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A new quantum Monte Carlo (QMC) method that combines the second-order many-body perturbation theory

and Monte Carlo (MC) integration has been developed for correlation and correlation-corrected (quasiparticle)

energy bands of one-dimensional solids. The sum-of-product expressions of correlation energy and self-energy

are transformed, with the aid of a Laplace transform, into high-dimensional integrals, which are subject to

a highly scalable MC integration with the Metropolis algorithm for importance sampling. The method can

compute correlation energies of polyacetylene and polyethylene within a few mEh and quasiparticle energy

bands within a few tenths of an eV. It does not suffer from the fermion sign problem and its description can be

systematically improved by raising the perturbation order.
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Energy bands, observable by angle-resolved photoemis-

sion spectroscopy, are central to characterizing a solid and

have been the main concern of solid-state physics. Density-

functional theory is well documented to be unreliable1 and

many-body methods such as the GW methods2 and many-

body perturbation theory (MBPT)3 are needed for their ac-

curate prediction. However, they inevitably involve large ten-

sor contractions, which are fundamentally nonscalable with

respect to both system size and computer size. Stochastic

methods such as those in quantum Monte Carlo (QMC)4,5 are

intrinsically more scalable, but they have difficulty in calcu-

lating energy differences owing to the noise in total energies

and unknown nodal structures of excited and ground states

(the fermion sign problem). QMC thus cannot easily compute

energy bands as continuous functions of k.

Here, capitalizing on our recent work on molecules,6–9 we

report a method that combines second-order MBPT with the

Møller–Plesset partitioning of the Hamiltonian (MP2) and

a stochastic algorithm for energies and quasiparticle energy

bands of one-dimensional solids. It inherits the systematic,

converging nature of MBPT and a scalable and easily imple-

mented Metropolis algorithm of the Monte Carlo (MC) in-

tegration. We rewrite each of the diagrammatic expressions

of these quantities from an extremely long sum-of-product of

lower-dimensional integrals into a single high-dimensional in-

tegral using a Laplace transform, which is then evaluated by

an MC method. Quasiparticle energies are obtained directly as

stochastically integrated self-energies and not as small differ-

ences between noisy total energies. No assumed nodal struc-

ture of a wave function is needed. The resulting method, ex-

tensible to higher orders of MBPT,9 is thus a new branch of

QMC and may be called Brueckner–Goldstone QMC.

Our work is, therefore, in the same spirit as recent intense

efforts by others10–13 that “wed” ab initio molecular orbital

theory with stochastic algorithms. However, ours stands apart

in the following respects: (1) Walkers in our method roam

around in real space as opposed to configuration space and

there is no need for any molecular integrals in any basis,

which are expensive to compute. The transformation of these

integrals from the atomic-orbital (AO) to crystal-orbital (CO)

basis, whose cost scales as the fifth power of system size, con-

stitutes the computational bottleneck of MP2, which is elimi-

nated entirely in our method; (2) It is thus fundamentally more

efficient than the others and can be applied to large molecules

and solids; (3) It can compute quasiparticle energy bands and

correlation energies on an equal footing; (4) It shares with

some of these methods the advantage that there is no fermion

sign problem. However, this comes at the expense of having a

bias (from the exact result) and, at higher orders, the bias will

be reduced, but the sign problem will likely be reintroduced.

The second-order correction to the Hartree–Fock (HF) en-

ergy per unit cell of a one-dimensional solid14–16 is
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where ǫpkp
is the HF orbital energy of the state in the pth band

and wave vector kp and K is the number of evenly spaced wave

vector sampling points in the Brillouin zone (BZ). Each wave

vector is confined within the first BZ, 0 ≤ kp < 2π/l, where l

is the lattice constant, and only three of the four wave vectors

are linearly independent because kb = ki + k j − ka + 2nπ/l (n

is an integer) owing to the momentum conservation law.

The two-electron integral is given by
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where r12 = |r1 − r2|, ϕpkp
(r) is the CO spanning 2M + 1 unit

cells, χµ(m)(r) is the µth AO in the mth unit cell, and C
µ

pkp
is the

CO expansion coefficient. The summations over the unit-cell

indices are truncated at the short- (S ) and long-range (L) cut-

offs in accordance with the logic analogous to the one under-

lying the Namur cutoff criterion.17 The two-electron integral

displays the O(K−1) dependence.

