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We develop an analytic approach to two-dimensional (2D) holes in a magnetic field that allows
us to gain insight into physics of measuring the parameters of holes, such as cyclotron resonance,
Shubnikov-De Haas effect and spin resonance. We derive hole energies, cyclotron masses and the
g-factors in the semiclassical regime analytically, as well as analyze numerical results outside the
semiclassical range of parameters, qualitatively explaining experimentally observed magnetic field
dependence of the cyclotron mass. In the semiclassical regime with large Landau level indices, and
for size quantization energy much bigger than the cyclotron energy, the cyclotron mass coinsides
with the in-plane effective mass, calculated in the absence of a magnetic field.The hole g-factor in a
magnetic field perpendicular to the 2D plane is defined not only by the constant of direct coupling
of the angular momentum of the holes to the magnetic field, but also by the Luttinger constants
defining the effective masses of holes. We find that the g-factor for quasi 2D holes with heavy mass
in the [001] growth direction in GaAs quantum well is g = 4.05 in the semiclasssical regime. Outside
the semiclassical range of parameters, holes behave as a species completely different from electrons.
Spectra for size- and magnetic–field-quantized holes are non-equidistant, not fan-like, and exhibit
multiple crossings, including crossing in the ground level. We calculate the effect of Dresselhaus
terms, which transform some of the crossings into anticrossings, and the effects of the anisotropy
of the Luttinger Hamiltonian on the 2D hole spectra. Dresselhaus terms of different symmetries
are taken into account, and a regularization procedure is developed for the k3z Dresselhaus terms.
Control of the non-equidistant levels and crossing structure by the magnetic field can be used
to control Landau level mixing in hole systems, and thereby control hole-hole interactions in the
magnetic field.

PACS numbers: 71.70.Ej, 76.40.+b, 76.30.-v , 78.67.-n

I. INTRODUCTION

In recent years, investigation of physical phenomena associated with symmetry and topology lead to remarkable
developments in condensed matter and atomic physics, and several of these phenomena are due to the exquisite proper-
ties of spin-orbit interactions. Among the most interesting effects are realizations of Majorana fermions in solid state
and atomic systems1,2, realization of spin-orbit Bose-Einstein Condensates3, transport in topological insulators4,5,
long spin coherence in quantum bit systems6,7, and spin-orbit interference effects8. One of the intriguing systems
with extraordinarily strong spin-orbit interactions is valence band charge carriers (holes) in III-V, II-VI and silicon
and germanium structures, where many of these topological, coherence and interference phenomena can manifest
themselves.

The valence band spectrum, with its remarkable spin 3/2 heavy and light branch structure, are known to lead to
many spectacular phenomena in semiconductor physics since the 1950th, when understanding the hole spectrum had
been a triumph of theory of symmetry of crystals. Low dimensional holes have been investigated since the 1970th,
and many signature phenomena, such as the quantum Hall effect9, Shubnikov-De Haas oscillations10,11, magnetic
focusing12, metal-insulator transition13, weak localization and antilocalization in electric transport14,15, and various
resonance and optical phenomena16 have been studied. Despite considerable effort, detailed understanding of hole
systems remains a challenge. Many questions that for the world of conduction electrons in (2D) two dimensions have
been long resolved, such as effective masses of charge carriers and their spin splitting in a magnetic field, still pose
problems and remain controversial when it comes to 2D charge carrier holes.

Having in mind the long-term goal of finding new topological and correlated phenomena in charge carrier hole and
related systems, it is important to understand in what conditions we can think of holes as reminiscent of electrons, and
when holes behave as a completely different species. Although a certain understanding that holes are different exists
already, we will show here that the reality is much more dramatic than realized to date. Specifically, we will investigate
the spectrum of 2D hole systems in perpendicular magnetic fields, and, besides numerical study, will develop a fully
analytic approach to 2D holes in a magnetic field that will allow us to gain insight into physics of measuring the
parameters of holes, such as cyclotron resonance, Shubnikov de Haas effect and spin transport spectroscopy or spin
resonance.

Understanding spectroscopic experiments in two dimensional hole structures, and the parameters extracted from
those experiments, is important for the following reasons. First, two-dimensional systems themselves can potentially
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FIG. 1: Schematic representation of the transformation of heavy holes (1) into heavy holes (2) and light holes (3) upon reflection
from the quantum well interface.

be used for making experimental settings, in which new topological objects such as, e.g., Majorana fermions would
manifest themselves. Properties of some of these settings may directly be related to values of effective two-dimensional
g-factors, masses, and effective spin-orbit constants. The problem arises: which values of the parameters of 2D hole
gas, and which regimes of experiments that measure these parameters should be the basis of modeling these new
topological objects. Second, two-dimensional systems serve as a starting point for many theoretical considerations
of 1D and 0D objects, quantum dots and wires, which in turn can be used to design systems with quantum bits
and various spintronic devices. The problem is, what are the parameters that should be used in those models, and
how are they related to parameters obtained from spectroscopic measurements in 2D structures. We will see that
simplified models of 2D hole systems17–26 have to be adjusted in order to capture the true nature of holes. Third,
our understanding of particle interactions, and the possibilities to control these interactions is often based on an
understanding of single-particle properties. It is therefore of utmost importance to be able to extract ingredients for
models of interactions from spectroscopic experiments.

The most important spectroscopic data is the energy level splitting, the resulting cyclotron mass, the resulting
g-factor characterizing spin splitting, and additional, e.g, spin-orbit, spectral constants. Several researchers have
used numerical simulations of 3D holes to obtain quasi 2D hole spectra, see, e.g.,27–31. However, the results of these
simulations, although quite illuminating, often fail to explain experimental data even qualitatively31. An example of
the most obvious and important question that arises is how the cyclotron mass is related to the effective 2D ”band”
mass? Our analytical consideration presented in this paper points to the solution of this and similar questions. We will
show that the cyclotron mass in the semiclassical regime is exactly the in-plane band mass. We will also demosntrate
why in most cases the cyclotron mass is continuous and does not change when the integer part of the number of
filled hole levels changes in magnetic field. Furthermore, our numerical approach allows us to shed light on what spin
levels are coupled by a.c. magnetic field in various regimes. We will derive an analytical expression, besides numerical
calculation, for the g-factor of holes. Contrary to a wide-spread belief32, the g-factor of 2D holes in a magnetic field
in the growth direction is not defined exclusively by a constant that couples the angular momentum of the hole to
the magnetic field, but also depends on constants describing the orbital motion.

How does one approach the problem of holes in two dimensions? The celebrated Γ8 valence band Luttinger
Hamiltonian33 near the center of the Brilloine zone Γ in bulk crystals is given by

HL
h̄2

2m0

(γ1 +
5

2
γ2

)
k̂2I − 2γ2

∑
i

k̂2
i J

2
i − 4γ3

∑
i>j

k̂ik̂jJiJj

 , (1)

where k is the wavevector, m0 is the free electron mass, γ1, γ2 and γ3 are Luttinger constants describing the hole
spectrum, i, j = x, y, z are principal axes of the underlying semiconductor system with x||[100], Ji are the 3/2 angular
momentum matrices, I is the identity matrix. We will consider quantum wells in semiconductor structures quantized
in the z-direction, i.e. grown along crystalographic direction [001].

Why is there a significant difference between 2D electrons and holes? While for bulk charge carriers the answer
is transparent, simplified models in the 2D case treat 2D holes almost identically to 2D electrons. For conduction

electrons with the Hamiltonian He = h̄2

2me
k̂2, where me is the effective electron mass, the transition to the effective

electron Hamiltonian in two dimensions follows simple steps. First, one finds the wavefunctions of the size quantized
levels in the direction of quantization, e.g., ψ(z) =

√
2/π cosπz/L for the ground level in an infinite rectangular

quantum well of width L with boundaries −L/2 and L/2, and then projects the Hamiltonian integrating over z
direction. If the electron Hamiltonian contains, e.g, the Dresselhaus term Hso = h̄/2

∑
i σipi(p

2
i+1 − p2

i+2), then
the common procedure for obtaining the effective 2D electron Hamiltonian is to discard the terms linear in kz,
because < kz >= 0, where <> denotes integrating over z, and retain terms independent of z and quadratic in kz,
using the identity < k2

z >= (π/L)2 for the ground quantization level. Numerous studies of the past decade or so
follow the same prescriptithe non-triviality ofon in order to obtain the 2D effective hole Hamiltonian from the bulk
Hamiltonian (1) , dropping terms containing < kz > and keeping terms independent of kz and terms with k2

z .
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The simple resulting picture in the leading approximation is the ground state hole Hamiltonian H = h̄2

2mW
k̂2, where

mW = m0/(γ1 + γ2) is the 2D hole mass in an such approach32. That is, 2D holes are treated very similarly to 2D
electrons. However, this approach, valid for electrons, turns out to be incorrect in the case of holes. The crucial
feature of the hole Hamiltonian (1) are terms linear in kz and linear in the in-plane momentum. As we now illustrate,
these terms contribute critically to the effective mass. Their inclusion is also crucial to the evaluation of the other
parameters of 2D holes. Furthermore, what makes the situation non-trivial is that calculating the hole parameters
within the framework of perturbation theory, it is necessary to take into acccount an infinite number of contributing
terms. Indeed, the off-diagonal operators, e.g., {JxJz}kxkz have nonzero matrix elements between simplified basis
functions describing different levels of size quantization, ψh1 = cosπx/L(1, 0, 0, 0) and ψl2 = cos2πx/L(0, 1, 0, 0), with
< h1|{JxJz}kxkz|l2 >∝ kx/L, where |h1 > is the ground state in the z− direction with heavy mass and |l2 > is the
first excited state for holes in the z− direction with light mass. The second order perturbation correction to energy
δE = | < h1|{JxJz}kxkz|l2 > |2/(Eh1 − El2) is proportional to the in-plane k2 and does not contain L , because the
energy separationEh1−El2 ∝ (1/L2). Therefore such a second order contribution to the effective mass is as important
as the first order mW itself. Moreover, such an off-diagonal operator has non-zero matrix elements between the h1
state and |l4 >, |l6 >, ..., |l(even) > states, such that all second order ”corrections” have the same order of magnitude,
and finding the effective mass requires the summation of an infinite number of terms, which are parametrically the
same.

To obtain correct results for parameters of 2D holes in the Luttinger model (1), instead of the simplified approach,
we advance a non-perturbative solution to the problem. Energies of 2D holes in a non-perturbative approach were in
fact found as early as 1970 by Nedoresov34. The essence ofsuch a non-perturbative approach for holes is taking into
account of the mutual transformation of heavy and light holes upon reflection from the walls of the quantum well35,36,
see Fig. 1. Explicit expressions for the wavefunctions in the absence of the magnetic field were found in35 where
interband optical transitions were studied. In the wavefunctions, instead of a single standing wave in quantization
direction, as is case for electrons and simplified treatment of holes, two standing waves, one for z−direction heavy holes
and one for z− direction light holes generally characterize every component of the wavefunction spinors. Recently,
one of the authors of the present article used the non-perturbative approach for calculating hole spin decoherence
times in quantum dots at zero magnetic field37.

The non-perturbative approach is central to our present study of 2D holes in a perpendicular magnetic field. We
will see that the magnetic field spectra and wavefunctions of the holes reveal new features arising from mutual
transformations of heavy and light carriers and strong spin-orbit effects. The key difference of holes from electrons is
as follows: while electrons are characterized by a Landau ”fan” of levels, each level being spin split due to the Zeeman
effect, arising from the in-plane Hamiltonian in a magnetic field HB

e = h̄2(k − eA/h̄c)2/2me + gµσ ·B, the spectra
of holes in a magnetic field generally cannot be described by a procedure that starts with the in-plane Hamiltonian
and a full three-dimensional treatment is required. We shall see that for low-lying levels, there is no Landau fan for
Luttinger holes and there are multiple crossings of levels as seen in Fig.2, left panel. In the right panel we show
the traditional electron Landau fan spectrum with small spin splitting of Landau levels characteristic of electrons in
GaAs. Our analytical approach will demonstrate that only in a very narrow region of parameters, for high Landau
indices and hole in-plane energies much smaller then the energy of size quantization of the holes, do holes resemble
electrons. Their semiclassical spectra are obtained via a similar procedure to that for electrons, but the cyclotron and
effective mass and the g-factor are strongly influenced by mutual transformation of heavy and light holes in reflection
from the quantum well walls.

Our ultimate goal is to consider the hole-hole interactions, but in order to put a reasonable limit to the size of this
paper, we will devote a separate paper to interaction effects. Both the Hartree and exchange terms are important in
a treatment of the hole-hole interactions, and we will treat them on equal footing. The scope of the present paper is
restricted to the single-particle spin-orbit phenomena. The electron-phonon interactions, which are known to modify
the quasi-particle spectra near the crossing of Landau levels belonging to a different size-quantization subbands, and
used to probe many-body gaps in electron magnetic spectra38,39, are also beyong the scope of the present work.

The paper is organized as follows: the Luttinger Hamiltonian and its general solution in a magnetic field perpen-
dicular to the plane of the 2D hole gas are introduced in Section II, the semiclassical approximation is described in
Section III, semiclassical spectra and numerically calculated spectra are presented in Section IV. Particular attention
is paid to the effective mass in Section V, and to the Landè factor in Section VI. We analyse the effects of Dresselhaus
interactions, arising from the absence of a center of spatial inversion in bulk materials and the effects of anisotropy of
2D hole spectra in Section VII. In Section VIII, we simulate the pattern of Shubnikov de-Haas oscillations. Evaluation
of certain integrals, questions of boundary conditions and regularization of the k3

z Dresselhaus spin-orbit interactions
are relegated to the appendices.
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FIG. 2: Comparison of the electron and hole spectra in a magnetic field. Left panel: fragment of the energy spectrum of GaAs
holes with n ≤ 3 in a quantum well of 250Å for the two lowest size quantization levels of z−direction heavy holes, and one size
quantization level of z−direction light holes; only the Luttinger Hamiltonian terms are included. Right panel: electron Landau
levels with small Zeeman splitting in GaAs.

II. HAMILTONIAN AND WAVEFUNCTIONS FOR QUASI TWO-DIMENSIONAL HOLES

The single particle problem of valence band electrons in a III-V, II-VI, or Si-Ge system semiconductor in the
presence of magnetic field is described by the Hamiltonian33

Ĥ0 =
h̄2

2m0

[(
γ1 +

5

2
γ2

)
k̂2I − 2γ2(k̂2

xJ
2
x + k̂2

yJ
2
y + k̂2

zJ
2
z )−

− 4γ3

(
{k̂x, k̂y}{Jx, Jy}+ {k̂y, k̂z}{Jy, Jz}+ {k̂z, k̂x}{Jz, Jx}

)]
+

eh̄

m0c

[
κJ ·B + q0

(
J3
xBx + J3

yBy + J3
zBz

)]
. (2)

Throughout the paper we will primarily express variables in dimensionless units: x, y and z are the coordinates

divided by the magnetic length (` =
√

h̄c
eB ), energies will be expressed in terms of the bare cyclotron energy h̄ωc = h̄eB

m0c
,

where m0 is the bare electron mass, and the wavectors magnitude is made dimensionless by multiplying it with

magnetic length. Then the operators k̂i are:

k̂i = −i∂i +
e`Ai
h̄c

, i = x, y, z , (3)

where ~A is the vector potential. They satisfy the commutation relationship [k̂x, k̂y] = i. Writing down Eq. (2) in

magnetic field with only symmetric combinations of {k̂i, k̂j} and {Ji, Jj} , we skip the product of antisymmetric

combinations of [k̂i, k̂j ] and [Ji, Jj ] = iJkεijk, where εijk is the unit antisymmetric tensor, arising from the zero
magnetic field Luttinger Hamiltonian (1). Doing this, we follow the tradition33 to account for such antisymmetric
combinations in Eq. (2) through the term proportional to the constant κ, which therefore already describes not only
the direct Zeeman effect, but also an additional contribution arising from the orbital motion. However, we will see
that even the remaining symmetric orbital terms that couple the orbital angular momentum and momentum in Eq.
(2) result in spin splitting of the hole states in a magnetic field.

