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Using Monte Carlo simulations with a tunable uniaxial strain, for the first time the nematic
susceptibility of the spin fermion model for the pnictides is calculated. The results are in excellent
agreement with the experiments by J-H. Chu et al., Science 337, 710 (2012). Via a Ginzburg-
Landau analysis, our study suggests a nematicity in the spin fermion model primarily originating on
magnetism, but with the lattice/orbital also playing a key role by boosting up critical temperatures
and separating the structural TS and Néel TN transitions. At T > TS , Curie-Weiss behavior is
observed with a characteristic temperature T ∗ being the TN of the purely electronic system. In
this temperature regime, short-range magnetic order with wavevectors (π, 0) − (0, π) induce local
nematic fluctuations and a density-of-states pseudogap, compatible with several experiments. The
present analysis relies on the study of a particular model for the iron superconductors, thus further
studies are needed to conclusively establish the driver of nematicity in the real materials.

PACS numbers: 74.70.Xa, 71.10.Fd, 74.25.-q

I. INTRODUCTION

The complexity of high critical temperature iron-based
superconductors1,2, with coupled spin, charge, orbital,
and lattice degrees of freedom, creates exotic regimes
such as the widely discussed nematic state with broken
rotational invariance3,4. This state may originate in the
spin5–9 or in the orbital10–13 degrees of freedom, but sub-
tleties in experiments (with strain required to detwin
crystals) and in theory (employing complicated multi-
orbital models) have prevented the identification of the
primary driver of the nematic regime.

Recent efforts to study nematicity have consid-
ered models with electrons coupled to the lattice14.
The electronic sector is itself separated into itinerant
and localized electrons defining a spin-fermion (SF)
model15–18, compatible with the growing evidence that
iron-superconductors display a mixture of itinerant and
localized features2,19,20. These studies unmasked a con-
siderable electron-lattice feedback, leading to several re-
sults in agreement with experiments, such as anisotropic
resistivities and a nematic and structural (tetragonal-
orthorhombic) transition at TS , slightly separated from
the Néel temperature TN (< TS)21.

More recently, a remarkable experimental development
has been the report of a diverging nematic susceptibil-
ity χexp vs. temperature T , with a mysterious char-
acteristic temperature scale T ∗, for single crystals of
Ba(Fe1−xCox)2As2

22 measured by varying an in-situ uni-
axial strain. Although contrasting χexp against theory
and explaining the physical meaning of T ∗ are crucial as-
pects to identify the mechanism that drives nematicity,
to our knowledge χexp and T ∗ have not been addressed
theoretically before since temperatures above TS are dif-
ficult to study with reliable methods.

In this publication, for the first time this nematic sus-
ceptibility is theoretically calculated via the spin-fermion
model coupled to the lattice in precisely the same setup
as in22. Note that this susceptibility, that tests a local
geometric property of an enlarged parameter space, is dif-
ferent from the simpler magnetic susceptibility calculated
in14 obtained from thermal statistics. The present com-
putational effort required an order of magnitude more
work than in14 because the strain is an extra parame-
ter to vary, rather than being dynamically adjusted in
the Monte Carlo (MC) process as before. To implement
this demanding task, modifications in the MC algorithm
were introduced, as explained below. Compared to Hub-
bard multiorbital approaches, a unique characteristic of
the spin-fermion model is that simulations can be carried
out in the nematic regime above the ordering tempera-
tures. Remarkably, our susceptibility is very similar to
the diverging experimental χexp result. Moreover, we ob-
served that the T ∗ scale in the Curie-Weiss behavior is
the preexisting Néel critical temperature of the purely
electronic sector, which is independent of the lattice. We
also observed a density-of-states pseudogap and nematic
fluctuations above TS , caused by short-range (π, 0)-(0, π)
antiferromagnetic order.