In the diagonal and adiabatic approximations to the

self-energy, the second-order correlation-corrected orbital

energy14–16 is given by
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A plot of ǫ
(2)

pkp
as a function of kp is the quasiparticle energy

bands. They are reliable when

ǫHOCO − Eg < ǫpkp
< ǫLUCO + Eg, (11)

where Eg = ǫLUCO − ǫHOCO and HOCO and LUCO stand for

the highest occupied CO (valence band edge) and lowest un-

occupied CO (conduction band edge) of the HF theory, re-

spectively. However, they tend to display signs of divergence

outside this domain as the denominators in Eqs. (7)–(10) can

become zero.

Here, we propose a transformation of each of the above

sum-of-product matrix equations of MP2 into the form that

lends itself to a more scalable MC integration, that is, a single

high-dimensional integral. Using the Laplace transform,18
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one can interchange the order of summations and integrations

to rewrite Eq. (2) into a 16-dimensional integral,
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with
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Equation (3) for E(B) can be likewise written as a single inte-

gral.

Equation (14) illustrates how the 16-dimensional integral

of Eq. (13) can be evaluated by an MC method as a sum of

the ratios of the modified integrand f̃A to the weight function

w at sampling points {r
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} distributed randomly

but according to the weight function w. Here, N is the number

of MC sampling points or steps and f̃A is the integral of fA
over ki, k j, and ka using a mixed quadrature-MC method (see

below) and over τ evaluated by the 21-point Gauss–Kronrod

quadrature,19
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where τm and wm are the coordinate and weight of the mth

Gauss–Kronrod grid point and kb is determined by the mo-

mentum conservation law. It is readily verified that E(A) (en-

ergy per unit cell) scales as O(K0) and is thermodynamically

intensive.

The weight function is the product,

w(r1, r2, r3, r4)

= w(r1, r2)w(r3, r4), (19)

with
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where ρ(m) is the electron density of the mth unit cell or, more

preferably, the sum of diffuse s-type Gaussian-type orbitals

centered in the mth unit cell; the diffuseness causes oversam-

pling, which is less harmful than undersampling. In either

case, the weight function is nonnegative and J can be evalu-

ated analytically.20
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One of the self-energy diagrams [Eq. (7)] can be expressed

as a single 15-dimensional integral,
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Note that this transformation is valid if and only if the denom-

inator in the left-hand side is negative and this is guaranteed

by the condition of Eq. (11).

The other three terms in Eq. (6) are likewise converted into

single integrals, which are subject to an MC integration. As

suggested by Eq. (23), the above integral can be evaluated us-

ing the same weight function as Eq. (19). Hence, f̃C is given

by

f̃C =
l2

(2π)2

"
dk jdka

∫ ∞

0

dτ fA(. . . , k j, ka, τ)

≈

K
∑

j=1

K
∑

a=1

21
∑

m=1

wm fC

(

. . . ,
2π

l

j

K
,

2π

l

a

K
, τm

)

. (26)

Self-energy Σ
(C)

pkp
scales as O(K0) as it should.

The algorithm consists of three steps: (1) Electron walker

pairs are propagated using the Metropolis algorithm accord-

ing to the weight function w(r1, r2) defined by Eq. (20). The

number of pairs is two at minimum ({r1, r2} and {r3, r4}), but

much more than two (say, m) are used in practice to adopt the

redundant-walker algorithm,8 which increases the sampling

efficiency by O(m). (2) When the Metropolis move is ac-

cepted, CO’s and other factors in the integrands are evaluated

at the walker pair coordinates, a set of k’s and τ’s. In this par-

ticular implementation, the values of k j and ka are randomly

distributed on an evenly spaced grid with K points, while ki

and kp go over all K points. The integration over ki, there-

fore, uses the trapezoidal rule and those over k j and ka an MC

method with the number of (k j, ka) per step being just one.