The system of interest is the 2D hole gas in a GaAs/AlGaAs quantum well in the presence of a magnetic field
~B = −Bẑ, ẑ is a unit vector perpendicular to the plane of the well. We find the energy spectrum by solving the
Schrödinger equation H0Ψ = EΨ with the boundary conditions Ψ(x, y,−w) = Ψ(x, y, w) = 0, where w = L/(2`), and

use the Landau gauge ~A = (0,−Bx, 0).
We shall make use of the bosonic operators40:

â† =
k̂x − ik̂y√

2

â =
k̂x + ik̂y√

2
(4)
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satisfying the commutation relation [â, â†] = 1. They act as lowering and rising operators on wavefunctions of free
electrons in a magnetic field:

âun,ky (x) =
√
nun−1,ky (x) , (5)

â†un,ky (x) =
√
n+ 1un+1,ky (x) , (6)

with

un,ky (x) =
in√

2nn!π
1
2

e−
(x−ky)2

2 Hn(x− ky) , (7)

where Hn is the nth order Hermitte polynomial. In terms of these operators, the Luttinger Hamiltonian is:

Ĥ =

[(
γ1 +

5γ2

2

)
I − γ2 {J+, J−}

](
â†â+

1

2

)
+

[(
γ1

2
+

5γ2

4

)
I − γ2J

2
z

]
k̂2
z − κJz − q0J

3
z

−
√

2γ3k̂z
(
â†{J+, Jz}+ â{J−, Jz}

)
− γ2 + γ3

4

[
(â†)2J2

+ + â2J2
−
]
− γ2 − γ3

4

[
(â†)2J2

− + â2J2
+

]
, (8)

where J± = Jx± iJy. The first term contributes to the cyclotron motion, the second describes the z-direction motion,
the next two are Zeeman-like terms, all of these resembling the corresponding features in electron systems. The
fourth and fifth terms are non-diagonal terms describing coupling between spin and orbital motion. The fourth term
couples the in-plane motion with motion in the direction of the quantization axis z, and, besides that, couples holes
with light and heavy masses in the z-direction. This is the term that results in mutual transformation of heavy and
light holes upon reflection from the walls of the quantum well. As we have discussed in the introduction, this term
results in a contribution to the kinetic energy of the same order of magnitude as the first term in (7 ), and essentially
requires a non-pertubative treatment. We will also show that in a magnetic field the fourth term results in a sizable
Zeemann splitting of holes. The fifth term couples in-plane motion of holes with heavy mass in the z-direction with
angular momentum ±3/2 with in-plane motion of the z-direction light holes with opposite sign angular momentum
projection, ∓1/2. The last term in Hamiltonian (7) contributes to the warping of the hole spectra. This term vanishes
if γ2 = γ3. In what follows, we will be able to treat the first five terms ”exactly” and the last term will be taken
into account via (degenerate) perturbation theory. However, interesting enough, the fourth term in (8) that we use in
analytical calculations, still contains the constant γ3, and that will allow us to capture most of important anisotropic
features, associated with the coupling of longitudinal and transverse motion in [001] grown quantum wells even before
accounting for the last term.The only approximation used in our analytical approach is the form of the fifth term for
the coupling of in-plane motion of different species of holes that contains the combination of contants γ2 + γ3 and the
corresponding operator instead of the actual combination of operators, the rest of which is included in small γ2 − γ3

term. In the axial approximation, which has been used by researchers to simplify numerical simulations of holes in a
magnetic field31,41, the last term is neglected. In this work, the axial approximation allows us to capture a significant
part ofthe effects of anisotropy analytically, and numerical simulations account for the γ2 − γ3 term.

The eigenfunctions in the axial approximation are presented in the following form:

Ψ{α}(x, y, z) =


ζ
{α}
0 (z)un,ky (x)

ζ
{α}
1 (z)un−1,ky (x)

ζ
{α}
2 (z)un−2,ky (x)

ζ
{α}
3 (z)un−3,ky (x)

 eikyy (9)

where ζ
{α}
i (z)’s are the the envelope functions that have to be determined. Here {α} denotes the set of quantum

numbers that uniquely define the states: Landau level index n describing in-plane orbital motion, subband index
describing spatial quantization along z-direction, and parity symmetry with respect to reflection about the centerwell
plane, or spin. For the cases in which n < 3, the coefficients of negative index functions must be set to be zero. Then
the Schrödinger equation with the general Hamiltonian (8) transforms effectively into an eigenfunction problem for
the envelope functions,

ĤzZ{α}(z) = E{α}Z{α}(z) , (10)

where:

Ĥz =


k̂2
z

2mzh
+ P1 + Z1 Γ1k̂z A1 0

Γ1k̂z
k̂2
z

2mzl
+ P2 + Z2 0 A2

A1 0
k̂2
z

2mzl
+ P2 − Z2 Γ2k̂z

0 A2 Γ2k̂z
k̂2
z

2mzh
+ P1 − Z1

 , (11)
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P1 = (γ1 + γ2)(n − 1), P2 = (γ1 − γ2)(n − 1), mz
h = (γ1 − 2γ2)−1, mz

l = (γ1 + 2γ2)−1, A1 = −γ2+γ3

2

√
3n(n− 1),

A2 = −γ2+γ3

2

√
3(n− 1)(n− 2), Γ1 = −γ3

√
6n, Γ2 = γ3

√
6(n− 2), Z1 = 3(γ1+γ2)

2 − 3κ
2 −

27q0
8 , Z2 = γ1−γ2

2 − κ
2 −

q0
8 .

and

Z{α} =


ζ
{α}
0 (z)

ζ
{α}
1 (z)

ζ
{α}
2 (z)

ζ
{α}
3 (z)

 . (12)

Solutions of Eq. (11) can be easily found. To see this, we present the envelope functions ζ(z) in the following form:

ζ
{α}
i (z) =

∑
qz

λ
{α}
qz,i

e−iqzz . (13)

For every eigenvalue E, there are 8 wavevectors qz that solve the secular equation involving Hz. In general, wavevectors
qz can be complex. It is easy to observe that if qz is a solution of (11) then −qz is also a solution, with

λ
{α;p=1}
−qz,i = (−1)iλ

{α;p=1}
qz,i

, (14)

λ
{α;p=−1}
−qz,i = (−1)i+1λ

{α;p=−1}
qz,i

. (15)

This property allows for classification of states according to their parity with respect to reflection about the centerplane
of the quantum well z = 0 as even in the case (14) and odd in the case (15).

The imposition of the boundary conditions Ψ{α}(x, y, w) = Ψ{α}(x, y,−w) = 0 leads to another set of equations
for the parameters λ:

8∑
j=1

λ
{α}
qj ,i

eiqjw = 0 ,

8∑
j=1

λ
{α}
qj ,i

e−iqjw = 0 , (16)

Equations (11) and (16) fully determine the spectrum. Using the parity property of Eqs. (14,15) we write a general
form of the wavefunction as

Ψn,ky,p(x, y, z) =

4∑
j=1


λn,pqj ,0

(
eiqjz + pe−iqjz

)
un,ky (x)

λn,pqj ,1
(
eiqjz − pe−iqjz

)
un−1,ky (x)

λn,pqj ,2
(
eiqjz + pe−iqjz

)
un−2,ky (x)

λn,pqj ,3
(
eiqjz − pe−iqjz

)
un−3,ky (x)

 eikyy . (17)

We see indeed from Eq. (17) that there are no states characterized by a single standing wave in the z-direction,
except the case of n = 0. All other states contain two standing waves corresponding to holes with light and heavy
masses in the z−direction. This is the consequence of reflection of holes off the boundaries of the quantum well under
oblique incidence, Fig. 1. Heavy holes are transformed into a combination of heavy and light holes, and light holes are
transformed into a combination of light and heavy holes, so that there are no longer “pure” states42. This is a very
important difference from the electronic spectra, where a single standing wave characterizes the z−direction of motion
perpedicular to the 2D plane. The importance of Eq.(17) is that it takes into account the mutual transformation of
carriers with heavy and light masses in the z−direction nonperturbatively, in the presence of a quantizing magnetic
field.

III. SEMICLASSICAL SOLUTION

The Shrödinger equation for holes in a magnetic field is generally an infinite dimensional system of matrix equations.
A general solution of this equation can only be found numerically. However, in the “semiclassical” limit, which will
be precisely defined below, an analytical approach is possible. The Hamiltonian matrix can be divided into “time-
symmetric” and “time-antisymmetric” parts43. In the space of 4 × 4 matrices, the time-reversal symmetric basis
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set is made of the identity matrix I, matices J2
i , and {Ji, J±1}, while the matrices Ji, {Ji, J2

i+1 − J2
i+2}, J3

i , and
1
2 (JxJyJz + JzJyJx) make the time-reversal antisymmetric counterpart.

The time-reversal symmetric part of the Hamiltonian matrix is:

Hs =


k̂2
z

2mzh
+ P1 −Γsk̂z As 0

−Γsk̂z
k̂2
z

2mzl
+ P2 0 As

As 0
k̂2
z

2mzl
+ P2 Γsk̂z

0 As Γsk̂z
k̂2
z

2mzh
+ P1

 (18)

where As = (A1 +A2)/2 and Γs = (Γ2 − Γ1)/2.
The antisymmetric part is:

Ha =


Z1 Γak̂z Aa 0

Γak̂z Z2 0 −Aa
Aa 0 −Z2 Γak̂z
0 −Aa Γak̂z −Z1

 (19)

where Aa = (A1 −A2)/2 and Γa = (Γ1 + Γ2)/2.
We now observe that in the semiclassical limit (n� 1) matrix elements of the operator Hs describing the in-plane

motion of holes are n times bigger than the matrix elements of the operator Ha. This fact allows one to treat the
latter as a perturbation of the former.

A. Solution of the symmetric problem.

We first analyze the Schrödinger equation generated by the symmetric part Hs of the Hamiltonian (18). We notice
that each eigenenergy is realized by four values of the wavevector qz which will be denoted by ±qh and ±ql. We will
call them heavy and light hole wavevectors, although, when warping of the energy surface is considered, it can happen
that all qz correspond to the bulk heavy hole band. Wavenumbers ql and qh are such that |ql| < |qh|. Formally, the
dependence of eigenvalues of the Hamiltonian (18) on qz wavevectors can be written as

En,±0 (qz) = γ1

(
q2
z

2
+ n− 1

)
± 1

4

√
3[(γ2 + γ3)2(n− 1) + 8γ2

3q
2
z ](
√
n+
√
n− 2)2 + 16γ2

2(q2
z − n+ 1)2 . (20)

In Eq. 20 the ± signs correspond to bulk heavy (−) and light (+) hole bands.
The eigenvectors of Sthechrödinger equation will be determined by the Hopfield method35,44, in which the z-envelope

functions are expressed using the following basis set of eigenvectors of Hs: Γsqh
bh
0
−As

 e−iqhz,

 −As
0
bh
−Γsqh

 e−iqhz,

 Γsql
bl
0
−As

 e−iqlz,

 −As
0
bl
−Γsql

 e−iqlz. (21)

Four more vectors are obtained by replacing qh by −qh and ql by −ql. In these expressions bh =
q2
h

2mzh
+ P1 − E,

bl =
q2
h

2mzh
+ P1 − E. The z-envelope functions are linear combinations of these vectors that correspond to standing

wave solutions and are fully determined by imposing the boundary conditions. First, the boundary conditions are
imposed on the 1/2 and −1/2 components resulting in the even eigenfunctions

Zn,ky,10 (z) = Ne


−As

[
cos(qhz)− bh

bl

cos(qhw)
cos(qlw) cos(qlz)

]
+ αeΓs

[
qh cos(qhz)− ql bhbl

sin(qhw)
sin(qlw) cos(qlz)

]
iαebh

[
sin(qhz)− sin(qhw)

sin(qlw) sin(qlz)
]

bh

[
cos(qhz)− cos(qhw)

cos(qlw) cos(qlz)
]

−iΓs
[
qh sin(qhz)− ql bhbl

cos(qhw)
cos(qlw) sin(qlz)

]
− iαeAs

[
sin(qhz)− bh

bl

sin(qhw)
sin(qlw) sin(qlz)

]

 , (22)
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and the odd eigenfunctions

Zn,ky,−1
0 (z) = No


−iAs

[
sin(qhz)− bh

bl

sin(qhw)
sin(qlw) sin(qlz)

]
+ iαoΓs

[
qh sin(qhz)− ql bhbl

cos(qhw)
cos(qlw) sin(qlz)

]
αobh

[
cos(qhz)− cos(qhw)

cos(qlw) cos(qlz)
]

ibh

[
sin(qhz)− sin(qhw)

sin(qlw) sin(qlz)
]

−Γs

[
qh cos(qhz)− ql bhbl

sin(qhw)
sin(qlw) cos(qlz)

]
− αoAs

[
cos(qhz)− bh

bl

cos(qhw)
cos(qlw) cos(qlz)

]

 . (23)

The wavevectors ql and qh and constants αe and αo will be calculated using the remaining boundary conditions on
±3/2 components, while the normalization conditions will provide Ne and No.

From the boundary conditions invoked for 3/2 and −3/2 spin components of the eigenvectors it follows that

τ2 −

[
bl
bh

A2
s

Γ2
sq

2
h

(
1− bh

bl

)2

+
bl
bh

+
bhq

2
l

blq2
h

]
τ +

q2
l

q2
h

= 0 (24)

where

τ =
ql tan(qhw)

qh tan(qlw)
. (25)

Equations (24) and (25) together with the dependence of the energy on the qz wavevectors of Eq. (20) determine qh
and ql and thereby the energy spectrum. In the presence of a magnetic field, qh and ql depend on its value and on
the Landau index n describing the in-plane motion of the holes, due to Luttinger spin-orbit coupling. Also from the
boundary conditions we determine the α’s:

αe =
As

Γsqh

bl − bh
bl − bhτ

, (26)

αo =
Γsqh
As

bhτ − bl
bl − bh

. (27)

The evaluation of the normalization constants Ne and No is straightforward. Introducing the notation:

cc ≡
1

w

w∫
−w

dz

∣∣∣∣cos(qhz)−
cos(qhw)

cos(qlw)
cos(qlz)

∣∣∣∣2

= sinhc (2=mqhw) + sinc(2<eqhw)− 2<e
{

cos(qhw)

cos(qlw)
{sinc [(q∗h − ql)w] + sinc [(q∗h + ql)w]}

}
+

∣∣∣∣cos(qhw)

cos(qlw)

∣∣∣∣2 [sinhc (2=mqlw) + sinc(2<eqlw)] , (28)

cs ≡
1

w

w∫
−w

dz

∣∣∣∣sin(qhz)−
sin(qhz)

sin(qlw)
sin(qlz)

∣∣∣∣2

= sinhc (2=mqhw)− sinc(2<eqhw)− 2<e
{

sin(qhw)

sin(qlw)
{sinc [(q∗h − ql)w]− sinc [(q∗h + ql)w]}

}
+

∣∣∣∣ sin(qhw)

sin(qlw)

∣∣∣∣2 [sinhc (2=mqlw)− sinc(2<eqlw)] , (29)

η ≡ 1 +

∣∣∣∣ bl − bhτAs(τ − 1)

∣∣∣∣2 +
cs
cc

∣∣∣∣ bl − bh
Γsqh(τ − 1)

∣∣∣∣2
1 +

∣∣∣∣Asbh
∣∣∣∣2
∣∣∣∣∣1 +

(
Γsqh
As

)2
bl − bhτ
bl − bh

∣∣∣∣∣
2
 . (30)

we find that the wavefunctions of the time-symmetric Hamiltonian are given by:

Ψ
n,ky,1
0 (x, y, z) =

1
√
wccη

eikyy



[
cos(qhz)− cos(qhw)

cos(qlw) cos(qlz)
]
un(x)

i bl−bh
Γsqh(τ−1)

[
sin(qhz)− sin(qhw)

sin(qlw) sin(qlz)
]
un−1(x)

bl−bhτ
As(τ−1)

[
cos(qhz)− cos(qhw)

cos(qlw) cos(qlz)
]
un−2(x)

−i bl−bh
Γsqh(τ−1)

As
bh

[
1 +

(
Γsqh
As

)2
bl−bhτ
bl−bh

] [
sin(qhz)− sin(qhw)

sin(qlw) sin(qlz)
]
un−3(x)


, (31)
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and

Ψ
n,ky,−1
0 (x, y, z) =

1
√
wccη

eikyy


i bl−bh

Γsqh(τ−1)
As
bh

[
1 +

(
Γsqh
As

)2
bl−bhτ
bl−bh

] [
sin(qhz)− sin(qhw)

sin(qlw) sin(qlz)
]
un(x)

bl−bhτ
As(τ−1)

[
cos(qhz)− cos(qhw)

cos(qlw) cos(qlz)
]
un−1(x)

−i bl−bh
Γsqh(τ−1)

[
sin(qhz)− sin(qhw)

sin(qlw) sin(qlz)
]
un−2(x)[

cos(qhz)− cos(qhw)
cos(qlw) cos(qlz)

]
un−3(x)


. (32)

These wavefunctions largely represent the effect of mutual the transformation of states characterized by the
z−components of the wavevectors describing heavy and light holes, as the physical picture of Fig.1 suggests. However,
despite symmetric Hamiltonian Hs includes the effects of spin-orbit interactions and effects of external magnetic field,
by its construction, it still gives states that are Kramers-degenerate. Removal of the Kramers degeneracy takes place
due to the time-reversal asymmetric part Ha, which gives the Zeemann splitting of hole states.