The paper is organized as follows: the model is in-
troduced in Section II; the many-body techniques devel-
oped for this work as well as the main results are pre-
sented in Section III; the results for the spin-nematic
and orbital-nematic susceptibilities are analyzed in Sec-
tion IV, while the dependence on the structural transition
temperature with the orbital-lattice coupling is discussed
in Section V. The analysis of the spin structure factors
and the pseudogap in the density of states is presented in
Section VI. Section VII is devoted to the conclusions and
the Appendix contains the full Hamiltonian, the numeri-
cally guided Ginzburg-Landau calculations, the compar-
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ison between total and partial derivatives at the critical
temperature TS , and numerical results for an unphysi-
cally large value of the lattice-orbital coupling.

II. MODELS

The model employed here combines the purely elec-
tronic spin-fermion model15–18 together with lattice or-
thorrombic distortions:

HSF = HHopp +HHund +HHeis +HSL +HOL +HStiff . (1)

This (lengthy) full Hamiltonian is presented in the Ap-
pendix. HHopp is the Fe-Fe hopping of the dxz, dyz, and
dxy electrons (a three orbitals model is used with an elec-
tronic bandwidth W∼3 eV), with amplitudes that repro-
duce photoemission results. The average number of elec-
trons per itinerant orbital is n=4/323, i.e. the undoped
regime will be our focus. This is reasonable since many
experiments that address the nematic state are carried
out for the parent compounds. Moreover, technically the
study simplifies in the absence of doping and quenched
disorder.

The Hund interaction is canonical:
HHund=−JH

∑
i,α Si · si,α, with Si (si,α) the local-

ized (itinerant with orbital index α) spin. HHeis is
the Heisenberg interaction among the localized spins
involving nearest-neighbors (NN) and next-NN (NNN)
interactions with couplings JNN and JNNN, respectively,
and ratio JNNN/JNN=2/317 to favor collinear order.

Within the spin-driven scenario for nematicity, the
state between TN and TS is characterized by short-
range spin correlations that have as an order parameter
Ψi=

∑
±(Si · Si±y − Si · Si±x)/2 that satisfy 〈Ψ〉>09,24,

where Si is the spin of the iron atom at site i and x,y
are unit vectors along the axes. As described in the Ap-
pendix the Orth-distortion εi associated to the elastic
constant c66 will be considered here. The coupling of the
spin-nematic order and the lattice is HSL=−g

∑
i Ψiεi

8,9,
where g is the lattice-spin coupling25. To also incorporate
orbital fluctuations, the term HOL=−λ

∑
i Φiεi is added,

where λ is the orbital-lattice coupling, Φi=ni,xz-ni,yz is
the orbital order parameter, and ni,α the electronic den-
sity at site i and orbital α13. Finally, HStiff is the spin
stiffness given by a Lennard-Jones potential that speeds
up convergence as described in the Appendix.

III. MANY-BODY TECHNIQUES AND MAIN
RESULTS

The Monte Carlo method used in this study is well
known17,18, and details will not be repeated. However,
here an extra computational component had to be in-
troduced because, compared with14, for each tempera-
ture T now the strain was varied as an extra parameter.
Since for each temperature typically 15 values of strain

were used, this effort is ∼15 times more costly than in14.
While the standard Monte Carlo is time consuming be-
cause of the fermionic-sector exact diagonalization (ED)
at every step, in the related double-exchange models for
manganites an improvement has been used before: the
“Traveling Cluster Approximation” (TCA)26 where the
MC updates are decided employing a cluster centered
at site i but with a size substantially smaller than the
full lattice size27. In addition, twisted boundary condi-
tions (TBC) were also used28. In fact, this is the first
time that TCA and TBC are employed together. To
simplify further the analysis, most couplings are fixed to
values that were used successfully before17: JH=0.1 eV,
JNN=0.012 eV, and JNNN=0.008 eV. Dimensionless ver-
sions of the electron-lattice couplings are constructed via
the definitions g̃ = 2g/

√
kW and λ̃ = 2λ/

√
kW , as dis-

cussed in14. Here, W = 3 eV is the electronic band-
width and k regulates the spin stiffness, as shown in the
Appendix. These dimensionless constants are fixed to
the values 0.16 and 0.12, respectively, that before14 were
found to be realistic. However, results for other values of
these couplings are provided in the Appendix as well.

