating at ρ⋆ ≡ ρ(B⋆) ≈ 0.1ρ0, where
B⋆ ≈ 1 kG. Under applied current, a local minimum de-
velops in r(B) at B = 0 as the “zero-B peak” splits into
two. With increasing I, the peaks move to higher B (cf.
↓) and the minimum at B = 0 evolves back to a local
maximum (cf. ↑). This behavior is somewhat reminis-
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FIG. 1. (Color online) Differential resistivity r(B) at different
I from 0 to 350 µA, in steps of 50 µA, at T = 1.5 K.

cent to the splitting of the “zero-B peak” observed at
2 K . T . 15 K at zero dc bias7.

The observed dc-induced peaks cannot be attributed
to HIRO as they occur at B which is an order of magni-
tude lower than B at which the fundamental (ǫj = 1)
HIRO peak is expected to occur. To illustrate this
point, we present in Fig. 2(a) the magnetic field Bp at
which the peak occurs (open circles) as a function of I.
For comparison, we also include the expected magnetic
fields for the fundamental and the twelfth HIRO peaks
(dashed lines, marked by B1 and B12, respectively),
which were calculated, per Eq. (1), using Bi = B1/i,

B1 = 2(m⋆/e2)
√

2π/ne(I/w)
14,15. Indeed, Bp ≪ B1

and the peak is better described by ǫj ≈ 11 − 13. How-
ever, the dependence of Bp on I is not linear and the
power-law fit (solid line), Bp ∼ Iα, yields α ≈ 1.3. We
thus conclude that the observed peak differ from HIRO
both quantitatively and qualitatively.

An alternative way to examine the evolution of r(B)
with current is presented in Fig. 2(b) which shows r(I)
at different B from 0 to 0.5 kG, in steps of 0.1 kG. As
we have already observed in Fig. 1, r0 ≡ r(B = 0) mono-
tonically decreases with current and, eventually, tends
to saturate. This behavior is in contrast to the usually
observed increase of r0(I), which can be expected to oc-
cur due to Joule heating14. However, at finite B, r(I)
initially increases and develops a maximum which moves
to higher I with increasing B. This maximum is just
another manifestation of the peak shown in Fig. 1.

Another characteristic feature of the data in Fig. 1 and
Fig. 2(b) is the absence of HIRO, which are usually seen
in this range of B and I14. In particular, at B = 0.5
kG HIRO would manifest as I-periodic oscillations with
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FIG. 2. (Color online) (a) Magnetic fields corresponding to
the dc-induced peaks (cf. ↓ in Fig. 1) Bp (open circles), to the
first, B1, and twelfth, B12, HIRO maxima (dashed lines) as a
function of I . The fit to Bp ∼ Iα (solid line) yields α ≈ 1.3.
(b) r(I) at different B, from 0 to 0.5 kG, in steps of 0.1 kG.

the maxima appearing at integer multiples of ≈ 50 µA
and the minima in between. We, however, find that r(I)
monotonically increases with no signature of oscillations.

At higher B, some dc-induced oscillatory features do
appear in r(B), but these features cannot be attributed
to conventional HIRO either. In Fig. 3(a) we present r(B)
at different I from 50 to 150 µA, in steps of 25 µA, mea-
sured at B up to 2 kG. These data clearly show another
dc-induced peak (cf. ↓) which moves to higher B with
increasing I. Closer examination of the data reveals an-
other, weaker maximum (cf. ↑), emerging at lower B. To
see if these two peaks originate from HIRO, we construct
Fig. 3(b) showing their respective magnetic fields, Bp1

(solid circles)and Bp2 (open circles), as a function of I.
Even though both peaks exhibit linear dependencies on
I, with the slopes differing by about a factor of two, they
cannot be attributed to regular HIRO for the following
reasons. First, linear fits (solid lines) do not extrapolate
to the origin. Second, the slopes of both fits are notice-
ably higher than what is expected from HIRO. Indeed,
positions of the HIRO maxima in our 2DES are expected
to follow Bi = βI/i, with β ≈ 10 G/µA. The observed
peaks, on the other hand, follow Bpi ≈ β(I+I0)/i, where
β ≈ 14.4 G/µA and I0 ≈ 20 µA.

Motivated by monotonic, nearly linear increase of r(I)
at B = 0.5 kG, we examine r(I) in more detail at var-
ious B within the broad minimum of ρ(B) observed at
I = 0. To facilitate the comparison with the theoreti-
cal model, discussed below, we convert r(I) to ρ(I) =