B. Antisymmetric Hamiltonian and removal of Kramers degeneracy

In the semiclassical approximation, the antisymmetric Hamiltonian Ha is considered as a perturbation. The z-
envelope functions given by Eqs. 31 and 32 satisfy〈

Zn,ky,10 (z)
∣∣∣Ha

∣∣∣Zn,ky,10 (z)
〉

= −
〈
Zn,ky,−1

0 (z)
∣∣∣Ha

∣∣∣Zn,ky,−1
0 (z)

〉
, (33)

and as a consequence the (perturbed) energies of the even and odd states can be written as Ene = En0 + ∆E and
Eno = En0 −∆E, where

∆E =
2Γa

Γsccη
<e

{
cτ

[
bl − bh
τ − 1

− bl − bh
bh

b∗l − b∗hτ∗

|τ − 1|2
− 1

bh

(
Γsqh
As

)2 ∣∣∣∣bl − bhττ − 1

∣∣∣∣2
]}

+
cs
ccη

∣∣∣∣ bl − bh
Γsqh(τ − 1)

∣∣∣∣2
Z2 + 2AaAs<e

[
1

bh
+

(
Γsqh
As

)2
bl − bhτ

bh (bl − bh)

]
− Z1

A2
s

|bh|2

∣∣∣∣∣1 +

(
Γsqh
As

)2
bl − bhτ
bl − bh

∣∣∣∣∣
2


+
1

η

[
Z1 + 2

Aa
As
<e
(
bl − bhτ
τ − 1

)
− Z2

A2
s

∣∣∣∣bl − bhττ − 1

∣∣∣∣2
]
, (34)

with

cτ ≡
1

w

w∫
−w

dz

[
cos(q∗hz)−

cos(q∗hw)

cos(q∗l w)
cos(q∗l z)

] [
cos(qhz)− τ

cos(qhw)

cos(qlw)
cos(qlz)

]

= sinhc (2=mqhw) + sinc(2<eqhw)− τ cos(qhw)

cos(qlw)
{sinc [(q∗h − ql)w] + sinc [(q∗h + ql)w]}

− cos(q∗hw)

cos(q∗l w)
{sinc [(qh − q∗l )w] + sinc [(qh + q∗l )w]}+ τ

∣∣∣∣cos(qhw)

cos(qlw)

∣∣∣∣2 [sinhc (2=mqlw) + sinc(2<eqlw)] . (35)

There is no change in the wavefunctions at first order in perturbation theory as
〈(
Zn,ky,10 (z)

)∣∣∣Ha

∣∣∣Zn,ky,10 (z)
〉

= 0.

C. Analytic solution in semiclassical approximation

Even when the semiclassical approximation is used, the calculations are rather complex due to the strong coupling
between the z-direction motion and the cyclotron degrees of freedom. Generally, the transcendental Eqs. (24) and
(25) cannot be solved analytically. However, an approximate solution with high accuracy is possible, if the energy
associated with motion in the z-direction, i.e., the size quantization energy is much larger than the cyclotron in-plane
energy, q2

z � n� 1. That is the case of strong size quantization, when the quantum well width is much smaller than
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the magnetic length, e.g w � 1. This gives a small parameter for the perturbative expansion, so that the wavevector
is expanded in a series of dimensionless w as

qz =
pπr

2w
+ wδ , (36)

where r is an integer and qz can be either the heavy or light hole z-direction wavenumber. Obviously, the first term in
Eq.(36) (zeroth order approximation) gives a wavenumber similar to that describing electrons in an infinite rectangular
quantum well. However, the eigenstates of Hs contain both light and heavy wave numbers, though only one of them
is close to usual πr/(2w), and both depend on the magnetic field and the Landau level index.

The coefficient δ, which describes the dependence of the wavenumbers on the Landau level index, is calculated as
follows. The energy given by Eq. (20) can be expanded when q2

z � n� 1 for heavy and light holes as:

Enh ≈
q2
z

2mz
h

+

(
γ1 + γ2 −

3γ2
3

γ2

)
(n− 1) , (37)

Enl ≈
q2
z

2mz
l

+

(
γ1 − γ2 +

3γ2
3

γ2

)
(n− 1) . (38)

We emphasize that the terms containing qz here have a hidden contribution to the cyclotron energy of the holes in
two dimensions because of the qz’s dependence on the magnetic field and Landau level index. Using these expressions
for energy and the expansion of the qz wavevector from Eq. (36), one can solve Eq. (24) and obtain the equation for
the quantity τ of a given state. The expansion for τ in powers of w can also be obtained by replacing the wavevectors
in Eq. (25). Comparing the leading order terms in w of these two expressions for τ , we find the coefficient δ. The
details of this procedure are explained in Appendix A. The resulting expression forthe wavenumbers is given by

δ =
6(−1)r+1n

r2π2

γ2
3

γ2
2

√(
γ1 + 2γ2

γ1 − 2γ2

)s{
tan

[
rπ

2

√(
γ1 − 2γ2

γ1 + 2γ2

)s]}(−1)r

(39)

where s = 1 corresponds to heavy holes and s = −1 to light holes.
In the zeroth order approximation,the eigenvectors of Eq. (31) become the up and down spinors T (unζ0(z), 0, 0, 0)

and T (0, 0, 0, un−3ζ3(z)) for heavy hole bands and T (0, un−1ζ1(z), 0, 0) and T (0, 0, un−2ζ2(z), 0) for light hole bands.We
will see that the in-plane (cyclotron) masses characterizing these states coinside with Nedorezov effective masses34 in
zero magnetic field, which are correct in-plane effective masses accounting for the effects of the mutual transformation
of heavy and light holes.

IV. ENERGY SPECTRA: NUMERICAL RESULTS

In the general case, and most notably for low lying levels, the antisymmetric part Ha is comparable to the symmetric
part Hs, and a perturbative procedure does not work. This regime is examined through a numerical solution of the
Schrödinger equation with the Luttinger Hamiltonian Eq.(8) in a quantum well which we now discuss. The first three
subbands of the energy spectrum (the two lowest heavy hole and the the lowest light hole band) are presented in Fig.
3.We see indeed that the spectra do not have a fan-like shape characteristic of electron systems. The levels bend and
cross as the magnetic field increases. As a consequence, the Landau level number n does not describe the ordering
of levels. We observe that there is a large energy separation between symmetric and antisymmetric states, a clear
signature of a gigantic intrinsic SO coupling. As we shall see in section VII, some crossings could become anticrossings
in the presence of Dresselhaus spin-orbit coupling. We will also show elsewhere45 that some of the crossings could
become anticrossings due to hole-hole interactions.

We find that the ground state of the holes is characterized by a crossing between the 0-even parity and 3-odd parity
state,the former being the ground state at relatively small fields, while the latter taking over at large fields. Level
crossings are of critical importance, especially since novel fractional quantum Hall states with even denominator have
been shown to appear at such crossings in recent experiments46,47. We note that experimental observation of Landau
levels for holes in photoluminescence measurements also reveals crossings48.

For excited states, one interesting feature that we observe is almost a degeneracy between the second z−direction
heavy hole state and the first z−direction light hole state at small magnetic fields. This effect occurs because the
z-direction effective mass of light holes 1/(γ1 + 2γ2) = 0.091 is roughly 4 times smaller than the mass of heavy
holes 1/(γ1 − 2γ2) = 0.38. As the magnetic field increases, these states strongly hybridize. This makes the range of
applicability of the semiclassical approximation even narrower.
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FIG. 3: Energy spectrum of GaAs holes with n ≤ 3 in a quantum well of 250Å (left panel) and 100Å (right panel) .

���������
� � � � � � � � � � � � � � � � � � �

��������� �
� � � � � � � � � � � � � � � � � �

�������� �
� � � � � � � � � � � � � � � � � � �

���������
� � � � � � � � � � � � � � � � � � �

��������� �
� � � � � � � � � � � � � � � � � �

���������� � � � � � � � � � � � � � � � � � �
��������� � � � � � � � � � � � � � � � � � � �
�������� � � � � � � � � � � � � � � � � � � � �
���������� � � � � � � � � � � � � � � � � � �

��������� � � � � � � � � � � � � � � � � � � �

0. 0.1 0.2 0.3 0.4
1

2

3

BHTL

E
Hm

eV
L

� n=10, odd , semicl.
� n=10, even, semicl.
� n=10, semicl.
� n=10, odd , full
� n=10, even, full
� n=20, odd , semicl.
� n=20, even, semicl.
� n=20, semicl.
� n=20, odd , full
� n=20, even, full

L=250 Þ

,

� � � � � � � � � � ��

� � � � � � � � � �
� � � � � � � � � �

� � � � � � � � � �

� � � � � � � � � �
� � � � � � � � � �
� � � � � � � � � �
� � � � � � � � � �
� � � � � � � � � �
� � � � � � � � � �

0. 0.1 0.2 0.3 0.4

10

14

BHTL

E
Hm

eV
L � n=10, odd , semicl.

� n=10, even, semicl.
� n=10, semicl.
� n=10, odd , full
� n=10, even, full
� n=20, odd , semicl.
� n=20, even, semicl.
� n=20, semicl.
� n=20, odd , full
� n=20, even, full

L=100 Þ

FIG. 4: Comparison between the numerically evaluated spectrum and the semiclassical values of the lowest heavy hole band
for n = 10 and n = 20. The quantum well width is 250Å (left panel) and 100Å (right panel).

A comparison between the numerical and semiclassical solutions shows a very good agreement for large Landau
level indices, as expected. Such comparisons are presented for n = 10 and n = 20 in the lowest three subbands in
Figs. 4, 5, and 6. The semiclassical solution takes into account the time-antisymmetric perturbation, however both
the numerical and semiclassical solutions are in the axial approximation for this section, i.e. the last term in Eq.(8)
is excluded. We observe that the comparison shows the semiclassical approximation to work better for n = 20 as one
expects for the semiclassical theory. The shape of these curves includes a linear regime at a small magnetic field and
large n (also the magnetic length should be much larger than the width of the quantum well). For large n here, the
hole energy spectrum shows a fan-like diagram and no crossings, making the hole spectrum resemble the electronic
spectra in a magnetic field. At larger magnetic fields (or small n) the energy curves for holes bend. These are the
range of fields where crossings occur.

The ordering of the levels and the corresponding resonant transitions that are used to measure hole parameters in
the perturbative semiclassical regime are shown in Fig. 7. Only in this regime can holes be described in a way similar
to electrons. However, as we shall discuss in the next section, experiments are conducted largely outside of this range
of magnetic fields.

V. CYCLOTRON MASS

Numerous experiments study the effective mass of holes in GaAs based heterostructures, including recent
works31,49–51. The experiments detect the microwave magnetoplasma resonance. Unlike electron systems, the data
for holes shows two distinct sets of masses, with values depending on the magnetic field, well width and hole density.
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FIG. 5: Comparison between the numerically evaluated spectrum and the semiclassical values of the second heavy hole band
for n = 10 and n = 20. The quantum well width is 250Å (left panel) and 100Å (right panel).
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FIG. 6: Comparison between the numerically evaluated spectrum and the semiclassical values of the lowest light hole band for
n = 10 and n = 20. The quantum well width is 250Å (left panel) and 100Å (right panel).

The physical picture is totally different from the case of the electron liquid in GaAs, that exhibits one cyclotron mass.
Theoretically the cyclotron mass can be defined, in terms of quantized energy levels, as the inverse of the energy

distance between the highest (partially) occupied Landau level and the lowest empty (or highest filled LL) whose
indices differ by 1 and have the same parity, as follows from the cyclotron resonance theory52. Absorption of radiation
(its electric field component) is due to transitions between these levels. Accordingly, in quantum cyclotron resonance

mp = ± 1

En±1,p − En,p
. (40)

It is well known that even for the electron spectrum, besides cyclotron transitions and electron spin resonance
transitions (the latter due to the magnetic field component of the radiation), there are also electric-field induced
combined resonance transitions53. However, all these transitions can be distinguished based on the intensity of the
lines and the polarization of the radiation, and it is reasonable to assume that it is indeed the effective mass that
is measured by the energy of the principal cyclotron transition (40). Our theoretical analysis of the hole spectra
shows that the traditional meaning of effective mass is preserved only if the in-plane motion can be clearly separated
from the other degrees of freedom, that is, spin and/or coupling to transverse motion. Such separation occurs in the
semiclassical regime at qzλ� 1. Using Eq. (39) and Eq. (36), the parity independent effective mass of holes is

m‖ =

(
γ1 + sγ2 − s

3γ2
3

γ2

)
− 3(−1)r

r2π2

γ2
3

γ2
2

√
(γ2

1 − 4γ2
2)
s

{
tan

[
rπ

2

√(
γ1 − 2γ2

γ1 + 2γ2

)s]}(−1)r

(41)

where s = 1 corresponds to heavy holes and s = −1 to light holes, and r labels the subbands. This semiclassic value
is, as expected, precisely the result obtained in the absence of magnetic field by Nedorezov34,54, and constitutes the
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FIG. 7: Energy spectrum in the semiclassical limit forthe lowest band of heavy holes. The dotted lines represent the levels
obtained from the time-symmetric Hamiltonian of Eq. (18), dashed lines represent the even states, solid lines are the odd
states. The arrows represent the cyclotron and spin resonance transitions measuring the cyclotron mass and effective g-factor
respectively.

in-plane effective mass of holes. The effective mass for holes with heavy (light) mass in the z-direction in Eq. 41
contains the contribution in round brackets, which, for γ3 = γ2, coinsides with the bulk heavy (light) hole mass in
the axial approximation. Our procedure treats non-perturbatively the γ3 term in Eq.(8), which describes coupling of
heavy and light holes and coupling of z-direction and in-plane motion, thereby allowing us largely to take into account
the effects of anisotropy. The last term in the expression for the cyclotron mass (41) is the contribution from the
size quantization that depends on the size quantization level quantum number but is independent of the well width54.
In a magnetic field, this cyclotron mass is independent of the well width in the range of applicability of Eq. (41),
λqz, λ/w � 1, in much the same way as the expression for the effective mass in zero field is independent of the well
width at qz � kin−plane.

Interpreting cyclotron resonances outside the regime λqz, λ/w � 1, n � 1 is a challenging task, because they
depend of the actual details of the experimental setting. Unlike the electron case, the spectra are not fan-like, and the
separation between levels changes with both well width and magnetic field. As the Fermi level goes through various
levels with different Landau indices, the cyclotron mass seemingly changes its value. However, as we shall see, the
observed cyclotron mass is defined by the absorption of energy, and as a result of several transitions contributing to
the signal, abrupt changes in cyclotron mass may occur only at crossings. We also note that, in general, the cyclotron
mass for holes is not equal to the effective mass (band mass). While for metals this fact is related to the topology of
Fermi surfaces, for semiconductors with a low density of charge carriers, the situation is unusual.

Let us consider first the range of magnetic fields, in which there are no level crossing. A cyclotron resonance can
occur for a transition between nth partially occupied level and the n+ 1 or n− 1 level with the same parity. As levels
are not equidistant, these are two different resonances. Our calculations indicate that they are close to each other
and hence inseparable given the experimental accuracy and energy level broadening. When the two resonant lines
are present, the “measured” cyclotron frequency is a weighted average of the the individual ones, the weights being
the intensities of the lines. If n is partially filled, the intensity of the n → (n + 1) transition is proportional to the
number of holes on the nth level (i.e., to the fractional part of filling factor, ν∗), while the intensity of the (n−1)→ n
transition is proportional to the number of empty states on the nth level (1−ν∗). As a consequence, the effective mass
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FIG. 8: Cyclotron mass for the hole spectrum with crossings. The hole density is 2 · 1010cm−2. The red lines represent
the cyclotron mass corresponding to even parity states while the blue lines represent the mass describing odd states. Circles
represent the cyclotron mass for a finite barrier well in an electric field of 103V/cm, squares represent the cyclotron mass in an
infinite rectangular quantum well. Right panel - 250Å well, left panel - 100Å. The black line represents the semiclassical limit.

is continuous in changes in the integer part of the filling factor. To see this, let us consider, for example, the level n
with odd parity, which is partially filled and is located between the levels p and p+1, both of even parity. The possible
cyclotron transitions are then (n, odd)→ (n+ 1, odd) and (n− 1, odd)→ (n, odd) and (p, even)→ (p+ 1, even). As
the level n-odd is filling up, the intensity of the lines corresponding to the transition (n−1, odd)→ (n, odd) decreases,
eventually becoming zero when the level n is completely filled. The transition (n, odd)→ (n+1, odd) becomes stronger
as the level (n, odd) is being filled up, eventually becoming the only allowed transition between even states when the
level is filled. Such “measured” frequency, becomes closer to the one corresponding to (n, odd) → (n+ 1, odd) when
the level (n, odd) is gradually filled up. Thus in this case there is no discontinuity in the odd state mass. The argument
is the same for the even state mass. However, there exist discontinuities in the cyclotron mass from level crossings in
the hole spectrum. This analysis explains the experimental observations in31.