The spin nematic susceptibility calculated here is de-
fined as χs = ∂Ψ

∂ε |ε0 where ε0 is the value of the lattice dis-
tortion obtained from the “unrestricted” numerical sim-
ulation where the lattice is equilibrated together with
the spins, as in14. To calculate the susceptibility χs of
our model, a procedure similar to the experimental setup
was employed: the order parameter Ψ was measured at
various temperatures and at fixed values of the lattice
distortion ε=(ax − ay)/(ax + ay). In this publication,
this procedure will be called “restricted” MC (note that
this dimensionless ε should not be confused with the di-
mensionful εi used in the Hamiltonian and defined in the
Appendix). By this procedure, Ψ(g̃, λ̃, T, ε) are obtained
at fixed couplings, defining surfaces as those shown in
Fig. 1(a). Allowing the lattice to relax, the equilibrium
curve that is shown with red points in Fig. 1(a) is ob-
tained.

Figure 1(b) contains the (restricted) MC measured
spin-nematic order parameter versus the (fixed) lattice
distortion ε, at various temperatures. In a wide range of
temperatures, a robust linear behavior is observed and χs
can be easily extracted numerically. Figure 1(b) is simi-
lar to the experimental results in Fig. 2A of Ref.22. The
equilibrium result with both spins and lattice optimized
(unrestricted MC) is also shown (red squares).

Our main result is presented in Fig. 2, where the nu-
merically calculated χs vs. T is displayed, at the realistic
couplings used in previous investigations14. In remark-
able agreement with experiments, χs grows when cooling
down and it develops a sharp peak at TS (compare with
Fig. 2B of Ref.22). These results were obtained via two
different procedures (standard ED and the TCA+TBC),
and for two lattice sizes, indicating that systematic errors
(such as size effects) are small.
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FIG. 1: (color online) Monte Carlo spin-nematic order pa-

rameter, at g̃=0.16 and λ̃=0.12. (a) Ψ vs. T and ε, measured
at a fixed lattice distortion ε for each temperature (restricted
MC). Shown are the T ∗ (see text) and TS (∼ TN ) temper-
atures. Data are for an 8×8 cluster with TCA+TBC (PBC
8×8 clusters with ED give similar results). Red points are the
equilibrium values using unrestricted MC with ED and PBC
8×8 clusters. (b) Ψ vs. ε at fixed temperatures, illustrat-
ing their nearly linear relation in unrestricted MC (red), and
also the linear slopes of the restricted MC curves (green/blue)
close to TS . Results are obtained with ED/PBC 8×8 clusters.
Note that the number of green/blue points vastly outnum-
bers the number of red points, highlighting how much more
demanding this effort has been than in14.

IV. NEMATIC SUSCEPTIBILITY

A. Analysis of χs results

Supplementing the computational results, here
Ginzburg-Landau (GL) calculations were also per-
formed, similarly as in22 for experiments. Note that
the previous GL analysis considered only a generic
nematic order parameter while our study separates the
spin and orbital contributions. The rather complex
numerical results presented in previous sections can be
rationalized intuitively by this procedure. The results
for χs (Fig. 2) are well fitted quantitatively for T > TS ,
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FIG. 2: (color online) Nematic susceptibility χs of the spin-
fermion model vs. temperature T (circles, triangles, and
squares) obtained from Fig. 1(b), at the realistic couplings

g̃=0.16 and λ̃=0.12 (α=g̃/a0). Two MC techniques were em-
ployed: “PBC L=8” is the standard MC method with ED
in the fermions at every step, using 8×8 clusters with PBC.
“TCA L=8” and “TCA L=16” correspond to the TCA+TBC
method on L×L clusters. Size effects are small. Also shown
are two GL fits: the light blue (thick) line displays the Curie-
Weiss equation χs ≈ g̃

a0(T−T∗) , indicating a divergence at a

lower temperature T ∗, characteristic of the electronic sector
alone. At T ≤ TS , the lattice follows the electronic sector.
The black (thin) line is Eq.(45) with the 3TSΨ2 correction
(see text)29.

