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We report measurements of Shubnikov-de Haas oscillations in single crystals of BiTeCl at magnetic
fields up to 31 T and at temperatures as low as 0.4 K. Two oscillation frequencies were resolved at the
lowest temperatures, F1 = 65 ± 4 Tesla and F2 = 156 ± 5 Tesla. We also measured the infrared optical
reflectance (R(ω)) and Hall effect; we propose that the two frequencies correspond respectively to the
inner and outer Fermi sheets of the Rashba spin-split bulk conduction band. The bulk carrier concentration
was ne ≈ 1× 1019 cm−3 and the effective masses m∗

1 = 0.20m0 for the inner and m∗
2 = 0.27m0 for the

outer sheet. Surprisingly, despite its low effective mass, we found that the amplitude of F2 is very rapidly
suppressed with increasing temperature, being almost undetectable above T ≈ 4 K.

PACS numbers: 74.25.Ha, 74.78.-w, 78.20.-e, 78.30.-j

Manipulating the spin of electrons is of growing inter-
est today, both for technological applications (spintronics)
and for the realization of new, exotic states (triplet super-
conductivity; Majorana fermions). Topological insulators
have emerged as promising candidates for the realization
of these spin-related phenomena, owing to their edge states
with spin protected by time-reversal symmetry[1]. Subse-
quently, it has been shown theoretically and discovered ex-
perimentally that in the V-VI-VII layered compounds Bi-
TeX (with X = Cl, Br, I) the spin-orbit interaction can
also lift the spin degeneracy of electrons, in a way sim-
ilar to the effect of time-reversal symmetry at the sur-
face of topological insulators, but this time in the bulk
of non-centrosymmetric semiconductors[2, 3]. The exis-
tence of surface states has also been established in these
materials[3–5]. Theoretical work predicted that under pres-
sure, BiTeI becomes a topological insulator[6]; pressure-
dependent optical spectroscopy experiment did confirm
this prediction[7, 8].

Adding to the growing interest in the BiTeX compounds,
a recent angle-resolved photoemission (ARPES) study dis-
covered that BiTeCl is a topological insulator at ambient
pressure[9]. What makes it unique and exciting for the field
is that, unlike all previous topological insulators, where
the crystal structure preserves inversion symmetry, BiTeCl
is the first example of an inversion antisymmetric topo-
logical insulator. The inversion antisymmetry may give
rise to other unusual effects, like a strong bulk polariza-
tion, topological magneto-electric effect[10], or topologi-
cal superconductivity[11].

Motivated by these discoveries, we have measured the
in-plane magnetoresistance, Hall effect, and optical re-
flectance of BiTeCl in order to investigate its electronic
properties and Fermi surface. Single crystals of BiTeCl
were grown and characterized according to Ref.[12]. A
sample of about 3×2×0.1 mm3 was cut from a larger piece
and gold wires were attached using silver paint for elec-
trical resistance measurements. The experiment was per-

formed in Cell 9 at the National High Magnetic Field Lab-
oratory. This facility combines a top loading 3He cryostat,
with sample in liquid, and a 32 Tesla resistive magnet. Sep-
arate measurements of Hall effect were performed using a
commercial PPMS system from Quantum Design. Room
temperature optical reflectance data (R(ω)), at frequencies
between 30 and 32 000 cm−1 (4 meV- 4 eV), were taken
using a combination of a Bruker 113v Fourier spectrom-
eter and a Zeiss microscope photometer. Then, Kramers-
Kronig analysis was used to estimate the optical conduc-
tivity σ1(ω).

The upper panel of Fig. 1 shows the temperature depen-
dence of the sample resistance. Rxx is metallic, with the
resistance decreasing by a factor of about 4.5 upon cool-
ing from room temperature to 5K. Hall data, shown in the
lower inset of Fig. 1(a), shows that the carriers are elec-
trons. We extracted a carrier concentration ne ≈ 1× 1019

cm−3. Stoichiometric BiTeCl is a semiconductor with en-
ergy gap≈220 meV[9]; however, the chemical potential in
our sample is clearly into the conduction band, as in most
Bi-based semiconductors.