In this way, the correlation and self-energy calculations can

share intermediate data. (3) The integrands are evaluated and

accumulated into I
(A)

N
, etc. The statistical uncertainty (σ) in

the MC-evaluated E(A) is then estimated by

σ2 =
1

N(N − 1)

N
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N

}
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TABLE I. The second-order correlation corrections (E(2)) per C2H2

or C2H4 unit cell to the HF energies of polyacetylene and polyethy-

lene and associated statistical uncertainties (σ) in Eh. The number

of MC steps (N) is 5 × 106, the number of redundant walker pairs

(m) is 15, the number of k points (K) is 20, S = 4, and L = 2. The

geometries are taken from Ref. 22.

System Method E(2) σ

Polyacetylene MP2/6-31G −0.1728 · · ·

Polyacetylene MC-MP2/6-31G −0.1783 0.0036

Polyethylene MP2/6-31G −0.1827 · · ·

Polyethylene MC-MP2/6-31G −0.1807 0.0065

and similarly for other quantities; this formula, however, un-

derestimatesσ.21 Clearly, the whole process can be easily and

efficiently parallelized.8

Figure 1 shows the convergence of the MP2 correlation en-

ergy of an infinitely extended chain of polyacetylene under

the periodic boundary condition using the MC method (MC-

MP2). Two s-type Gaussian-type orbitals per atom are used

as the weight function with S = 4, L = 2, 15 redundant walker

pairs, and 20 k points. A smooth convergence to the correct

deterministic value of the correlation energy is observed, with

the expected N−1/2 falloff of the statistical uncertainty (σ).

The numerical values at N = 5 × 106 are compiled in Table I

for polyacetylene and also for polyethylene. The data confirm

that MC-MP2 reproduce the correct results for two systems

within a few mEh and 3σ.

Figure 2 compares the correlation-corrected (i.e., quasipar-

ticle) energy bands calculated from MP2 and MC-MP2 for

polyacetylene and polyethylene. HF energy bands are also

superimposed merely to emphasize the importance of electron

correlation; band gaps and widths are exaggerated in HF, as is

well known. For polyacetylene (the left panel), the MC-MP2

results for HOCO and LUCO are rapidly convergent and fall

nearly exactly on the MP2 energy bands. The statistical uncer-

tainties are a few tenths of an eV. For polyethylene (the right

panel), HOCO, LUCO, and two higher and lower lying bands

are computed by MC-MP2 to demonstrate that the method

works not just for the valence and conduction bands, which

are treatable by electron addition or subtraction in QMC,23 but

also for higher- or lower-lying bands. In this case, the occu-

pied bands obtained by MC-MP2 are rapidly converged and

in accurate agreement with the deterministic results as well

as with the experimental data (but not with the HF results).

On the other hand, the conduction band obtained by MC-MP2

near k = π/l suffers from larger statistical uncertainties, while

there seem no evidence of a bias (from the deterministic MP2

results).

Diffusion Monte Carlo (DMC) has been applied to excited

states with assumed nodal structures to compute band gaps24

and energy bands at some points in BZ.25 A new QMC method

for excited states, dubbed correlation function QMC,26 has

been developed. Auxiliary-field QMC (AFQMC), using an

excited-state determinant as an auxiliary field, has also been

successful in obtaining band gaps.27 They have difficulty ob-

taining bands as continuous functions of k. As compared with
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these, MC-MP2 is capable of computing parameters at any k

point and any energy band [within the constraint of Eq. (11)]

without a case-by-case definition of excited-state wave func-

tion structures. Conversely, MC-MP2 is farther from exact-

ness than DMC or AFQMC, though MC-MP2 has the ad-

vantage of being systematic.9 The fourth-order MP method is

known to be generally as accurate as the coupled-cluster sin-

gles, doubles, and non-iterative triples [CCSD(T)] method28,

which is widely used for molecular property predictions. The

MP method at any order is inapplicable to metals, however.

In summary, this article has reported a new QMC method

that combines MBPT and an MC integration and can com-

pute MP2 correlation energy and quasiparticle energy bands

of a one-dimensional solid. Unlike the deterministic MBPT or

MP2, its algorithm does not involve numerous tensors (molec-

ular integrals) or their contractions, which are fundamentally

nonscalable with respect to both computer and system sizes.