and qualitatively for T < TS , by the expression:

χs =
g̃

a0[(T − T ∗) + 3TSΨ2]
, (2)

where TS=158 K, T ∗=105 K, and a0∼0.093. The GL
analysis presented in the Appendix shows that the fitting
parameter a0 arises from the GL quadratic term aΨ2/2
in a second order transition where a = a0(T − T ∗). Ψ is
the equilibrium value of the spin nematic order parameter
from the unrestricted MC simulations [red, Fig. 1(a)] and
it is temperature dependent. For T ≥ TS , Ψ vanishes and
χs exhibits Curie-Weiss behavior, in excellent agreement
with the experimental χexp22.

Let us discuss the meaning of the parameter T ∗:
(1) From Fig. 1(b), the unrestricted numerical re-

sults at the critical temperature TS indicate a linear
relation between Ψ and ε, while individually both be-
have as order parameters, i.e. they change fast near
TS . The lattice distortion is temperature dependent, i.e.
ε = ε(T ), because the lattice is equilibrated together with
the spins. However, this nearly temperature independent
ratio Ψ/ε=K (∼360) depends on couplings: comparing
results at several values of the coupling g̃, it is empirically
concluded that K = ĉ

g̃ (where ĉ is a constant).

Note also that χs depends on the partial derivative
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∂Ψ/∂ε|ε0 , since χs is obtained at a constant temper-
ature varying ε via strain to match the procedure fol-
lowed in experiments22, in the vicinity of the equilibrium
point ε0 [namely, χs arises from the green/blue curves
of Fig. 1(b), not from the red equilibrium curve]. While
these slopes (restricted vs. unrestricted MC) are in gen-
eral different, both become very similar at temperatures
close to TS where, as shown analytically in the Appendix,
these derivatives are indeed almost the same. Thus, at
TS : dΨ

dε = ĉ
g̃ ≈

∂Ψ
∂ε |ε0 = χs. This relation can be inde-

pendently deduced from the GL analysis, Eq. (23), with
ĉ=c0, and c0 arising from c0ε

2/2 in the free energy, pro-
viding physical meaning to parameters in the computa-
tional fits.

(2) Since the numerical susceptibility χs can be fit well
by Eq.(45) including the special case of TS where Ψ = 0,

then, as shown in the Appendix, TS = T ∗ + g̃2

a0ĉ
22,30.

Comparing with Eq (26), ĉ is again identified with the
uncoupled shear elastic modulus c0. In addition, from
previous investigations17 it is known that at g̃=λ̃=0 there
is no nematic regime and TS=TN , the Néel temperature.

Then, TN = T ∗ + g̃2

a0c0
, that at g̃ = 0 leads to the im-

portant conclusion that the scale T ∗ is simply equal to
the Néel temperature of the purely electronic spin-fermion
model. In previous work17 it was reported that TN at
g̃=λ̃=0 is ∼100-110 K, in remarkable agreement with the
fitting value of T ∗ obtained independently. Thus, in the
Curie-Weiss formula T ∗ is solely determined by the mag-
netic properties of the purely electronic system.