The lower panel of Fig. 1 shows the high magnetic
field (above 10 T) in-plane magnetoresistance of BiTeCl at
T = 0.4 K. Oscillatory behavior becomes visible above 15
T. This behavior can be observed more clearly in the upper
inset of Fig. 1(b), where we plot the data after subtracting a
second order polynomial background. First, we notice the
non-sinusoidal shape of the oscillations. We suggest that
this complex behavior could be due to beating between two
oscillation frequencies. Indeed, despite the observation of
only a few oscillations, a Fourier transform (FFT) of the
data in Fig. 1(b) reveals two frequencies: F1 = 65 ± 8 T
and F2 = 151 ± 6 T. One can see that if we consider the
upper limit for the possible value of F1, then 2×F1 is close
to the lower limit of our F2, rising the possibility that the
higher frequency in the FFT is a harmonic of the lower one.
While we cannot entirely rule out such possibility, we will
show below that this is unlikely though. The corresponding



2

Fermi momentum in the xy-plane (using kxy =
√

2eF/~)
is k1 = 0.04 Å−1 for F1 and k2=0.068 Å−1 for F2, respec-
tively. These values for the Fermi momentum are much
smaller, by a factor of 3 at least, than those reported from
ARPES data for the surface states of BiTeCl[9]. Instead,
they seem to agree within the uncertainty of the chemi-
cal potential level with the results of band structure cal-
culations for the bulk[3]. Assuming that the frequencies
originate from two 3-D Fermi surfaces, the resulting car-
rier concentration n3D = (1/3/π2) (2eF/~)

3/2 would be
n3D = 3 × 1018 cm−3 for F1 and 1 × 1019 cm−3 for F2,
respectively. We notice that the concentration estimated us-
ing F2 is nearly identical with that determined above from
Hall effect, suggesting a common origin. Moreover, this
results also gives support to our assumption that the higher
frequency is a distinct oscillation, expected from the car-
riers dominating the Hall signal, rather than a higher har-
monic of F1.

In Figure 2 we plot the angle dependent Shubnikov-de
Haas (SdH) oscillations at T = 0.4 K as a function of the
component of field perpendicular to the sample surface. At
small angles, θ ≤ 20◦, the oscillations appear to scale with
the normal component of the field. However, at higher an-
gles, there is clear departure for the minima marked in the
figure. This deiviation is indicative of a three-dimensional
Fermi surface; moreover, it makes it unlikely that the oscil-
lations originate from surface carriers. Were that the case,
they would be highly two-dimensional, scaling precisely
with the normal component of the magnetic field. Further-
more, a strong suppression of amplitude with tilting field is
expected for surface oscillations, which does not appear to
be the case in our data, at least up to θ ≈ 45◦. Experiments
at higher magnetic field and larger tilting angle would help
prove our conclusion more clearly.

The temperature dependence of the quantum oscillations
in BiTeCl is shown in Fig. 3(a). It can be clearly seen
that the higher frequency, F2, is strongly suppressed with
increasing temperature, being almost undetectable above
T ≈ 4 K. In contrast, the low frequency (F1) oscillations
can be observed up to T ≈ 35 K. The lower inset of Fig. 1,
displaying the Fourier transform of the SdH oscillations for
several temperatures, illustrates the same thing. There is a
rapid decrease of the F2 amplitude with temperature and
an enhancement of F1 once F2 is suppressed. Such be-
havior suggests that at low temperature the amplitude of
oscillations is affected by the beating between the two fre-
quencies, and once one is strongly damped with increased
temperature, the other emerges more clearly.