Calculated cyclotron masses for the set of magnetic quantized levels from the lowest heavy hole subband are plotted
in Figs. 8 and 9. Numerical calculations of the cyclotron mass were performed assuming that the quantum well of
GaAs is embedded in Al0.24GaAs0.76 substrate, and the finite height of the quantum well (valence band offset) was
taken into account. We have also assumed that the charge carriers originate from a single doping layer resulting
in an electric field of 103V/cm across the well (circles). We are not interested here in a self-consistent calculation
of the whole heterostructure, and will consider both Hartree and exchange hole interactions elsewhere45, and take
this value of the electric field for the sake of illustration irrespective of the density of holes. Squares in the figures
represent the values of the cyclotron masses for the infinite rectangular well. It is immediately seen that the masses
of the symmetric (red lines) and antisymmetric states (blue ones) are different. This is due to the bending of levels,
that effectively acts as level repulsion between states with the same n. This sends odd levels to lower energies and
smaller separations, while the symmetric even states are higher levels. This effect is more pronounced in wider wells.
Higher concentration of holes leads to higher Landau indices for the partially filled level, making w2n > 1, thus taking
the system away from the q2

z � n range of the semiclassical regime and resulting in higher cyclotron masses. The
differences of the actual masses from their semiclassical values are further enhanced by the finite height of the well and
the electric field. In sufficiently high electric field one can expect rather large effective masses obtained in triangular
quantum wells of structures with a single heteroboundary27,29.

In order to get a better understanding of the wide variations in the values of cyclotron mass, details of the data for
the 250Å wide quantum well with a higher density of holes is presented in Fig. 10. There are six ranges of field, in
which the cyclotron mass shows a linear behavior, and there are discontinuities between these regions. At the left of
the graph (region I), the filling factor is between 7 and 8, the partially filled level is characterized by n = 7 and has odd
parity. The highest occupied state with even parity in this range is characterized by n = 3. The symmetry-allowed
cyclotron resonance transitions are (7, odd)→ (8, odd), (6, odd)→ (7, odd) and (3,even)→ (4, even). The transition
(7, odd) → (8, odd) becomes stronger with the increase in field while the transition (6, odd) → (7, odd) becomes
weaker and is zero once the filling factor equals 7 . When the magnetic field increases further, the filling factor is
between 6 and 7 in the range II. The important feature is that at the boundary between I and II, levels 3 even and 7
odd cross. As a consequence, the partially filled level is 7 odd, and the highest even state is characterized by n = 2,
so that the only allowed transition is (2, even) → (3, even) . Because the levels are not equidistant, the transition
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FIG. 9: Cyclotron mass for the hole spectrum with crossings. The hole density is 1011cm−2. The red lines represent the
cyclotron mass corresponding to even states while the blue lines represent the mass describing odd states. Circles represent
the cyclotron mass for a finite barrier well in an electric field of 103V/cm, squares represent the cyclotron mass in an infinite
rectangular quantum well. Right panel - 250Å well, left panel - 100Å. The black line represents the semiclassical limit.
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FIG. 10: Detail oft he cyclotron mass dependence on magnetic field for a hole density of 1011cm−2 in a 250Å wide infinite
rectangular quantum well. Red line- even states, blue line -odd states

with the biggest amplitude between odd parity levels at the boundary with region I is (6, odd) → (7, odd). The
only allowed transition between even parity levels is (2,even)→ (3, even). Both even and odd transitions disappear
at the crossing when a change in the value of the magnetic field brings the system from range I into range II or from
range II to range I, correspondingly. Therefore the masses for both even and odd parity levels exhibit discontinuities.
In region III, the filling factor is between 5 and 6 and the partially filled levels is n = 6 with odd parity while the
highest even state is n = 2. There is no change in effective mass here. The boundary with region IV corresponds to
a crossing of 2-even and 6-odd, the former becoming the highest (partially) filled state. Both even and odd masses
change. The filling factor becomes smaller than 5 in region V and smaller than 4 in region VI, and no discontinuity
in effective mass occurs at the boundaries between these regions, because no crossings are present. These facts are
summarized in Table I.

While discussing the cyclotron mass for holes, it is important to mention that as has been long appreciated27,55,
due to mixing of light and heavy carriers, the Kohn theorem56, asserting that charge carrier interactions do not
alter the cyclotron frequency, is no longer valid. In fact, a large effective rs ≈ 3.5 opens up the possibility that
many-body corrections are significant. The masses we have calculated are generally in the range of values of masses
observed experimentally. However, several experiments show considerably bigger masses in certain ranges of magnetic
field9,31,50,51,57,58. In the single-particle picture, the only possible explanation of the ground state 2D hole mass
exceeding 0.15m0 is related to holes being subject to a magnetic field away from the semiclassical regime. If analysis
of experiments indicate that the ground state mass of the holes exceeds the value 0.15m0 for the range of parameters
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Region [ν] partially
filled level

highest level with
opposite parity

allowed cyclotron transitions

I 8 7 odd 3 even 7 odd → 8 odd ↑, 6 odd → 7 odd ↓, 3 even → 4 even
II 7 7 odd 2 even 7 odd → 8 odd ↑, 6 odd → 7 odd ↓, 2 even → 3 even
III 6 6 odd 2 even 6 odd → 7 odd ↑, 5 odd → 6 odd ↓, 2 even → 3 even
IV 6 2 even 6 odd 2 even → 3 even ↑, 1 even → 2 even ↓, 6 odd → 7 odd
V 5 6 odd 1 even 6 odd → 7 odd ↑, 5 odd → 6 odd ↓, 1 even → 2 even
VI 4 5 odd 1 even 5 odd → 6 odd ↑, 4 odd → 5 odd ↓, 1 even → 2 even

TABLE I: Allowed cyclotron transitions for holes in an infinite rectangular well in a magnetic field 0.5 < B < 0.9 T. The
regions are those plotted in Fig. 10. ↑ indicates an increase in a transition intensity with B, while ↓ indicates its decrease. A
transition with decreasing intensity vanishes when [ν] changes.

corresponding to the semiclassical regime, the only possible explanation would be interaction effects. At this stage,
we restrict our consideration to the single-particle picture.

VI. EFFECTIVE LANDÉ FACTOR

One of the most important questions in the hole spectra is spin splitting in the hole states, and the Landé or
g−factor. Over the past decade numerous studies were devoted to possible application of hole systems to spintronic
devices and quantum bits with strongly suppressed spin decoherence. The problem of the effective Landé factor in
2D hole systems has been investigated both theoretically and experimentally. Experimental research was carried out
using optical methods like hot magnetophotoluminescence57,59–61, quantum beat spectroscopy62, hole burning63, spin
flip Raman scattering64 and reflectance difference spectroscopy65,66. Also, conductivity measurements in quasi 1D
systems were employed to determine the g-factors67–69 of GaAs based 2D hole gases. Hole systems studied over the
years include 2D hole gases in both symmetric double heterostructures and inversion layers in single heterojunctions,
with differerent dopants and crystallographic orientations. Despite extensive attention, there is no systematic general
understanding of spin splitting for 2D holes, and no agreement regarding experimental values of spin splitting in
various systems.

Most surprisingly, the situation is even more daring in the theoretical understanding of the g−factor in hole systems.
From a naive point of view, the coefficients of the Zeeman terms in the Luttinger Hamiltonian of Eq. 2, which directly
couple angular momentum to magnetic field are often considered as defining the g-factor32,70. Coupling of the magnetic
field to the cube of angular momentum is weak, and such consideration leads to g∗ = 7.2 for heavy holes defined by
coupling of field to angular momentum. As we shall see, this definition of g∗ is not related to any actual splitting of
hole levels in two dimensions and is just one of the contributions to the Zeeman splitting of levels. The physics behind
this story is that even if the constant κ were zero, due to the angular momentum-kinetic momentum interaction,
orbital motion in a magnetic field leads to spin precession and Zeeman splitting on its own. This picture, for example,
is the origin of the phenomenon of spin separation in magnetic focusing12.

In order to achive systematic understanding of the g-factor in a 2D hole gas we will begin with the controversy of a
definition of the g-factor for 3D holes and in electronic systems with spin-orbit interactions.We first remark that our
concern here is the bandstructure value of spin splitting of single particle states. It is this value that is an important
starting point for the consideration of many-body effects, such as e.g., skyrmion spin textures. However we will not
treat many-body effects, such as exchange enhancement of g-factor71 in the present paper. The single particle value
for the g -factor is clearly defined in systems without spin-orbit interactions, where it is indeed determined by the
constant of direct coupling of the magnetic field to the spin operator. In systems with spin-orbit interactions, including
hole systems, several of the proposed theories of the g-factor attempt to take into account the idea that the orbital
motion of carriers in the presence of magnetic field results in spin splitting of band states due to the coupling of orbital
degrees of freedom to spin. For 3D holes, nearly 50 years ago , Bir and Pikus? proposed the following solution to the
g-factor problem. They used the same separation of the 3D hole Hamiltonian into symmetric and antisymmetric parts
that we use here for 2D holes. The levels defined by the symmetric part En are Kramers degenerate. For large n, the
asymmetric part of the Hamiltonian is treated as a perturbation splitting the doubly degenerate level En into two
spin sublevels En,+ and En,−, so that g = (En,+−En,−)/µB. The resulting Bir-Pikus g-factor is defined by both the
orbital constants defining hole mass, following the notion that spin-orbit coupling in the presence of a magnetic field
causes the orbital motion to contribute to the g-factor, and by constants of the direct coupling of the magnetic field
to the spin operator. Later, Perel72 applied an alternative and completely different Keller-Rubinov method for the
semiclassical quantization of matrix Hamiltonians73,74 to the treatment of Luttinger holes and confirmed the results
for the g-factor by Pikus and Bir.
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We are now going to demonstrate that the spin splitting found by Bir and Pikus and Perel, while defining the
spectroscopic splitting of hole levels that can be measured in transitions induced by a.c. electric field (so-called
combined resonance53), is not a true spin splitting that is relevant to hole spin resonance induced by a.c. magnetic
field, conductance spectroscopy of spin levels and quantum bits. In order to do this and to establish the definition
of the true g-factor, we first revisit an analysis of the problem of the g-factor in a simple model, which is actually
important on its own: the g-factor for electrons subject to Rashba interactions.

A. What is g-factor in the presence of spin-orbit interactions: electrons with Rashba coupling

2D electrons in the presence of Rashba SO coupling in perpendicular magnetic field are described by the
Hamiltonian53,75
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and eigenfunctions are the following spinors mixing up and down states with two Landau indices n and n− 1

ψne,+ =

√√√√1

2
+

g/m0 + 2/m

2
√

(g/m0 + 2/m)
2

+ 16α2
R`

2n

(
un

2iαR`

g/m0+2/m+
√

(g/m0+2/m)2+16αR`2n
un−1

)
(44)

ψne,− =

√√√√1

2
+

g/m0 + 2/m

2
√

(g/m0 + 2/m)
2

+ 16α2
R`

2n

(
−2iαR`

g/m0+2/m+
√

(g/m0+2/m)2+16αR`2n
un

un−1

)
. (45)

The n=0 case is special:

E0 =
h̄ωc
2

+
gµB

2
(46)

ψ0
e =

(
u0

0

)
(47)

Note that we assume g < 0. Now, according to the prescription for finding the g−factor at large n in43,72, we
should assume that the g-factor defines spin splitting of states with the same n, g = (En− − En+)µB. It is worth
noticing that an a.c. electric field lead to transitions between such levels. However, this is not a true g-factor. To
see this, it is instructive to consider the limit of vanishing Rashba coupling, αR → 0, in which the above eigenvalues

are En± = h̄ωc

(
n± 1

2 ±
gm
4m0

)
corresponding to pure up and down spinors: ψn− =

(
0

un−1

)
and ψn+ =

(
un
0

)
. Now,

three issues are obvious. First, when the Rashba constant is zero, the g-factor must be given by a constant (-g),
and not by gsp = (Ene,+ − Ene,−)/µB = m0/m − g. Second, the spatial dependence of the spinors ψn± is different for
Landau indices different by one, and therefore these states are not time-reversed pairs. Third, as a consequence of
the latter property, the matrix element for coupling with an a.c. magnetic field, which is in the leading order, say,
defined by the Pauli matrix σx, simply vanishes and does not lead to electron spin resonance transitions. Clearly, the

appropriate time reversed pairs at zero Rashba coupling are states with E0 = E0
+ and E1

−, E1
+ and E2

−,....E
(n)
+ and

E
(n+1)
− , where n ≥ 0 are integers, and then the corresponding g-factor is, of course, −g.Turning Rashba coupling back

on, we see that the states E
(n)
+ and E

(n+1)
− are no longer exactly time reversed, and there are small components of the

spinors with distinct spatial dependences in addition to time-reversed components in the leading order. However, the
amplitude of transitions caused by an a.c. magnetic field between such states is much stronger than the amplitude of

spin resonance transitions between the states E
(n)
± with the same n, even when the full structure of spinors is taken

into account for the latter pair of states.Thus , it is natural to associate the g-factor with energy separation between

E
(n)
+ and E

(n+1)
− . In the presence of Rashba coupling

g(n) =
2m0

m
−
√(g

2
+
m0

m

)2

+ 4α2
R`

2m2
0n−

√(g
2

+
m0

m

)2

+ 4α2
R`

2m2
0(n+ 1) (48)
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Hence even for electrons, in the presence of spin-orbit interactions spin splitting depends not only on g but also on
orbital constants, such as the electron mass m and spin-orbit constant αR, as well as on the Landau index n and
on the magnitude of the magnetic field. We reiterate that the physical meaning of such a dependence is that in the
presence of spin-orbit coupling, orbital motion in a magnetic field results in spin splitting, or, in classical terms, results
in additional spin precession. In the limit of strong Rashba coupling, spin splitting is formally determined by orbital
constants, g∗ = 2(En+1

− − En+) = 2m0/m − 2αR`m0

(√
n+ 1 +

√
n
)

. In this case, for high n, the ordering of levels
can change, and the g− factor defined this way can change sign.

Finally in this section we would like to emphasize, that this case of Rashba spectrum is a perfect illustration of
the necessity to exercise caution in considering spin-orbit interactions and the definitions of g-factors and effective
masses. Indeed, at large gm

4m0
+ 1

2 , and sufficiently small n, expansion of the energy (43) can lead to a definition of
spin-dependent effective mass and spin-dependent cyclotron frequency:

ω±c = ωc

(
1± α2

R`
2m2

gm
2m0

+ 1

)
. (49)

The resolution of this dilemma is simply that in this range of parameters, it is somewhat meaningless to separate
spin and cyclotron splitting. For the Luttinger spectra, we encounter a such story for low-lying states outside the
semiclassical regime.

B. g-factor of 2D Luttinger holes

Having understood the g-factor in the case of simple spin-orbit interactions in the previous section, we now define
the g-factor of Luttinger holes. For low-lying hole levels, the distinction between cyclotron and spin splitting is not
meaningful, so we address the semiclassical case n � 1. We have already defined doubly degenerate levels Enp with
even and odd eigenfunctions with respect to reflection about the z = 0 plane, and their splitting due to Ha into two
spin sublevels En,+ and En,−. In the leading approximation, at high n, the average value of Jz in these states is ±3/2
for heavy holes and ±1/2 for light holes. However, in much the same way as the case for electrons in the previous
section, in the leading order, the spatial dependence of the corresponding, odd and even heavy hole wavefunctions is
not the same, as it should be for time-reversed states. This spatial dependence is described by oscillator functions
with Landau indices n and n− 3 for any given n: that is, ψn,+ ∝ (un, 0, 0, 0), and ψn,− ∝ (0, 0, 0, un−3) .Thus, even if
the spin operator describing transitions in an a.c. magnetic field couples odd and even spinors in the spin sector, the
overlap of even and odd wavefunctions in the leading order is zero, because oscillator functions with Landau indices
n and n− 3 are orthogonal:

∫
dxT (un, 0, 0, 0)J3

x(0, 0, 0, un−3) = 0.We reiterate here again that spectroscopic splitting
between states n,+ and n,− can manifest in other types of transitions, such as combined resonance in an a.c. electric
field. However, the corresponding splitting will not show up in pure spin resonance, and it is not appropriate to call it
a g-factor. Furthermore, direct evaluation shows that the corresponding constant for heavy holes is giant, exceeding
∼ 40. For this reason, such splitting would be very difficult to access in conductance spectroscopy in quantum point
contacts in a 2D hole gas. Thus, the true g-factor cannot be found using procedures proposed in43,72.