Unlike QMC, MC-MP2 can calculate energy differences (cor-

relation energies and energy bands) directly and is system-

atically improvable toward exactness in principle. MC-MP2

does not suffer from the fermion sign problem, but as a trade-

off with introducing an inevitable bias.

S.Y.W. and S.H. have been supported by U.S. Depart-

ment of Energy SciDAC program (DE-FG02-12ER46875)

and by Japan Science and Technology Agency CREST pro-

gram. S.Y.W. and K.S.K. have been supported by Korean Na-

tional Research Foundation (National Honor Scientist 2010-

0020414) and by Korea Institute of Science and Technology

Information (KSC-2011-C3-020). S.H. is a Camille Dreyfus

Teacher-Scholar and a Scialog Fellow of the Research Corpo-

ration for Science Advancement.

∗ sohirata@illinois.edu
1 F. Bechstedt, F. Fuchs, and G. Kresse, Phys. Status Solidi B, 246,

1877 (2009).
2 G. Onida, L. Reining, and A. Rubio, Rev. Mod. Phys., 74, 601

(2002).
3 R. J. Bartlett, Ann. Rev. Phys. Chem., 32, 359 (1981).
4 D. M. Ceperley, Rev. Mod. Phys., 67, 279 (1995).
5 W. M. C. Foulkes, L. Mitas, R. J. Needs, and G. Rajagopal, Rev.

Mod. Phys., 73, 33 (2001).
6 S. Y. Willow, K. S. Kim, and S. Hirata, J. Chem. Phys., 137,

204122 (2012).
7 S. Y. Willow, K. S. Kim, and S. Hirata, J. Chem. Phys., 138,

164111 (2013).

8 S. Y. Willow, M. R. Hermes, K. S. Kim, and S. Hirata, J. Chem.

Theo. Comput., 9, 4396 (2013).
9 S. Y. Willow and S. Hirata, J. Chem. Phys., 140, 024111 (2014).

10 S. Zhang and H. Krakauer, Phys. Rev. Lett., 90, 136401 (2003).
11 A. J. W. Thom and A. Alavi, Phys. Rev. Lett., 99, 143001 (2007).
12 Y. Ohtsuka and S. Nagase, Chem. Phys. Lett., 463, 431 (2008).
13 D. Neuhauser, E. Rabani, and R. Baer, J. Chem. Theo. Comput.,

9, 24 (2013).
14 S. Suhai, Phys. Rev. B, 27, 3506 (1983).
15 J.-Q. Sun and R. J. Bartlett, Phys. Rev. Lett., 77, 3669 (1996).
16 S. Hirata and T. Shimazaki, Phys. Rev. B, 80, 085118 (2009).
17 J. Delhalle, L. Piela, J. L. Brédas, and J.-M. André, Phys. Rev. B,
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18 J. Almlöf, Chem. Phys. Let., 181, 319 (1991).
19 A. S. Kronrod, Nodes and weights of quadrature formulas.

Sixteen-place tables (Consultants Bureau, New York, 1965).
20 S. Obara and A. Saika, J. Chem. Phys., 84, 3963 (1986).
21 H. Flyvbjerg and H. G. Petersen, J. Chem. Phys., 91, 461 (1989).
22 T. Shimazaki and S. Hirata, Int. J. Quantum Chem., 109, 2953

(2009).
23 P. R. C. Kent, R. Q. Hood, M. D. Towler, R. J. Needs, and G. Ra-

jagopal, Phys. Rev. B, 57, 15293 (1998).
24 L. Mitas and R. M. Martin, Phys. Rev. Lett., 72, 2438 (1994).

25 A. J. Williamson, R. Q. Hood, R. J. Needs, and G. Rajagopal,

Phys. Rev. B, 57, 12140 (1998).
26 D. M. Ceperley and B. Bernu, J. Chem. Phys., 89, 6316 (1988).
27 F. J. Ma, S. W. Zhang, and H. Krakauer, New J. Phys., 15, 093017

(2013).
28 R. J. Bartlett and M. Musiał, Rev. Mod. Phys., 79, 291 (2007).
29 N. Ueno, K. Seki, N. Sato, H. Fujimoto, T. Kuramochi, K. Sugita,

and H. Inokuchi, Phys. Rev. B, 41, 1176 (1990).