We find the strong suppression of the F2 amplitude with
temperature puzzling. First, whether F2 originates from
bulk or surface carriers, it would imply a carrier effective
mass much larger than previously observed and expected
for these semiconductors, where in general m∗ . m0,
the free-electron mass. Second, repeating the experiment
with different locations of the contacts (although still in the
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FIG. 1: (Color online) (a) Main panel: Rxx vs. T of BiTeCl. Up-
per inset: Sketch of a Rashba spin-split conduction band showing
the momentum (kR), the inner and the outer Fermi sheets, of mo-
mentum kin and kout, respectively. Lower inset: The Hall resis-
tance Rxy(B) at T = 5 K. (b) Main panel: In-plane magnetore-
sistance of BiTeCl at high magnetic fields (above 10 T), showing
Shubnikov-de Haas oscillations. Upper inset: ∆R at T = 0.4 K,
obtained after subtracting the continuous background and plotted
vs. 1/B. Lower inset: Fourier transform of ∆R(1/B) at different
temperatures.

plane of the sample) we found the same situation, except
that the frequency F2 was even more strongly suppressed
above 4 K. This suppression can be clearly seen in the main
panel of Fig. 3(b), where we show the higher temperature
(T≥4K) SdH oscillations for the second experiment. It ap-
pears that the data contain only one frequency (F1), and
indeed, we found almost no hint of F2 in the Fourier trans-
form. While we do not have yet an explanation for this be-
havior, the presence of only one frequency, F1, allowed us
to determine more accurately the temperature dependence
of its amplitude and hence, its carrier effective mass m∗

1.
In the inset of Fig. 3(b) we plot the amplitude of the os-
cillation with minimum at B = 0.037 T−1 versus tem-
perature. A fit to the Lifshitz-Kosevich formula[13] yields
m∗

1 = (0.2± 0.03)m0.
Given that both Hall effect and SdH oscillations may

be affected, or even dominated, either by bulk or by sur-
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FIG. 2: (Color online) ∆R(1/B) at different angles between the
magnetic field and sample surface, plotted against the field com-
ponent along the normal to sample surface. The dashed line indi-
cates the positions of minima when the field is normal to sample
surface and arrows mark the minima at higher angles.

face carriers, we measured the infrared reflectance R(ω),
as a true bulk probe. We showed previously[14] for the
case of BiTeI that a monolayer-thick conducting surface
layer with impedance R� ∼ 2000 Ω� affects the far-
infrared reflectance of a conductor with conductivity of or-
der σ1 ∼ 100 Ω−1cm−1 by less than 0.5%. Therefore,
R(ω) of BiTeCl, shown in Fig. 4(a), should be governed
mainly by the response of the bulk carriers. A clear plasma
edge can be observed around 500 cm−1 and in the limit
ω →0, R(ω) exceeds 90%, consistent with metallic be-
havior of the bulk.

Clear phonon modes are observed at low frequency;
they will be discussed elsewhere. Kramers-Kronig analy-
sis of the reflectance yields the optical conductance, σ1(ω),
shown in Fig. 4(b). A clear zero frequency (Drude) peak
and sharp phonon modes are visible, as well as an absorp-
tion edge, at about 250 meV. The estimate of the semicon-
ducting gap from optical reflectance is however strongly af-
fected by the fact that the sample also transmits light in the
mid-infrared range, as it can be observed from our trans-
mission measurements in the inset of Fig. 4(b). Within
the uncertainty of the chemical potential with respect to
the conduction band minimum, we find that the semicon-
ducting gap is of the order of 760 meV, consistent with
previous optical data [15]. We notice also a similar inter-
band transition to that observed and discussed in Ref. [15],
situated at slightly higher energy, about 400 meV, in our
sample. The dc conductivity is σ(0) ≈ 300 Ω−1cm−1,
i.e. ρ0 ≈ 3 mΩ-cm, characteristic of a moderately doped
semiconductor. In order to extract the free carrier prop-
erties, we fit both R(ω) and σ(ω) with a Drude-Lorentz
model[16], optimizing the fit so that the same set of param-
eters reproduces best both quantities. The fit can be seen
in both Fig. 4 (a) and (b). The Drude plasma frequency is