To find the true g-factor, we consider a splitting between the states shown in Fig.7. In the leading approximation for
states with heavy mass in the z−direction, these are the time-reversed states ψn,+ and ψn+3,−. Indeed, their leading
order spinor structure is as follows: ψn,+ ∝ (un, 0, 0, 0), and ψn+3,− ∝ (0, 0, 0, un), i.e. their spatial dependences is
identical. Therefore we define the g-factor for holes with heavy mass in the z−direction as

g∗h = 2
(
En,− − En−3,+

)
(50)

For light holes, in the leading approximation, the time-reversed pair states are ψn,− and ψn−1,+. The g-factor for
holes with light mass in the z−direction is given by

g∗l = 2
(
En,− − En−1,+

)
(51)

We remark that when a magnetic field is in-plane and affects only spin76 with no orbital effects, the time reversed
pair states are formed from degenerate levels, and the definition of the g-factor is straightforward.

We now present analytical results for the g-factor of the 2D Luttinger holes in [001] grown quantum wells. Of
primary interest for experiment is the g-factor for the set of states associated with the ground state of heavy holes
in the z-direction. We therefore present here analytic results for this case.It is generally possible to find analytical
results for high n z-direction light hole levels. For GaAs however, there are some subtleties involved associated with
the small separation between excited z-direction heavy hole series of levels and similar light hole states. We therefore
address these states, as well as all low-lying states for z-direction heavy and light holes numerically.
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FIG. 11: Effective Landé factor for crossing spectrum. The red lines- density of 2 · 1010cm−2, blue lines- density of 1011cm−2.
In the left panel the width is 100Å and 250Å in the right panel.

The magnitude of the g-factor for z−direction heavy holes in the semiclassical approximation is found from Eq.
34 using the wavevectors from Eq. (39) and the limits of small w and large n, in much the same way as in the
computation of the in-plane effective mass. After tedious, but straightforward calculations, the effective g-factor for
the ground series of states with heavy hole mass in the z−direction is given by

g∗ = 6κ+
27

2
q0 −

3γ2
3

γ2
+

3γ2
3

√
γ2

1 − 4γ2
2

πγ2
2

cot

(
π

2

√
γ1 − 2γ2

γ1 + 2γ2

)
(52)

This is our central result for the g-factor. The g-factor has contributions from orbital constants, and terms due to the
size quantization besides the purely Zeeman coupling constants κ and q. The size quantization terms are independent
of the well width provided that condition λqz, λ/w � 1 holds, in much the same way as for the effective masses
defined by Eq. (41). Choosing the values of the Luttinger parameters for GaAs γ1 = 6.8, γ2 = 2.1, γ3 = 2.9, κ = 1.2,
and q0 = 0.04, we find the of effective g-factor to be g = 4.05.

The semiclassical expression for the energy of the lowest subband of z-direction heavy holes that combines the
cyclotron contribution defined by Eq. (41) and the Zeeman energy Eq.(52) is

En,p=
(γ1 − 2γ2)π2

4w2
+

[
γ1 + γ2 −

3γ2
3

γ2
+

3γ2
3

π2γ2
2

√
γ2

1 − 4γ2
2 cot

(
π

2

√
γ1 − 2γ2

γ1 + 2γ2

)]
(n−4p+1)−2

(
γ1 + γ2 − 3κ− 27

4
q0

)
p

(53)
Numerical evaluation of the spin splitting for all states, including high Landau indices but small size quantization

energies, and low lying states, is based on the same definition of the g-factor as for the semiclassical range of parameters.
We plot in Fig. 11 the effective Landé factor for a 250Å and 100Å and for hole densities of 2 ·1010cm−2 and 1011cm−2.
It is clear that the g-factor values for holes in the narrow well are closer to the semiclassical limit of Eq. (52) that
corresponds to the black line than the one for the wider well. This is due to the fact that with an increase in w, the
coupling between spin and orbital motion increases, making the system deviate more from the semiclassical regime.
We notice also, that the deviation is larger for a bigger density of holes. This can be explained by the larger index
n of the partially filled level, which makes w2n larger, making analytical approximations that account for mixture of
transverse and in-plane motion less viable.

Interpreting the spectra in terms of g-factors is challenging because of the not fan-like, non-equidistant orbital
spectra, which show numerous spectral crossings. The locations of the crossings depend on the potential profile of
the quantum well in a given experimental setting.

Direct measurement of the effective Landé factor is achieved by spin magnetic resonance experiments with an
oscillating in-plane magnetic field applied. The resonant peak appears at the frequency defined by the Zeeman
energy. In the presence of an in-plane field B‖(x̂ cosωt+ ŷ sinωt) the Hamiltonian is given by

H‖ =
B‖

B

[(
κJx + q0J

3
x

)
cosωt+

(
κJy + q0J

3
y

)
sinωt

]
. (54)

Both the Ji and J3
i terms of this perturbation connect levels with index n to states with indices n± 1. The J3

i term
also connects states with n ± 3. As we discussed, the g−factor is meaningful only in the semiclassical limit,and we
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estimate the effect of such an in-plane field only for large n and a sufficiently narrow quantum well. For holes with
heavy mass in the z−direction, the 3/2 component of the even wavefunction in this limit is much larger than the
other three while for the odd state only the −3/2 component is relevant. As a consequence the ratio of the matrix
elements of the in plane perturbation between n and n− 1 and the matrix element between n and n− 3 is given by

∣∣∣∣Vn,n−1

Vn,n−3

∣∣∣∣2 ≈ κ2γ4
3 csc4

(
π
2

√
γ1−2γ2

γ1+2γ2

)
4q2

0n
4γ2

2 (γ2 + γ3)
2

[
3− cos

(
π

√
γ1 − 2γ2

γ1 + 2γ2

)
− 2 (γ1 − γ2)

πγ2

√
γ1 − 2γ2

γ1 + 2γ2
sin

(
π

√
γ1 − 2γ2

γ1 + 2γ2

)]2

≈ 0.52

n4

(55)
We observe that the J3

x term leads to a much stronger transition than the Jx term. The spin resonance for the
ground hole series of levels will determine the actual spacing between n odd and n− 3 even, the “time-reversed” pair
states in agreement with our definition of the g-factor. We note that if the experiment involves series of levels with
light hole mass in the z−direction, then spin resonance transitions connect the “time-reversed pair” states (n odd and
n− 1 even ).

VII. ROLE OF ANISOTROPIC TERMS AND ADDITIONAL SPIN-ORBIT INTERACTIONS

A. Dresselhaus Spin Orbit interaction

Besides the Luttinger Hamiltonian angular-momentum and momentum interactions described by Eq. (1), symmetry
allows additional spin-orbit interactions associated with the lack of inversion symmetry or the asymmetry of the
potential confining holes to two dimensions. Most notable are the Dresselhaus terms77 due to the lack of inversion
symmetry. These terms are most relevant to the case of double heterostructures with symmetric confinement, in which
asymmetry induced by one-sided doping or external gate, and the corresponding Rashba-like terms are rather weak.
For electrons, the Rashba and Dresselhaus terms are important for avoided crossings of the Landau levels belonging
to a different size quantization subbands78. In a simplified treatment of 2D holes, it has been found that these low
symmetry spin-orbit terms are capable of inducing spectral crossings and anticrossings in a magnetic field hole spectra
in quantum dots18. As we have seen, such crossings, however, already arise due to the Luttinger interactions of Eq.
(1). The question then is, what is the combined effect of all of these spin-orbit terms, and how, e.g., Dresselhaus
interactions affect the Luttinger spectra of holes in a magnetic field.

Dresselhaus terms for holes at zero magnetic field have been discussed in42,79. It is convenient to write down the
Hamiltonian describing these terms as

HD = γvJ · κ+ δγv

[
13

8
J · κ− 1

2

∑
i

J3
i κi −

1

2

∑
i

Vi{ki, (k2 − k2
i /3)}

]
, (56)

where

Vz = {Jz, J2
x − J2

y} (57)

κz = {kz, k2
x − k2

y} (58)

and Vx(y), and κx(y) are defined using cyclic permutations of indices. The Dresselhaus constants for GaAs are

γv = −39eV · Å3, and δγv = −35eV · Å3. In the presence of magnetic field, kx and ky are replaced with their operator
expressions Eq. (4).

The symmetry of Dresselhaus interactions for holes is richer than that for electrons. Coupling for bulk electrons
includes only terms containing κi, and such terms do not lead to linear in k coupling for z-direction heavy holes in
[001] grown quantum wells. However, other Dresselhaus terms for bulk holes, such as, e.g., the Vi term gives rise to
linear coupling in momentum for z-direction heavy holes42.

In a magnetic field, Dresselhaus terms mix states with opposite parity and level indices n that differ by 2, 4 and 6,
introducing additional splitting between even and odd states.This is because of the structure of the spinors of the odd
and even states, and due to the linear and cubic in the wavevector contributions to the Dresselhaus spin-orbit coupling
for holes in 2D, which couple oscillator functions with indices differing by one and three, correspondingly. Some of
the crossings exhibited by the spectra of Luttinger holes described by Eq.(1) are transformed into anticrossings by
Dresselhaus coupling, if the Dresselhaus interaction matrix element between states that cross is non-zero.In this case,
the Dresselhaus interaction lifts the degeneracy. The Dresselhaus terms have a similar effect in electronic systems
or in the simplified picture of hole spectra80. However, some of the crossings of Luttinger holes, most notably the
crossing in the ground hole state, are not related to and remain unaffected by Dresselhaus interactions. The non-zero
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FIG. 12: The spectra of holes in the presence of the Dresselhaus SO interaction and nonaxial terms (solid lines) compared to
spectra obtained in their absence (dotted lines). The lowest five Landau levels of the lowest z-direction heavy hole state are
plotted for a well width of 250AA (left),and 100Å(right)

matrix elements of the Dresselhaus Hamiltonian (56) between states of an infinite rectangular quantum well ( Eq. 17)
are presented in Appendix C.

Considering the role of Dresselhaus interactions in Eq. (56) that contain the operator k3
z , a non-trivial problem

arises in regularization .Recent work81 suggests that the difficulties posed by this problem are un-surmountable and
develops a scheme within the frame of a 14-band model in order to avoid this problem. We resolve this problem
directly, and present our solution in Appendix B. Numerical results fo the hole spectra in the presence of Dresselhaus
terms are shown below. These results also take into account the effect of the non-axial terms of Eq. (8).

B. Non-axial terms.

The last term of Eq. 8 has not yet been included in our analytical consideration. However, to a significant extent,
the effects of anisotropy are included in our analytical consideration. In particular, most important are terms coupling
z-direction and in-plane motion, which are defined by the Luttinger constant γ3 in our analytical approach. What is
treated approximately in our analytical consideration is the effect of admixture of z-direction heavy hole states with
angular momentum projection 3/2 (-3/2) with z-direction light holes with angular momentum projection -1/2 (1/2),
for which only the part proportional to the combination of the Luttinger constants γ2 +γ3 is included. The remaining
term proportional to γ2 − γ3, is not expected to result in any dramatic effect, and it is reasonable to treat this term
as a perturbation for degenerate levels. The corresponding Hamiltonian is

HN = −γ2 − γ3

4

[
(â†)2J2

− + â2J2
+

]
, (59)

and its non-zero matrix elements between the states of an infinite rectangular quantum well with the same parity and
Landau indices differing by 4 are given in Appendix D. This is a result of the structure of the spinors making matrix
elements non-zero if 3/2 and -1/2 components of the initial and final spinors (or their -3/2 and 1/2 components) are
characterized by oscillator functions with indices differing by two. For GaAs, numerical results demonstrate that the
effect of γ2 − γ3 term is sufficiently small indeed, at least in the range of sufficiently small magnetic fields of interest
here.

C. Energy Spectra of holes in the Presence of Dresselhaus and Non-Axial Terms

The results for lowest five in-plane levels of the z-direction ground state heavy holes series are presented in Fig.12
for 250Å (left panel) and 100Å (right panel) . We observe that the effects of the Dresselhaus and non-axial terms are
small at small magnetic fields and increase with the field.

As seen in the left panel of Fig. 13, the effects of the Dresselhaus and non-axial terms are important for the second
z-direction heavy hole states for small Landau indices. This is due to the effective mass being negative (Eq.41) and
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FIG. 13: The spectra of holes in the presence of the Dresselhaus SO interaction and nonaxial term (solid line) compared to
spectra obtained in their absence (dotted line) for the second z-direction heavy hole state (left) and the first z-direction light
hole state (right) for 100AA quantum well.
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FIG. 14: The energy spectra in the presence of the Dresselhaus and nonaxial terms show numerous crossings (red circles) and
anticrossing (blue circles).The width of the well is 100AA

levels filling in reverse order. The effects on the z−direction light hole state is small for small magnetic field as seen
in the right panel of Fig. 13.

The hole spectrum at intermediate magnetic fields is presented in Fig. 14. We observe the there are numerous
crossings and anticrossings. Some of the degeneracies leading to crossings have been lifted by the Dresselhaus and
axial terms, but many crossings remain.

D. Effective mass and Landè factor in the presence of Dresselhaus and non-axial term

.
To understand the problem, we focus our attention on a region near the crossings. After Dresselhaus terms

and non-axial effects are considered, the wavefunction becomes a linear combination of Landau level states∑
n cn(un, un−1, un−2, un−3). If only one coefficient c is significant, it is clear that the cyclotron resonance will

not differ much from the case without perturbation. But, due to the numerous crossings in the spectra and rel-
atively small separation between levels, wavefunctions have more than one sizable coefficient c. As an example,
ψ = −0.66|9, odd > +0.35|9even > +0.64|5leven >, near the crossing of 9-odd and 5-even (coupled by Dresselhaus
interactions). The 9-even state comes into play due to the non-axial term coupling it to the 5-even state. From this



23

���������������������������������������������� � � � � � � � �

���������������������������������������������� � � � � � � � �������������������������������������������� � � � � � � � � � � �������������������������������������������� � � � � � � � � � � �� � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � �
0.25 0.5 0.75

0.14

0.16

0.18

BHTL
m

ef
fêm

0

� � � � �� � � � �
0.25 0.3

0.1
0.2
0.3

BHTL

m
ef

fêm
0

FIG. 15: The cyclotron mass for the lowest band of the z−direction heavy holes in the presence of the Dresselhaus SO interaction
and nonaxial terms. The hole density is 2 · 1010cm−2. The red lines represent the cyclotron masses corresponding to even
states while the blue lines represent the ones corresponding to odd states. Circles represent the cyclotron mass in the presence
of the Dresselhaus and nonaxial terms while squares represent cyclotron mass in their absence. The black line represents the
semiclassical limit. The inset- the cyclotron masses for these states at hole density 1011cm−2 .
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FIG. 16: The effective Landé factor for the lowest band of the z−direction heavy holes in the presence of the Dresselhaus and
nonaxial terms (red line) and without them (blue lines). The hole density is 2 · 1010 and the well width is 100Å. The black line
represents the semiclassical limit. The inset- theg-factor for a 100Å well with 1011cm−2 holes, effect of the Dresselhaus and
non-axial terms included.

level |9, odd >, |9, even > and |, 5even > would show cyclotron transition lines to all states containing |10, odd >,
|10, even >, |6, even >, |8, odd >, |8, even > and |4, even >. There are many such levels separated by differring
energies. Therefore, the measured cyclotron mass is a weighted average of all transition frequencies, which has little
physical significance for any stand-alone pair of levels. The same story takes place in the spin resonance and mea-
surement of g factors. Results for cyclotron mass and g-factors, in the regions which are not strongly influenced by
the level crossings are shown in Figs 15 and 16.

As we have discussed above in (Secs. V and VI), introducing notions of effective masses and g-factors for non-
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equidistant levels, in the presence of spectral crossings and peculiar order of level filling is sometimes ambiguous,
as orbital and spin motion are completely entangled, especially for low-lying levels. In the semiclassical range of
parameters, these problems do not arise, and the Luttinger hole system resembles the electron gas. This region is
limited to small magnetic field and large n. However in this range, due to the Dresselhaus terms, there are spin-orbit
effects that are similar to the effects of Dresselhaus or Rashba terms for electrons in the semiclassical range, VI A.
Analyzing experimental data in this range of parameters can provide information about Dresselhaus and similar effects
for holes. For low-lying levels and states outside the semiclassical range, the effects of the Rashba and Dresselhaus
terms are tangled with the Luttinger spin-orbit effects. The way to attempt to separate the role of various terms for
such states could only be based on symmetry considerations, because Dresselhas and Rashba terms, non-axial terms,
and principal Luttinger terms couple different states and result in different crossing/anticrossing effects because of
their different symmetry.

VIII. SHUBNIKOV-DE HAAS OSCILLATIONS

In electronic systems, Shubnikov- de Haas oscillations, which are oscillations of the longitudinal conductivity σxx as
the classically strong perpendicular magnetic field Bz is varied, have been extensively used in investigating the density
of states of semiconductor structures, and peculiarities of electron spectra, such as the splitting of valley spectra and
spin-orbit subbands in the presence of Dresselhaus and Rashba interactions. Shubnikov- de Haas oscillations have also
been observed in numerous experiments in 2D hole systems,, and it is important to understand what kind of effects
can manifest themselves in experimental data. For example, if Shubnikov-de Haas oscillations in hole system exhibit
a beating pattern, would this be a consequence of Dresselhaus or Rashba spin-orbit interactions? Here we show that
even in the absence of these interactions, crossings (or anticrossings) in the spectra of the 2D Luttinger holes lead to
such patterns.