I−1
∫ I

0
r(I ′)dI ′ and present the result (circles) in Fig. 4(a)

at different B from 0.5 to 1 kG, in steps of 0.1 kG. We
find that the data at all B are well described by linear de-
pendencies, starting from some offset current which drops
from ≈ 200 µA at B = 0.5 kG to ≈ 100 µA at B = 1
kG. We also observe that the slope of these dependen-
cies monotonically decreases with B. To examine how
the slope depends on B, we fit the linear portions of the
data (cf. straight lines) and then plot the obtained first
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FIG. 3. (Color online) (a) Differential resistivity r(B) at dif-
ferent I from 50 to 150 µA, in steps of 25 µA, at T = 1.5
K. (a) Magnetic fields corresponding to the dc-induced peaks
Bp1 (solid circles) [cf. ↓ in Fig. 3(a)], Bp2 (open circles) [cf. ↑
in Fig. 3(a)], and to the first, B1, and the second, B2, HIRO
maxima, (dashed lines) as a function of I . Solid lines are
linear fits to the data.

derivative dρ/dI as a function of 1/B in Fig. 4(b). Since
all of the data points fall on a straight line extrapolating
to the origin, we conclude that dρ/dI ∼ 1/B.
As we show below, this result agrees with the theory

of negative magnetoresistance considering classical local-
ization in the presence of strong, dilute scatterers (radius
a, 2D density ni ≪ a−2)9,20,21. According to this model,
negative magnetoresistance occurs because the probabil-
ity for an electron to return to the same impurity in-
creases with B and, as a result, the probability for an
electron to scatter off other impurities is reduced.
Upon application of electric and magnetic fields, the

electron motion is described by E × B drift; the elec-
tron moves along a helical trajectory with a pitch δ =
2πvd/ωc, where vd = E/B is the drift velocity of the
electron guiding center. If δ ≪ a, an electron returns to
the same impurity and remains localized. At higher dc
bias, but still such that δ < 2πa, an electron will leave
an impurity after a short time (∼ 2a/vd) and continue
drifting until it collides with another impurity. The av-
erage time between collisions can then be estimated as
τE = l/vd, where l ≈ (2Rcni)

−1 is the mean free path
of the electron guiding center. After the collision, the
guiding center is shifted by ∼Rc and the drift continues
till the next collision. Under these conditions, τE plays
a role of the momentum relaxation time and the longitu-
dinal resistivity can be estimated as

ρ = m⋆/nee
2τE = (~/e2)(ni/ne)ǫj ∼ I/B . (2)

According to Eq. (2), ρ is a linear function of I with the
slope, dρ/dI, proportional to 1/B. This is exactly what
we have observed in our experiment, as demonstrated in
Fig. 4. The slope of the linear fit in Fig. 4(b) is given by

2
√
2π~m⋆ni/e

4n
3/2
e w, c.f. Eq. (2), from which we extract

ni ≈ 6 × 107 cm−2. This value agrees well with ni =
n3DaB ∼ 107 − 108 cm−2, estimated using concentration
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FIG. 4. (Color online) (a) ρ(I) (circles) at different B, from
0.5 kG to 1 kG, in steps of 0.1 kG. (b) The slope of ρ(I),
obtained from linear fits (solid lines) versus 1/B. Solid line is
the linear fit, dρ/dI = β/B, where β ≈ 0.94 Ω T /mA.

of residual impurities n3D ∼ 1013− 1014 cm−3 in modern
GaAs quantum wells22–24 and aB ≈ 10 nm.
When the current increases such that δ > 2πa, the

drift will carry an electron away from the impurity after
a single collision9. Indeed, if δ = 2πa, vd = ωca, and
τE = (2Rcniωca)

−1 = (2anivF )
−1 = τ , which is the

usual momentum relaxation time at B = 0. As a result,
at I > Ic = e2neBaw/m⋆, the resistivity is described by
the Drude formula and no longer depends on I or B.
Taking a as the 2D screening length, aB ≈ 10 nm,

we find Ic = γB, with γ = 0.25 mA/kG. This result
suggests that, at B = 0.5 kG, ρ(I) should saturate at a
rather small current I ∼ Ic ≈ 0.13 mA. As no saturation
is seen at currents up to 0.35 mA, we can conclude that
the typical size of the scatterer in our 2DES is larger
than 30 nm, i.e. that these scatterers are distinct from
the residual ionized impurities residing in the 2D channel.
We can estimate the typical radius of the scatterer from
the zero-field mean free path l = τvF ≈ 9 µm. Using
2alni = 1 and ni ≈ 6× 107 cm−2, we obtain a ≈ 0.1 µm,
which is an order of magnitude larger than aB.
Having obtained the concentration ni and the radius a

of scatterers from nonlinear transport, we can now look
at the CNMR from a different perspective. As discussed
in Ref. 7, one of the most peculiar features of the CNMR
is that, the characterstic field B⋆ ∼ 1 kG is much smaller
than the theoretical prediction considering a combina-
tion of smooth disorder, due to remote donors, and sharp
disorder, due to unintentional charged impurities (of ra-
dius aB ≈ 10 nm). This discrepancy can be reconciled
if strong scatterers, with a much larger size a ≫ aB,
are added into the picture. At B = 0, it is primarily
scattering with these large, but dilute, scatterers that is
responsible for large resistivity. As the magnetic field is
turned on, electrons will circle around the scatterers in
rosette-like trajectories and the conductivity is reduced.
Above the critical field Bc = 4.18~

e

√
nine

25, the rosettes
no longer form an infinite cluster and the resistivity sat-
urates at ρ = ρ⋆ ≪ ρ0, whose value is determined only
by remote donors and background impurities. Taking
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FIG. 5. (Color online) (a) Resistivity ρω(B) [ρ(B)] measured
with [without] with microwave irradiation of frequency f = 86
GHz at T = 1.5 K. Inset is a zoom-in around zero field. (b)
Photoresistivity δρω(B) = ρω(B) − ρ(B). Arrows mark the
onset of MIRO at B = 0.28 kG which corresponds to ǫω ≈ 7.