-60

-40

-20

0

20

Δ
R

 (m
Ω

)

0.080.070.060.050.040.03

1/B (T-1)

 0.40 K
 0.75 K
 0.83 K
 1.06 K
 1.40 K
 1.60 K
 3.00 K
 4.00 K
 8.00 K
 15.0 K
 25.5 K
 34.6 K

-30

-20

-10

0

10

20

Δ
R

 (m
Ω

)

0.080.070.060.050.040.03
1/B (T-1)

 3.6 K
 5.2 K
 8.0 K
 14 K
 22 K
 31 K
 40 K

1.0

0.8

0.6

0.4

0.2

0.0

Am
pl

itu
de

 (
a.

u.
)

403020100

T (K)

Measurement 1

Measurement 2

m1
*= 0.2 m0

 (a)

 (b)

FIG. 3: (Color online) ∆R vs.1/B (withB applied perpendicular
to the sample surface) at temperatures from 0.4 to 40 K, for two
different measurements, as explained in the main text. Inset of
(b): Amplitude of the F1 oscillation at B = 0.037 T−1 (symbols)
and a fit to Lifshitz-Kosevich formula.

ωp =
√
nee2/m∗ε0 = 1750 cm−1 and the scattering rate

1/τ = 180 cm−1.
On the one hand, if we consider the carrier concentra-

tion as determined from the Hall effect, which was identi-
cal with that resulting from the larger SdH oscillation fre-
quency F2, then ωp gives for the effective mass of the bulk
the value m∗ ≈ 0.27m0. On the other hand, if were to as-
sign ωp to the lower frequency F1, then the resulting effec-
tive mass would disagree by almost an order of magnitude
with that determined above from the Lifshitz-Kosevich for-
mula. Therefore, it is more likely that the higher frequency
F2 originates from the same bulk conduction band that
dominates the optical response. Furthermore, if this is the
case, it makes even more unlikely that F1 originates from
the surface. First, let us recall that its Fermi momentum is
much smaller than that measured previously for the surface
states. Second, a smaller pocket for the surface than bulk is
contradictory to both previous theoretical and experimental
findings for the band structure of BiTeCl[3, 9].

In conclusion, we have observed two SdH oscillations
in our magnetoresistance data. Both originate from bulk
Fermi sheets. The most likely scenario for BiTeCl is that
they correspond to the inner and outer Fermi sheets of the
Rashba spin-split bulk conduction band, as sketched in the
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FIG. 4: (Color online) (a) R(ω) at T = 300 K (red symbols)
and a Drude-Lorentz fit (dashed dotted black line) of BiTeCl.
(b)Main panel: Real part of optical conductivity σ(ω) obtained
from Kramers-Kronig analysis (blue symbols) and the Drude-
Lorentz fit (dashed dotted orange line). Inset: Optical transmis-
sion of sample at room temperature and 28 K. The arrows indicate
the onset of the semiconducting gap.

inset in the upper panel of Fig. 1. In this case, according to
the geometry illustrated in this diagram, we can determine
the bulk Rashba momentum kR, as kR = (kout − kin) /2,
where kout = k2, the Fermi momentum of the outer band
and kin = k1, the momentum of the inner band, respec-
tively. We find kR = 0.012 Å−1, which suggests that
the Rashba momentum in BiTeCl is smaller by a factor
of about 4.5 than that of BiTeI. The precise origin for the
strong suppression of the amplitude of the higher SdH os-
cillation with temperature remains unknown. We suggest
the possibility of oscillation beating between the two fre-
quencies. Higher magnetic field experiments may help elu-
cidate the question.
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Note: While preparing our manuscript, we became
aware of the posting of a similar work. Reference [17] as-
signs the SdH oscillations to the surface states. However,
here we provide compelling evidence in this work, taken at
higher magnetic fields and lower temperatures, that the os-
cillations originate from the bulk Fermi surface of BiTeCl.
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