We take into account only hole states belonging tothe Landau series of the first size quantized level of holes whose
mass in the z−direction is the heavy hole mass. For the calculation of conductivity in the presence of a magnetic field,
we use the symmetric gauge A = (By/2,−Bx/2, 0), and the in-plane components of the wavefunction with oscillator
index n is given by:

un,X =
1√
L

1√
2nn!
√
π
e−

(x−X)2+i(x−2X)y
2 Hn(x−X). (60)

For simplicity we will assume that mobility of holes is defined by their short-range interactions with impurities with
density ρ randomly distributed in the quantum well. At w � 1, the probability of spin(parity)-flip scattering of holes
is negligible, and we take the impurity scattering matrix element vss′(r) = V δ(r− ri)δss′ , where ri is the position of
the impurity and and s and s′ are the 3/2-spin components. To calculate the conductivity, we will extend to hole
systems the procedure for 2D electrons from82, treating the impurity scattering perturbatively. The Dyson’s equation

for the hole Green function G(E) = (E − H)−1 reads Gs,s1n,p (E) = G
(0)
n,p + G

(0)
n,p
∑
s′ Σ

s,s′

n,pG
s′,s1
n,p (E), where Σ is the

self-energy and G
(0)
n,p = (E − En,p)−1 is the Green function in the absence of impurities, with p labeling the parity of

state. In the self-consistent Born approximation the self-energy is given by

Σs,s1n,p (E) = ρ
∑
i

∑
n′,X′,p′

s′,s′1

∫
dri

∫
dr

∫
dr′Zn,p∗s (z)u∗n+s,X(x, y)vss′(r− ri)Zn

′,p′∗
s′ (z)un′+s′,X′(x, y)

× Zn
′,p′∗

s′1
(z′)u∗n′+s′1,X′(x

′, y′)vs′1s1(r′ − r′i)Zn,ps1 (z)un+s1,X(x′, y′)G
s′,s′1
n′,p′(E), (61)

where Zn
′,p′∗

s′ is defined by Eqs.(10,12). The Landau level broadening Υnp is calculated using the above formula for
energies close to En,p as Σsn,ps = 1

4ΥN,pGn.p(E). The density of states is

D(E) =
1

2π

∑
n,p

√
1−

(
E − En,p

Υn,p

)2

(62)

For short-range scatterers, the relaxation time is related to the level broadening as τf = 2h̄2ωc/(πΥ2) .
We calculate the conductivity by using the Kubo formula:

σxx =
−ie2

πL2

∑
N,X

{ψN,p|X=mG(E)[X,H]=mG(E)|ψN,p} (63)
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FIG. 17: Shubnikov- de Haas oscillations of holes in an ideal quantum well without Dresselhaus-like perturbations. Features
related to level crossings are obvious.

A perturbative expansion using the self-consistent Born approximation gives

σxx =
e2

π2h̄

∑
n,p

∫
dE

(
−∂fF (T )

∂E

)(
Υxx
n,p

Υn,p

)2
[

1−
(
E − En.p

Υn, p

)2
]
, (64)

where T is the temperature, fF is the Fermi function and

(Υxx
n,p)

2 = ρ
∑

s,s1,s′,s1′

∑
i

∑
n′X′p′

∫
dri

∫
dr

∫
dr′Zn,p∗s (z)u∗n+s,X(x, y)∂yvss′(r− ri)Zn

′,p′∗

s′ (z)un′+s′,X′(x, y)

× Zn
′,p′∗

s′1
(z′)u∗n′+s1′ ,X′(x

′, y′)∂y′vs1′s1(r′ − r′i)Zn,ps1 (z)un+s1,X(x′, y′) . (65)

The resulting pattern of oscillations of the longitudinal conductivity calculated taking into account Landau states
belonging to the ground level of size quantization of z-direction heavy holes, in the absence of the Dresselhaus
coupling and axial terms, is presented in Fig. 17. The system does exhibit some peculiar features originating from
crossings in the hole spectra. However, the pattern is extremely complex, and the multiple conductivity maxima
are too close to be separated. We note that the pattern of oscillations is qualitatively similar to those observed
experimentally e.g., in58. However, detailed comparison with experimental data is not feasible at this stage. Coulomb
interactions of charge carriers that undoubtedly affect experiment are not taken into consideration by our procedure.
A simple acount of Hartree terms would not be sufficient, because exchange interactions are supposed to result in
exchange enhancement of the Zeemann splitting, and in a much more complex way than for the electrons considered
in71. However, the calculation presented here shows that the hole Shubnikov- De Haas patterns are characterized
by beating-like structures even when spin-orbit interactions traditional for electron spectra, Rashba and Dresselhaus
terms, are not taken into account, and only the Luttinnger Hamiltonian is included. Furthermore, complex patterns
arise when only Landau states belonging to the ground level of size quantization of heavy holes are taken into account,
but not the light hole or excited heavy hole Landau series. This picture is a direct consequence of non-equidistant,
crossing levels.

IX. CONCLUSIONS

We use the Luttinger Hamiltonian to describe the holes confined in GaAs quantum wells in the presence of a
perpendicular magnetic field. We have identified the semiclassical regime, in which the physics of holes is reminiscent
of the physics of electrons. We derive hole energies, and thereby the cyclotron masses and the g-factors in the
semiclassical regime analytically, by developing an analytical method of solving for size-quantized Luttinger holes in a
perpendicular magnetic field. In the semiclassical regime with large Landau level indices, and for the size quantization
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energy much bigger than the cyclotron energy, the cyclotron mass coinsides with the in-plane effective mass, calculated
in the absence of a magnetic field. The g-factor is defined not only by the constant of direct coupling κ of the angular
momentum of holes with the magnetic field, but also by the Luttinger constants defining the effective masses of holes.
For the 2D holes with heavy mass in [001] growth direction, in the semiclassical regime g = 4.05. This sheds light
on why the g-factor of holes measured68 in a quantum point contact embedded in the 2D hole gas is g∗ = 5, close
to the 2D value, and is far from 6κ = 7.2. In order to ensure the proper definition of the g-factors of the holes, we
used a solution of a simpler but illuminating problem of the electron g-factor in the presence of spin-orbit Rashba
interactions for illustration.

Outside the semiclassical range of parameters, holes behave as a species completely different from electrons. This is
a consequence of the extraordinary strong angular momentum to momentum interactions, coupling of transverse and
in-plane motion, mutual transformation of heavy and light holes with projections of angular momenta differing by
±1, and coupling of heavy and light holes with angular momentum projections differing by±2. Spectra emerging for
size- and magnetic–field-quantized holes are non-equidistant, not fan-like, and exhibit multiple crossings, including
crossing in the ground level. Cyclotron masses of the holes in this regime arise from a few cyclotron transitions
between levels with close energy separations. We explain theoretically why experiments do not show jumps in the
value of the cyclotron masses when the integer part of the hole filling factors in the magnetic field changes. The only
possible abrupt change in the value of the cyclotron mass may result from level crossing. Experimental observation
of such changes can be used to identify crossings. We evaluate g-factors and intensities of hole spin resonance. The
values of cyclotron masses and g-factors outside the semiclassical regime cannot be treated as band parameters, or
used for modeling of nanostructures and topological objects based on 2D hole systems.

We calculate the effect of the Dresselhaus and non-axial terms in the magnetic hole quantized spectra. Dresselhaus
terms of different symmetries are taken into account, and a regularization procedure is developed for the k3

z Dres-
selhaus terms, requiring special treatment. The Dresselhaus and non-axial terms transform some of the crossings in
the Luttinger hole magnetic spectra into anti-crossings, but several crossings, including ground state crossing, are
unaffected. Dresselhaus terms substantially affect the cyclotron masses in the range of magnetic fields containing
crossings and anticrossings.

Holes exhibit complex patterns of the Shubnikov- De Haas oscillations. Oscillations are characterized by beating-
like structures even when spin-orbit interactions traditional for electron spectra, the Rashba and Dresselhaus terms,
are not taken into account, and only the Luttinger interactions are included. This property is also a consequence
of non-equidistant spectra and level crossing. Crossings of levels are of critical importance, especially since novel
fractional quantum Hall states with even denominator can appear at the crossings. Control of the non-equidistant
levels and crossing structure by magnetic field can be used to control the Landau level mixing in hole systems, and
thereby control hole-hole interactions, which are the subject of on-going research.
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Appendix A: Calculation of wavevectors describing the hole standing waves in the semiclassical
approximation.

We first expand the wavevector, e.g., for the z−direction heavy hole state keeping the usual term characterizing
the z-direction plane wave and terms independent of and linear in the width of the quantum well (parameter w)

qh =
pπ

2w
+ u+ wδ +O(w2) . (A1)

For the calculation of the cyclotron mass in the semiclassical approximation, it is sufficient to consider the time-reversal
symmetric part of the Hamiltonian and the corresponding energies only. We expand the energy of z−direction heavy
and light hole states given by Eq. 20 in terms of qz and in terms of n, and obtain Eqs. (37) and (38). Using the
identity En0,h(qh) = En0,l(ql), we find the relationship between ql and qh

ql =

√
γ1 − 2γ2

γ1 + 2γ2
q2
h +

4γ2
2 − 12γ2

3

γ1γ2 + 2γ2
2

(n− 1)

=

√
γ1 − 2γ2

γ1 + 2γ2

pπ

2w
+ u

√
γ1 − 2γ2

γ1 + 2γ2
+

√
γ1 − 2γ2

γ1 + 2γ2

[
1

pπ

4γ2
2 − 12γ2

3

γ1γ2 − 2γ2
2

(n− 1) + δ

]
w +O(w2) (A2)
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Expansions A1 and A2 are used to solve Eq. (24). This quadratic equation in τ has two solutions, which in the
leading order in w are given by

τ1 = −6γ2
3(n− 1)

p2π2γ2
2

w2 +O(w3) (A3)

τ2 = − p2π2γ2
2

6(n− 1)γ2
3

γ1 − 2γ2

γ1 + 2γ2

1

w2
+O(w0) (A4)

The same expressions for qh and ql can be used in the definition of τ (Eq. 25). In the leading order, the corresponding
terms are:

τ = − 1

u

√
γ1 − 2γ2

γ1 + 2γ2
cot

(
pπ

2

√
γ1 − 2γ2

γ1 + 2γ2

)
1

w
+O(w0) , p odd , (A5)

τ = u

√
γ1 − 2γ2

γ1 + 2γ2
cot

(
pπ

2

√
γ1 − 2γ2

γ1 + 2γ2

)
w +O(w2) , p even . (A6)

Comparison with Eqs. (A3) and (A4), which do not include linear in w and linear in 1/w terms in the corresponding
expansions, indicates that it must be u = 0 in (A1). Therefore using Eq.(A1) in the definition of τ gives the following
expansions

τ = −1

δ

√
γ1 − 2γ2

γ1 + 2γ2
cot

(
pπ

2

√
γ1 − 2γ2

γ1 + 2γ2

)
1

w2
+O(w0) , p odd , (A7)

τ = δ

√
γ1 − 2γ2

γ1 + 2γ2
cot

(
pπ

2

√
γ1 − 2γ2

γ1 + 2γ2

)
w2 +O(w4) , p even . (A8)

Now, comparing A7 and A8 with A3 and A4, we notice that the first solution appears for even p and the second
solution is for odd p. Then, solving for δ, we obtain:

δ =
6(−1)p+1

p2π2

γ2
3

γ2
2

√
γ1 + 2γ2

γ1 − 2γ2

{
tan

[
pπ

2

√
γ1 − 2γ2

γ1 + 2γ2

]}(−1)p

(n− 1). (A9)

For z−direction light holes

qh =

√
γ1 + 2γ2

γ1 − 2γ2
q2
l +
−4γ2

2 + 12γ2
3

γ1γ2 − 2γ2
2

(n− 1), (A10)

and the proof is identical to the one presented above, with the only difference that the quantity under the square root
is the inverse of that for heavy holes.

Appendix B: Matrix elements of the k3z operator in quantum wells: regularization procedure.

. In order to investigate the role of all Dresselhaus-type terms in the hole spectra allowed by symmetry, we need to
project the bulk Dresselhaus terms given by Eq. (56)to the manifold of the 2D hole states. This requires calculating
the matrix elements of the k3

z operator in the quantum wells. The potential of an infinite rectangular quantum
well exhibits discontinuities at the edges of the well. As a result, the third derivative of the wavefunction over the
coordinate along the growth axis is not well-defined. Ignoring the discontinuities when calculating the matrix elements
of the operator k3

z generates peculiar and physically meaningless results, and a rigorous regularization procedure is
needed.

We base our considerations on the idea that close crystalline bands can be considered on their own, once the
perturbative admixture of all other bands accounting for the appearence of all terms with important symmetries is
taken into account. This must be done using the natural boundary conditions that the wavefunctions and fluxes are
continuous at the boundaries for all states within a group of close states.The regularization we find here satisfies these
boundary conditions.

Infinitely deep quantum well. Let us consider first the case of an ideal infinitely deep quantum well of width w. The

wavefunctions are the symmetric Ψs
p(z) =

√
1
w cos (2p+1)πz

2w and antisymmetric Ψa
q (z) =

√
1
w sin qπz

w states (p and q are
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integers). We notice that < Ψa
q (z)|k3

z |Ψs
p(z) >= −i (−1)q−pπ2(2p+1)3q

w3[4q2−(2p+1)2] and < Ψs
p(z)|k3

z |Ψa
q (z) >= i (−1)q−p4π2q3(2p+1)

w3[4q2−(2p+1)2] .

Hence, the operator k3
z looks non-hermitian! The origin of this behavior is the discontinuity of the confining potential.

A potential defining an infinitely deep well is

V (z) =

{
V0(z), if |z| ≤ w
∞. otherwise.

(B1)

The eigenfunction of the Schrödinger equation for the motion in this potential corresponding to the energy E will be
denoted by ΨE(z). The boundary conditions require that ΨE(z) vanishes at z = ±w.

To remove the discontinuity at the boundaries, we will use a “smooth” potential, whose behavior is regular, so that
it leads to wavefunctions resulting in the hermitian projected operator k3

z . We then take the limit, in which a smooth
potential becomes an infinitely deep potential. Our choice for a smooth potential is

VΩ(z) =

 V0(z), if |z| ≤ w,
1
2mΩ2(z − w)2 + V ′0(w)(z − w), if z > w,
1
2mΩ2(z + w)2 + V ′0(−w)(z + w), if z < −w,

(B2)

This potential is continuous and differentiable everywhere, assuring a well-defined third derivative of the wavefunction.
In the limit Ω → ∞ this potential reproduces the infinite well potential of Eq. (B1). The eigenfunction of the
Schrödinger equation in the presence of this potential corresponding to energy EΩ will be denoted by ΨΩ,EΩ

(z). We
show that in the limit of large Ω, ΨΩ,EΩ

(z) converges toward ΨE(z). The original potential of an infinitely deep well
and its regularized counterpart are presented in Fig. 18.

V

z-w w

V0

V

z-w w

V0

FIG. 18: Potential of an infinitely deep well (left panel) and its drivable counterpart (right panel)

A general normalizable wavefunction in the presence of the smooth potential is

ΨΩ,EΩ
(z) =


ΨΩ,EΩ,0(z), if |z| ≤ w,
αΩ,EΩ

D
− 1

2 +
EΩ
Ω +

V ′0(w)

mΩ3

(√
2mΩ(z − w) +

√
2

mΩ3V
′
0(w)

)
, if z > w,

βΩ,EΩ
D
− 1

2 +
EΩ
Ω +

V ′0(−w)

mΩ3

(
−
√

2mΩ(z + w)−
√

2
mΩ3V

′
0(−w)

)
, if z > w,

(B3)

where D is the parabolic cylinder function83 and ΨΩ,EΩ,0(z) is the solution Schrödinger equation inside the well

− 1
2m

∂2ΨΩ,EΩ,0
(z)

∂z2 + V0(z)ΨΩ,EΩ,0(z) = EΩΨΩ,EΩ,0(z).
The coefficients α and β are determined by imposing the continuity boundary condition on the wavefunction at

z = ±w as

αΩ,EΩ =
ΨΩ,EΩ,0(w)

D
− 1

2 +
EΩ
Ω +

V ′0(w)

mΩ3

(√
2

mΩ3V ′0(w)
) (B4)

βΩ,EΩ
=

ΨΩ,EΩ,0(−w)

D
− 1

2 +
EΩ
Ω +

V ′0(−w)

mΩ3

(
−
√

2
mΩ3V ′0(−w)

) (B5)
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Continuity of the derivative of the wavefunction at the boundaries of the quantum well requires that

Ψ′Ω,EΩ,0(w) = − ΨΩ,EΩ,0(w)

D
− 1

2 +
EΩ
Ω +

V ′0(w)

mΩ3

(√
2

mΩ3V ′0(w)
)D

1
2 +

EΩ
Ω +

V ′0(w)

rmΩ3

(√
2

mΩ3
V ′0(w)

)
√

2mΩ (B6)

Ψ′Ω,EΩ,0(−w) =
ΨΩ,EΩ,0(−w)

D
− 1

2 +
EΩ
Ω +

V ′0(−w)

mΩ3

(
−
√

2
mΩ3V ′0(−w)

)D
1
2 +

EΩ
Ω +

V ′0(−w)

mΩ3

(
−
√

2

mΩ3
V ′0(−w)

)
√

2mΩ . (B7)

Retaining only the leading terms in Ω, we find the relation between the wavefunction at z = ±w and its derivative:

Ψ′Ω,EΩ,0(w) = −
√
mΩ

2Γ
(

3
4

)
Γ
(

1
4

) ΨΩ,EΩ,0(w) +O

(
1√
Ω

)
(B8)

Ψ′Ω,EΩ,0(−w) =
√
mΩ

2Γ
(

3
4

)
Γ
(

1
4

) ΨΩ,EΩ,0(−w) +O

(
1√
Ω

)
. (B9)

We see that in the limit of Ω→∞, the derivative Ψ′Ω,EΩ,0
(w) cannot be infinite as it is expressed using only parabolic

cylinder functions, which do not have poles. This requires that ΨΩ,EΩ,0(±w) → 0, which represents the boundary
conditions imposed on the original discontinous potential, and thus, ΨΩ,EΩ,0 → ΨE .