Bc = B⋆ ≈ 1 kG, the field where the resistivity minimum
occurs, we obtain ni ≈ 4× 107 cm−2, in good agreement
with the value estimated from nonlinear transport.

The presence of large scatters randomly distributed in
the 2DES can explain the absence of HIRO in our 2DES.
Randomness of the distribution could result in spacial
variation of the current density j, which affects the local
electric field E = jB/nee and, therefore, ǫj. Since ǫj
enters the cosine in Eq. (1), HIRO will be strongly sup-
pressed when measured in macroscopic samples. It ap-
pears possible that the weak oscillations shown in Fig. 3,
might, in fact, originate from HIRO, modified by nonuni-
form current distribution. Since in the presence of large
scatterers the average current density can be larger than
I/w, HIRO extrema should appear at magnetic fields
higher than predicted by Eq. (1), consistent with our ob-
servations. Finally, we note that the reduction of the
critical current of the quantum Hall effect breakdown,
observed in 2DES with random antidots, has been ex-
plained by the inhomogeneous current distribution26,27.

While no clear signature of HIRO is observed, our
2DES easily reveals microwave-induced resistance oscil-
lations (MIRO)28,29, which occur in the photoresistiv-
ity δρω = ρω − ρ. Here, ρω and ρ are the resistiv-
ities measured with and without microwave radiation,
respectively. The functional form of MIRO is given by
δρω ∼ −ρ0λ

2ǫω sin 2πǫω, where ǫω = ω/ωc, and ω = 2πf

is the microwave frequency. In Fig. 5(a) we present ρω(B)
for f = 86 GHz and, for comparison, ρ(B). Direct exami-
nation of the data reveal that, for the most part, δρω > 0,
as illustrated in Fig. 5(b), with a few notable exceptions.
First, we observe δρω < 0 at the first MIRO minimum,
close to ǫω = 5/4, as expected. Second, negative photore-
sponse is observed close to B = 0. Here, microwave radia-
tion reduces the resistivity [cf. inset in Fig. 5(a)], similar
to temperature7 and current [cf. Fig. 1 and Fig. 2(b)].
The reduction of the resistivity near B = 0 and its
increase almost everywhere except the strongest MIRO
minima are consistent with the effects of elevated T on
the CNMR7 caused by radiation absorption. Suppres-
sion of Shubnikov-de Hass oscillations in irradiated 2DES
gives independent support for electron heating.

Despite a modest mobility of our 2DES, MIRO are ob-
served up to the seventh order, persisting to B ≈ 0.28 kG.
Setting ωcτq = 1 at this onset field, we estimate τq ≈ 14
ps, a value which is typical for ultra-high mobility 2DES,
where HIRO are routinely observed12,14,30. This result is
not surprising since dilute scatterers are not expected to
significantly affect τq, lending further support to our con-
clusion that HIRO are likely absent in our 2DES because
of nonuniform current distribution.

Finally, we note that our main finding, ρ ∼ I/B, re-
minds us of the linear T dependence ρ(B = B⋆) ∼ T
observed in the same 2DES7. While the role of I can
be explained by the E × B drift9, there exist no theo-
ries which examine the effects of interactions at finite T
on classical memory effects. These interactions could, in
principle, assist in delocalizing electrons in a nontrivial
way, giving rise to observed T dependence (see Ref. 7 for
further discussion). Indeed, just like the scattering rates
due to sharp and smooth disorder cannot be summed up
at finite B10,11, one cannot simply add electron-phonon
and/or electron-electron interactions.

In summary, we have studied nonlinear magnetotrans-
port in a Hall bar-shaped 2DES exhibiting colossal neg-
ative magnetoresistance. We have found that in a wide
range of magnetic field, corresponding to the broad re-
sistivity minimum at zero bias, the resistivity is a linear
function of direct current with the slope being propor-
tional to the inverse magnetic field. The data analysis
based on the theoretical model considering classical mem-
ory effects in the presence of strong, dilute scatterers9,20,
suggests that the transport in our 2DES is governed by
randomly distributed strong scatterers having a typical
radius a ∼ 0.1 µm and concentration ni ∼ 108 cm−2.
This conclusion is further supported by a reasonable
value of Bc, the absence of HIRO, and complementary
photoresistance measurements.
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