The integral describing the matrix element of k3
z between the states characterized by wavefunctions ΨΩ,E2

Ω
and

ΨΩ,E1
Ω

of the smooth potential can be split in three parts
∞∫
−∞

Ψ∗
Ω,E2

Ω
(z)

∂3Ψ
Ω,E1

Ω
(z)

∂z3 dz =
w∫
−w

. . . +
∞∫
w

. . . +
−w∫
−∞

. . . =

I1 + I2 + I3. The first integral converges in the large Ω limit to the value calculated using the discontinous potential∫ w
w

Ψ∗E2
(z)

∂3ΨE1
(z)

∂z3 dz.
Evaluation of the quadratures outside the well is simplified using the transformation of variables

I2 = 2mΩα∗Ω,E2
Ω
αΩ,E1

Ω

∫ ∞√
2

mΩ3 V
′
0 (w)

D
− 1

2 +
E2

Ω
Ω +

V ′0(w)

mΩ3

(ξ)
∂3

∂ξ3
D
− 1

2 +
E1

Ω
Ω +

V ′0(w)

mΩ3

(ξ)dξ (B10)

I3 = −2mΩβ∗Ω,E2
Ω
βΩ,E1

Ω

∫ ∞√
2

mΩ3 V
′
0 (−w)

D
− 1

2 +
E2

Ω
Ω +

V ′0(−w)

mΩ3

(ξ)
∂3

∂ξ3
D
− 1

2 +
E1

Ω
Ω +

V ′0(−w)

mΩ3

(ξ)dξ (B11)

Retaining only the leading order terms in Ω, we reduce the above quadratures to

I2 = 2mΩ
Ψ∗

Ω,E2
Ω,0

(w)

D− 1
2
(0)

ΨΩ,E1
Ω,0

(w)

D− 1
2
(0)

∫ ∞
0

D− 1
2
(ξ)

∂3

∂ξ3
D− 1

2
(ξ)dξ (B12)

I3 = −2mΩ
Ψ∗

Ω,E2
Ω,0

(−w)

D− 1
2
(0)

ΨΩ,E1
Ω,0

(−w)

D− 1
2
(0)

∫ ∞
0

D− 1
2
(ξ)

∂3

∂ξ3
D− 1

2
(ξ)dξ (B13)

We use the following formula for the derivative of the parabolic cylinder functions83

∂3Dν(t)

∂t3
=

1

8

(
ν2 − 3ν + 2

)
νDν−3(t)− 3

8
ν2Dν−1(t) +

1

8
(3ν + 3)Dν+1(t)−Dν+3(t), (B14)

and the expression for an integral of product of D’s83

∫ ∞
0

Dα(t)Dν(t) dt =
2

1
2 (−α−ν−3)

(
Γ
(
−α2
)

Γ
(

1−ν
2

)
− Γ

(
1−α

2

)
Γ
(
−ν2
))

(α− ν)Γ(−α)Γ(−ν)
(B15)

in order to determine the value of quadrature that is present in Eqs. (B12) and (B13), which is∫ ∞
0

D− 1
2
(ξ)

∂3

∂ξ3
D− 1

2
(ξ)dξ =

Γ2
(

3
4

)
2π
√

2
. (B16)
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Using the result (B16), we obtain the expressions for integrals outside the quantum well:

I2 =
mΩ

2π2
Γ2

(
3

4

)
Γ2

(
1

4

)
Ψ∗Ω,E2

Ω,0
(w)ΨΩ,E1

Ω,0
(w) = mΩΨ∗Ω,E2

Ω,0
(w)ΨΩ,E1

Ω,0
(w) (B17)

I3 = −mΩ

2π2
Γ2

(
3

4

)
Γ2

(
1

4

)
Ψ∗Ω,E2

Ω,0
(−w)ΨΩ,E1

Ω,0
(−w) = −mΩΨ∗Ω,E2

Ω,0
(−w)ΨΩ,E1

Ω,0
(−w). (B18)

Using the relation between values of the wavefunction and its derivative at the boundaries, Eqs. (B8) and (B9), we
find that the contributions to the integral from z outside the well are

I2 =
1

2
Ψ′∗Ω,E2

Ω,0
(w)Ψ′Ω,E1

Ω,0
(w) (B19)

I3 = −1

2
Ψ′∗Ω,E2

Ω,0
(−w)Ψ′Ω,E1

Ω,0
(−w) (B20)

Adding all parts together, we determine the value of the k3
z matrix element:

〈
ΨE2

∣∣k3
z

∣∣ΨE1

〉
= i

∫ w

−w
Ψ∗E2

(z)
∂3ΨE1

(z)

∂z3
dz +

i

2
Ψ′∗E2

(w)Ψ′E1
(w)− i

2
Ψ′∗E2

(−w)Ψ′E1
(−w) (B21)

Quantum well with finite depth . We now develop the regularization procedure for the k3
z averages in a well of finite

depth. The potential is discontinous at the boundaries, but the potential jump is finite. In general, the potential can
be a smooth function, both inside and outside the well. From the previous consideration, we see that the regularization
scheme is independent of the details of the potential. Hence we take the potential to be constant both inside and
outside the well,

V (z) =

{
0, if |z| ≤ w
V0, otherwise

(B22)

The wavefunction corresponding to energy E is denoted by ΨE .
The procedure is similar to that used for an infinitely deep quantum well. The potential is regularized using a

parameter, that eventually will be taken to infinity. The matrix element is evaluated near the boundaries, and the
limit for large potential parameter is considered. The smooth potential differs from the discontinous one only in a
small region near the boundaries of the quantum well:

VΩ(z) =



V0, if z < −w − 2
Ω

√
V0

m ,

V0 − 1
2mΩ2

(
z + w + 2

Ω

√
V0

m

)2

, if − w − 2
Ω

√
V0

m ≤ z < −w −
1
Ω

√
V0

m ,

1
2mΩ2(z + w)2, if − w − 1

Ω

√
V0

m ≤ z < −w,
0, if |z| ≤ w,
1
2mΩ2(z − w)2, if w < z ≤ w + 1

Ω

√
V0

m ,

V0 − 1
2mΩ2

(
z − w − 2

Ω

√
V0

m

)2

, if w + 1
Ω

√
V0

m < z ≤ w + 2
Ω

√
V0

m ,

V0, if z > w + 2
Ω

√
V0

m .

(B23)

It is continuous and differentiable everywhere. The original and modified potential are plotted in Fig. 19.
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z-w w

V0 V

z-w w
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FIG. 19: Potential of a finite well (left panel) and its differentiable counterpart (right panel)

The eigenfunction corresponding to energy EΩ is

ΨΩ,EΩ
(z) =



ΨΩ,EΩ,1,L(z), if z < −w − 2
Ω

√
V0

m ,

γΩ,EΩ,LD− 1
2−

i(EΩ−V0)

2Ω

[
e
iπ
4

(√
2mΩ(w + z) +

√
8V0

Ω

)]
+

δΩ,EΩ,LD− 1
2 +

i(EΩ−V0)

2Ω

[
e

3iπ
4

(√
2mΩ(w + z) +

√
8V0

Ω

)]
, if − w − 2

Ω

√
V0

m ≤ z < −w −
1
Ω

√
V0

m ,

αΩ,EΩ,LD− 1
2 +

EΩ
h̄Ω

[√
2mΩ(w + z)

]
+

βΩ,EΩ,LD− 1
2 +

EΩ
h̄Ω

[
−
√

2mΩ(w + z)
]
, if − w − 1

Ω

√
V0

m ≤ z < −w,
ΨΩ,EΩ,0(z), if |z| ≤ w,
αΩ,EΩ,RD− 1

2 +
EΩ
Ω

[√
2mΩ(z − w)

]
+

βΩ,EΩ,RD− 1
2 +E

Ω

[
−
√

2mΩ(z − w)
]

if w < z ≤ w + 1
Ω

√
V0

m ,

γΩ,EΩ,RD− 1
2−

i(EΩ−V0)

2Ω

[
e
iπ
4

(√
2mΩ(z − w) +

√
8V0

Ω

)]
+

δΩ,EΩ,RD− 1
2 +

i(EΩ−V0)

2Ω

[
e

3iπ
4

(√
2mΩ(z − w) +

√
8V0

Ω

)]
, if w + 1

Ω

√
V0

m < z ≤ w + 2
Ω

√
V0

m ,

ΨΩ,EΩ,1,R(z), if z > w + 2
Ω

√
V0

m ,

(B24)
where ΨΩ,EΩ,0 and ΨΩ,EΩ,1 represents the solutions of Schrödinger equation inside and outside the quantum well

− 1
2m

∂2ΨΩ,EΩ,0
(z)

∂z2 = EΩΨΩ,EΩ,0(z), − 1
2m

∂2ΨΩ,EΩ,1
(z)

∂z2 + V0ΨΩ,EΩ,1(z) = EΩΨΩ,E,1(z), indices L and R refers to left
(z < −w) and right (z > w) of the well.

Continuity conditions imposed on the wavefunctions and their derivative determine the coefficients α, β, γ and δ.
Retaining only the leading terms in Ω, we find

αΩ,EΩ,L = βΩ,EΩ,L =
Γ
(

3
4

)√
2
√

2π
ΨΩ,EΩ,0(−w) (B25)

γΩ,EΩ,L = δΩ,EΩ,L =
Γ
(

3
4

)√
2
√

2π
ΨΩ,EΩ,1,L(−w) (B26)

αΩ,EΩ,R = βΩ,EΩ,R =
Γ
(

3
4

)√
2
√

2π
ΨΩ,EΩ,0(w) (B27)

γΩ,EΩ,R = δΩ,EΩ,R =
Γ
(

3
4

)√
2
√

2π
ΨΩ,EΩ,1,R(w) (B28)

The matrix element integral is given by the following terms
∫∞
−∞Ψ∗

Ω,E2
Ω

(z)
∂3Ψ

Ω,E1
Ω

(z)

∂z3 dz =
∫ −w− 2

Ω

√
V0
m

−∞ . . . +
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∫ −w− 1
Ω

√
V0
m

−w− 2
Ω

√
V0
m

. . .+
∫ −w
−w− 1

Ω

√
V0
m

. . .+
∫ w
−w . . .+

∫ w+ 1
Ω

√
V0
m

w
. . .+

∫ w+ 2
Ω

√
V0
m

w+ 1
Ω

√
V0
m

. . .+
∫∞
w+ 2

Ω

√
V0
m

. . . = I1+I2+I3+I4+I5+I6+I7.

The integrals I1, I4 and I5 converge to their respective values for the discontinous potential.
Using the Taylor expansion of the parabolic cylinder functions83 ,

Dν(t) ' 2ν/2
√
π

Γ
(

1−ν
2

) − 2
ν+1

2
√
πt

Γ
(
−ν2
) − 2

ν
2−2
√
π(2ν + 1)t2

Γ
(

1−ν
2

) +
2
ν−3

2
√
π(2ν + 1)t3

3Γ
(
−ν2
) +

2
ν
2−5
√
π
(
4ν2 + 4ν + 3

)
t4

3Γ
(

1−ν
2

) +O
(
t5
)

(B29)

we calculate integrals over connecting regions. In the leading order in Ω, these are

I2 '
Γ2
(

3
4

)
mΩ

√
2π

Ψ∗Ω,E2
Ω,1,R

(−w)ΨΩ,E1
Ω,1,R

(−w)

−
√

2V0
Ω∫

−2
√

2V0
Ω

[
D− 1

2

(
e−

iπ
4 ξ
)

+D− 1
2

(
e−

3iπ
4 ξ
)] ∂3

∂ξ3

[
D− 1

2

(
e
iπ
4 ξ
)

+D− 1
2

(
e

3iπ
4 ξ
)]
dξ

' −3mV0

4
Ψ∗Ω,E2

Ω,1,R
(−w)ΨΩ,E1

Ω,1,R
(−w) (B30)

I3 '
Γ2
(

3
4

)
mΩ

√
2π

Ψ∗Ω,E2
Ω,0

(−w)ΨΩ,E1
Ω,0

(−w)

0∫
−
√

2V0
Ω

[
D− 1

2
(ξ) +D− 1

2
(ξ)
] ∂3

∂ξ3

[
D− 1

2
(ξ) +D− 1

2
(ξ)
]
dξ

' −mV0

4
Ψ∗Ω,E2

Ω,0
(−w)ΨΩ,E1

Ω,0
(−w) (B31)

I5 '
Γ2
(

3
4

)
mΩ

√
2π

Ψ∗Ω,E2
Ω,1,R

(w)ΨΩ,E1
Ω,1,R

(w)

2
√

2V0
Ω∫

√
2V0
Ω

[
D− 1

2

(
e−

iπ
4 ξ
)

+D− 1
2

(
e−

3iπ
4 ξ
)] ∂3

∂ξ3

[
D− 1

2

(
e
iπ
4 ξ
)

+D− 1
2

(
e

3iπ
4 ξ
)]
dξ

' 3mV0

4
Ψ∗Ω,E2

Ω,1,R
(w)ΨΩ,E1

Ω,1,R
(B32)

I6 '
Γ2
(

3
4

)
mΩ

√
2π

Ψ∗Ω,E2
Ω,0

(w)ΨΩ,E1
Ω,0

(w)

0∫
−
√

2V0
Ω

[
D− 1

2
(ξ) +D− 1

2
(ξ)
] ∂3

∂ξ3

[
D− 1

2
(ξ) +D− 1

2
(ξ)
]
dξ

' mV0

4
Ψ∗Ω,E2

Ω,0
(w)ΨΩ,E1

Ω,0
(w). (B33)

The regularization procedure now reads〈
ΨE2

∣∣k3
z

∣∣ΨE1

〉
= i

∫ ∞
−∞

Ψ∗E2
(z)

∂3ΨE1
(z)

∂z3
dz + imV0

[
Ψ∗Ω,E2

(w)ΨΩ,E1(w)−Ψ∗Ω,E2
(−w)ΨΩ,E1(−w)

]
. (B34)

Regularization for matrix Schrödinger equations. Finally we consider quantum wells described by matrix
Schrödinger equations.

−M̂2
∂2Ψ̂(z)

∂z2
− iM̂1

∂Ψ̂(z)

∂z
+ M̂0Ψ̂(z) + V (z)ÎΨ̂(z) = EΨ̂(z) , (B35)

where M̂1, M̂2 and M̂3 are n× n matrices, Î is the n× n identity and ψ̂ is a column of n functions. We assume that
M2 is a diagonal matrix with positive and constant elements [M2]ii = 1/(2mi). The potential V corresponds to an
infinite well as in Eq. B1. We apply the same regularization procedure for the potential (Fig.18)

VΩ,i(z) =


0, if |z| ≤ w,
Ω2

2mi
(z − w)2, if z > w,

Ω2

2mi
(z + w)2, if z < −w,

(B36)

Outside the quantum well, the above equation is written using a transformation to the variable ξ =
√

2Ω(z ± w) as

−∂
2ΨΩ,i(ξ)

∂ξ2
− imi

√
2

Ω
(M̂1)ij

∂ΨΩ,j(ξ)

∂ξ
+
mi

Ω
(M̂0)ijΨΩ,j(ξ) +

ξ2

4
ΨΩ,i(ξ) =

miEΩ

Ω
ΨΩ,i(ξ) , (B37)
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where + signs refer to the left side of the well and − to the right side. In the limit of Ω→∞ it reads

−∂
2ΨΩ,i(ξ)

∂ξ2
+
ξ2

4
ΨΩ,i(ξ) = 0 . (B38)

Imposing the requirement that ψ̂(±∞) = 0 we find the solutions:

Ψ±,Ωi(ξ) = α±,iD− 1
2
(±ξ). (B39)

The procedure is identical to the the previous case, although the wavefunctions are now n-vectors. The final result
reads 〈

Ψ̂E2

∣∣∣P̂ k3
z

∣∣∣ Ψ̂E1

〉
= i

∫ w

−w
Ψ̂∗E2

(z)P̂
∂3ΨE1

(z)

∂z3
dz +

i

2
Ψ̂′∗E2

(w)P̂ Ψ̂′E1
(w)− i

2
Ψ̂′∗E2

(−w)P̂ Ψ̂′E1
(−w) , (B40)

where P̂ is a matrix with constant elements.
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Appendix C: Matrix elements of the Dresselhaus spin-orbit interaction.

The following matrix elements of terms contributing to the Dresselhaus interactions given by Eq. (56) have nonzero
values:〈

Ψ(n+4,−p)

∣∣∣∣∣∑
i

Jiκ̂i

∣∣∣∣∣Ψ(n,p)

〉
= −

√
3(n+ 1)(n+ 2)(n+ 3)

8
I4,0
1,0 (n, p)−

√
3n(n+ 1)(n+ 2)

8
I4,0
2,1 (n, p)

−
√

3(n− 1)n(n+ 1)

8
I4,0
3,2 (n, p) (C1)〈

Ψ(n+2,−p)

∣∣∣∣∣∑
i

Jiκ̂i

∣∣∣∣∣Ψ(n,p)

〉
= −3i

2

√
(n+ 1)(n+ 2)I2,1

0,0 (n, p)− i

2

√
n(n+ 1)I2,1

1,1 (n, p)

+
i

2

√
(n− 1)nI2,1

2,2 (n, p) +
3i

2

√
(n− 1)(n− 2)I2,1

3,3 (n, p) (C2)〈
Ψ(n,−p)

∣∣∣∣∣∑
i

Jiκ̂i

∣∣∣∣∣Ψ(n,p)

〉
=

√
3n3

8

[
I0,0
1,0 (n, p) + I0,0

0,1 (n, p)
]

+

√
(n− 1)3

2

[
I0,0
2,1 (n, p) + I0,0

1,2 (n, p)
]

+

√
3(n− 2)3

8

[
I0,0
2,3 (n, p) + I0,0

3,2 (n, p)
]

+

√
3n

2

[
I0,2
0,1 (n, p) + I0,2

1,0 (n, p)
]

+
√

2(n− 1)
[
I0,2
1,2 (n, p) + I0,2

2,1 (n, p)
]

+

√
3(n− 2)

2

[
I0,2
2,3 (n, p) + I0,2

3,2 (n, p)
]

(C3)〈
Ψ(n+4,−p)

∣∣∣∣∣∑
i

J3
i κ̂i

∣∣∣∣∣Ψ(n,p)

〉
= −7

8

√
3(n+ 1)(n+ 2)(n+ 3)

2
I4,0
1,0 (n, p)− 5

2

√
3n(n+ 1)(n+ 2)

2
I4,0
2,1 (n, p)

−7

8

√
3(n− 1)n(n+ 1)

2
I4,0
3,0 (n, p) +

3

4

√
(n+ 1)3

2
I4,0
3,2 (n, p)

+
3

4

√
2(n+ 1)I4,2

3,0 (n, p) (C4)〈
Ψ(n+2,−p)

∣∣∣∣∣∑
i

J3
i κ̂i

∣∣∣∣∣Ψ(n,p)

〉
= −27i

8

√
(n+ 1)(n+ 2)I2,1

0,0 (n, p)− i

8

√
n(n+ 1)I2,1

1,1 (n, p)

+
i

8

√
(n− 1)nI2,1

2,2 (n, p) +
27i

8

√
(n− 1)(n− 2)I2,1

3,3 (n, p) (C5)〈
Ψ(n,−p)

∣∣∣∣∣∑
i

J3
i κ̂i

∣∣∣∣∣Ψ(n,p)

〉
=

7

8

√
3n3

2

[
I0,0
1,0 (n, p) + I0,0

0,1 (n, p)
]

+
5

2

√
(n− 1)3

2

[
I0,0
2,1 (n, p) + I0,0

1,2 (n, p)
]

+
7

8

√
3(n− 2)3

2

[
I0,0
2,3 (n, p) + I0,0

3,2 (n, p)
]

+
7

8

√
6n
[
I0,2
0,1 (n, p) + I0,2

1,0 (n, p)
]

+
5

2

√
2n− 2

[
I0,2
1,2 (n, p) + I0,2

2,1 (n, p)
]

+
7

8

√
6n− 12

[
I0,2
2,3 (n, p) + I0,2

3,2 (n, p)
]

−3

4

√
(n− 2)(n− 1)n

2

[
I0,0
0,3 (n, p) + I0,0

3,0 (n, p)
]

(C6)〈
Ψ(n+6,−p)

∣∣∣∣∣∑
i

Viι̂i

∣∣∣∣∣Ψ(n,p)

〉
=

3

4

√
(n+ 3)(n+ 2)(n+ 1)

2
I6,0
3,0 (n, p) (C7)〈

Ψ(n+2,−p)

∣∣∣∣∣∑
i

Viι̂i

∣∣∣∣∣Ψ(n,p)

〉
=

1

4

√
3(n+ 2)(n+ 1)n

2
I2,0
0,1 (n, p)− 3

4

√
(n+ 1)n(n− 1)

2
I2,0
1,2 (n, p)

+
1

4

√
3n(n− 1)(n− 2)

2
I2,0
2,3 (n, p) +

1

4

√
3(n+ 1)3

2
I2,0
1,0 (n, p)

−3

4

√
n3

2
I2,0
2,1 (n, p) +

1

4

√
3(n− 1)3

2
I2,0
3,2 (n, p)− 3

4

√
n3

2
I2,0
3,0 (n, p)

+
3

4

√
2nI2,2

3,0 (n, p) +

√
3(n+ 1)

4
I2,2
1,0 (n, p)− 3

4

√
2nI2,2

2,1 (n, p)

+

√
3(n− 1)

4
I2,2
3,2 (n, p) +

√
3i

2
(2n+ 1)I2,1

2,0 (n, p)−
√

3i

2
(2n− 1)I2,1

3,1 (n, p) (C8)〈
Ψ(n+6,−p)

∣∣∣∣∣∑
i

Vik̂
3
i

∣∣∣∣∣Ψ(n,p)

〉
= −3

4

√
(n+ 3)(n+ 2)(n+ 1)

2
I6,0
3,0 (n, p) (C9)〈

Ψ(n+2,−p)

∣∣∣∣∣∑
i

Vik̂
3
i

∣∣∣∣∣Ψ(n,p)

〉
= −1

4

√
3(n+ 2)(n+ 1)n

2
I2,0
0,1 (n, p) +

3

4

√
(n+ 1)n(n− 1)

2
I2,0
1,2 (n, p)

−1

4

√
3n(n− 1)(n− 2)

2
I2,0
2,3 (n, p)− 3

8

√
6(n+ 1)3I2,0

1,0 (n, p)

+
9

8

√
2n3I2,0

2,1 (n, p)− 3

8

√
6(n− 1)3I2,0

3,2 (n, p)− 9

8

√
2n3I2,0

3,0 (n, p)

+

√
3i

2
I2,3
2,0 (n, p)−

√
3i

2
I2,3
3,1 (n, p). (C10)
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Here the components of the operator ι̂ are given by

ι̂i = {k̂i, (k̂2
i−1 + k̂2

i−2)}, (C11)

where cyclic permutation of indices is implied. The superposition integral I∆,m
i,j (n, p) is defined as:

I∆,m
i,j (n, p) =

∫ w

−w

(
ζn+∆,p′

i (z)
)∗ ∂m

∂zm
ζn,pj (z)dz +K∆

i,j(n, p) , (C12)

which is nonzero only if p′ = (−1)i+j+mp. The evaluation of this integral gives

I∆,m
i,j (n, p) = 4wim

∑
α,β

(
λn+∆,p′

qα,i

)∗
λn,pqβ ,jq

m
β

{
sinc [(qβ − q∗α)w] + (−1)j+mp sinc [(qβ + q∗α)w]

}
. (C13)

The quantity K∆
i,j(n, p) is the correction due to the regularization procedure described in Appendix B, for m = 3,

which is given by

K∆
i,j(n, p) = −2

∑
α,β

q∗αqβ

(
λn+∆,p′

qα,i

)∗
λn,pqβ ,i

{
sin [(qβ − q∗α)w] + p(−1)j+1 sin [(qβ + q∗α)w]

}
. (C14)

Appendix D: Matrix elements of non-axial perturbation.

The following matrix elements of the non-axial term described by Eq.(59) have nonzero values:〈
Ψ(n+4,−p) ∣∣J2

−(a†)2
∣∣Ψ(n,p)

〉
= 2
√

3
[√

(n+ 2)(n+ 2)I4,0
3,0 (n, p) +

√
n(n+ 1)I4,0

4,1 (n, p)
]
. (D1)

∗ Electronic address: yuli@purdue.edu
1 L. Fu and C. Kane, Phys. Rev. Lett. 100, 096407 (2008).
2 R. M. Lutchyn, J. Sau, and S. D. Sarma, Phys. Rev. Lett. 105, 077001 (2010).
3 Y.-J. Lin, K. Jimenis-Garcia, and I. Spielman, Nature 471, 84 (2011).
4 C. Kane and E. Mele, Phys. Rev. Lett. 95, 146802 (2005).
5 M. Konig, S. Wiedmann, C. Brune, A. Roth, H. Buhmann, L. W. Molenkamp, X. Qi, and S. Zhang, Science 318, 766 (2007).
6 J. Kikkawa, I. Smorchkova, N. Samarth, and D. Awschalom, Science 277, 1284 (1997).
7 A. Imamoglu, D. Awschalom, G. Burkard, D. DiVincenzo, D.Loss, M. Sherwin, and A.Small, Phys. Rev. Lett. 83, 4204

(1999).
8 J. Miller, D. Zumbuhl, C. Marcus, Y.Lyanda-Geller, D. Goldhaber-Gordon, K. Campman, and A. C. Gossard, Phys. Rev.

Lett. 90, 076807 (2003).
9 H. Stormer, Z. Schlesinger, A. Chang, D. Tsui, A. Gossard, and W. Wiegmann, Phys. Rev. Lett. 51, 126 (2003).

10 J. Eisenstein, H. Stormer, V. Narayanamurti, A. Gossard, and W. Wiegmann, Phys. Rev. Lett. 53, 2579 (1984).
11 B. Habib, E. Tutuc, S. Melinte, M. Shayegan, D. Wassermann, S. Lyon, and R. Winkler, Phys. Rev. B 69, 113311 (2004).
12 L. Rokhinson, V. Larkina, Y. Lyanda-Geller, L.N.Pfeiffer, and K.W.West, Phys. Rev. Lett 93, 146601 (2004).
13 E.Tutuc, E. D. Poortere, S. Papadakis, and M. Shayegan, Phys. Rev. Lett. 86, 2858 (2001).
14 S.Pedersen, C. Sorensen, A. Kristensen, P. Lindelof, L. Golub, and N. Averkiev, Phys. Rev. B 60, 4880 (1999).
15 L. Rokhinson, Y. Lyanda-Geller, Z. Ge, S. Shen, X. Liu, M. Dobrowolska, and J. Furdyna, Phys. Rev. B 76, 161201 (2007).
16 G. Bastard, J. Brum, and R. Ferreira, Electronic States in Semiconductor Heterostructures.In: Solid State Physics, v.44 ,

Eds: H. Ehrenreich and D. Turnbull, (Academic Press, New York, 1991).
17 D. Arovas and Y. Lyanda-Geller, Phys. Rev. B 57, 12302 (1998).
18 D. Bulaev and D. Loss, Phys. Rev. Lett. 98, 097202 (2007).
19 B. Bernevig and S.-C. Zhang, Phys. Rev. Lett. 95, 016801 (2005).
20 J. Schliemann and D. Loss, Phys. Rev. B 71, 085308 (2005).
21 B. Glavin and K. Kim, Phys. Rev. B 71, 035321 (2005).
22 Y. Lyanda-Geller, T. Reinecke, and M. Bayer, Phys. Rev. B 69, 161308 (2004).
23 D. Csontos, D. P. Brusheim, U. Zuelicke, and H. Xu, Phys. Rev. B 79, 155323 (2009).
24 M. Zarea and S. E. Ulloa, Phys. Rev. B 73, 165306 (2006).
25 C.-X. Liu, B. Zhou, S.-Q. Shen, and B. Zhu, Phys. Rev. B 77, 125345 (2008).
26 S. Chesi, G. Giuliani, L. Rokhinson, L. Pfeiffer, and K. West, Phys. Rev. Lett. 106, 236601 (2011).



36

27 D. A. Broido and L. J. Sham, Phys. Rev. B 31, 888 (1985).
28 S. Yang, D. Broido, and L. Sham, Phys. Rev. B 32, 6630 (1985).
29 U. Ekenberg and M. Altarelli, Phys. Rev. B 32, 3712 (1985).
30 Y. Chang and J. Schulman, Phys. Rev. B 31, 2069 (1985).
31 K. Rachor, T. Raab, D. Heitmann, C. Gerl, and W. Wegscheider, Phys. Rev. B 79, 125417 (2009).
32 R. Winkler, Spin-orbit coupling effects in two-dimensional electron and hole systems, Springer tracts in modern physics

(Springer, Berlin, 2003).
33 J. M. Luttinger, Phys. Rev. 102, 1030 (1956).
34 S. Nedorezov, Sov. Phys. Solid State 12, 1814 (1971), (Fizika Tverdogo Tela 12 2269-2276 (1992)).
35 I. Merkulov, V. Perel’, and M. Portnoi, Sov. Phys. JETP 72, 669 (1991), (Zh. Eksp. Teor. Fiz 99 1202-1214 (1991)).
36 M. D’yakonov and A. Khaetskii, Sov. Phys. JETP 55, 917 (1982), (Zh. Eksp. Teor. Fiz 82 1584-1590 (1982)).
37 Y. Lyanda-Geller (ArXiv:1210.7825).
38 V. Apalkov and M. Portnoi, Phys. Rev. B 65, 125310 (2002).
39 V. Golovach and M. Portnoi, Phys. Rev. B 74, 085321 (2006).
40 G. Giuliani and G. Vignale., Quantum Theory of the Electron Liquid (Cambridge University Press, 2005).
41 R. Winkler, M. Merkler, T. Darnhofer, and U. Rossler, Phys. Rev. B 53, 10858 (1996).
42 E. Rashba and E. Sherman, Phys. Lett. A 129, 175 (1988).
43 G. Bir, E. Butikov, and G. Pikus, Sov. Phys. Solid State 9, 1814 (1967), (Fizika Tverdogo Tela 12 2269 (1992)).
44 J. Hopfield, Journal of Phys. Chem. Solids 15, 97 (1960).
45 G. Simion and Y. Lyanda-Geller (unpublished).
46 Y. Liu, S. Hasdemir, D. Kamburov, A. L. Graninger, M. Shayegan, L. N. Pfeiffer, K. W. West, K. W. Baldwin, and

R. Winkler, ArXiv e-prints (2014), 1401.7742.
47 Y. Liu, A. L. Graninger, S. Hasdemir, M. Shayegan, L. N. Pfeiffer, K. W. West, K. Baldwin, and R. Winkler, Phys. Rev.

Lett. 112, 046804 (2014).
48 S. Glasberg, H. Shtrikman, and I. Bar-Joseph, Phys. Rev. B 63, 201308 (2001).
49 H. Zhu, K. Lai, D. Tsui, S. Bayrakci, N. Ong, M. Manfra, L. Pfeiffer, and K. West, Solid State Communications 141, 510

(2007).
50 T. M. Lu, Z. F. Li, D. C. Tsui, M. J. Manfra, L. N. Pfeiffer, and K. W. West, Applied Physics Letters 92, 012109 (2008).
51 M. N. Khannanov, I. V. Kukushkin, V. E. Bisti, Y. A. Nefyodov, and S. I. Gubarev, JETP 107, 587 (2008), (Zh. Eksp.

Teor. Fiz. 134, 687 (2008)).
52 G. Dresselhaus, A. F. Kip, and C. Kittel, Phys. Rev. 98, 368 (1955).
53 E. Rashba, Soviet Physics-Solid State 2, 1109 (1960).
54 E. L. Ivchenko and G. E. Pikus, Superlattices and other heterostructures : symmetry and optical phenomena (Springer,

1997), 2nd ed., ISBN 3540620303.
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