An important comment is here in order. In principle,
by symmetry considerations it is to be expected that all
operators with the same B1g symmetry, as Ψ, Φ, and
ε have, will simultaneously develop a nonzero expecta-
tion value in the ground state if this state breaks sponta-
neously the B1g symmetry as in the case of the (π, 0) an-
tiferromagnetic state. However, the magnitude of these
expectation values can be used as an indicator of which
one dominates. For instance, although the lattice (ε) does
develop a distortion in experiments, its value is widely
considered to be too “small” to assume that the lattice is
the driver. Consider now the spin and orbital: for results
corresponding to our model see Figure 3 of Ref. 14. That
figure contains the expectation values of Ψ (spin) and Φ
(orbital) vs. temperature. The important point is that
in the temperature range of that figure the expectation
value of Ψ is already a large fraction of the small temper-
ature result, but in the same temperature range Φ had to
be multiplied by 10 to magnify its value to become more
visible. Thus, based on these relative values considera-
tions we arrive to the conclusion that in the spin fermion
model the spin dominates more than the orbital.

B. Analysis of χo results

The orbital-based nematic susceptibility, χo = ∂Φ
∂ε |ε0 ,

was also numerically calculated varying the temperature.

For small λ̃, such as λ̃ = 0.12, the result is approxi-
mately temperature independent and well fit by Eq. (43)
in the Appendix, with e0 = 0.016 and f = 0.33. In
other words, the analog of Fig. 1(b) but for the orbital-
nematic order parameter presents blue/green/red curves
all with very similar slopes. Then, in χo there is no Curie-
Weiss behavior for T ≥ TS . However, Raman scattering
studies of charge nematic fluctuations in BaFe2As2 and
Sr(Fe1−xCox)2As2 have reported Curie-Weiss behavior in
the orbital-nematic susceptibility that was well-fitted by
the expression a+ b

T−T0
where a represents the temper-

ature independent flat continuum and the Curie-Weiss
term describes the diverging behavior of the quasi-elastic
peak observed in the Raman spectrum31.

To reproduce these results with the spin-fermion model
we considered a small direct coupling α̃ between the mag-
netic and orbital degrees of freedom, and introduce a new
term in the model

HSO = −α̃
∑
i

ΨiΦi. (3)

In Fig. 3(a) the spin-nematic susceptibility is displayed
after repeating the simulation in the presence of this new
coupling, and it can be seen that its qualitative form is
not affected by the inclusion of a small α̃ = 0.0011. How-
ever, the orbital susceptibility shown in panel (b) of the
same figure now displays Curie-Weiss behavior induced
by the new coupling between the orbital and magnetic
degrees of freedom. The numerical data are well fitted
by the expression

χo =
λ̃

e0
+

α̃(g̃e0 + λ̃α̃)

a0e2
0[T − (T ∗ + α̃2

a0e0
)]
, (4)

that has the form a + b
T−T0

used in Ref. 31 to fit the

experimental data. Notice that Eq. (4) has been obtained
with the GL approach described in the Appendix.

The difference between T ∗ and T0 is only about 10 K
for the parameters used here. In other words, if a di-
rect coupling between the magnetic and orbital degrees
of freedom is present, the Curie-Weiss divergence still
occurs at the Néel temperature for the purely electronic
system now given by T0. These results demonstrate how
experimental data obtained with different techniques can
all be well reproduced by the spin-fermion model studied
here.

V. TS VS. λ̃

The study in Figs. 1(a,b) was repeated for other values

of the coupling λ̃. It was observed that ĉ varies with λ̃,
compatible with the GL analysis where c(λ̃) = c0(1 −
λ̃2

e0c0
), Eq. (40). At small λ̃, the total (unrestricted MC)

and partial (restricted MC) derivatives of Ψ with respect
to ε are still approximately equal at T ≈ TS as shown in
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FIG. 3: (Color online) (a) The spin and (b) orbital nematic
susceptibility obtained from Monte Carlo simulations for α̃ =
0.0011, g̃ = 0.16, and λ̃ = 0.12. The continuous curves in light
blue are the fittings obtained from the numerically guided
Ginzburg-Landau approach.

the Appendix. Then, χs ≈ c(λ̃)/g̃ = g̃
a0(TS−T∗) , leading

to the novel result

TS = T ∗ +
g̃2

a0c0(1− λ̃2

c0e0
)
. (5)

Numerically, it was found that a0∼0.093, c0∼60
e0=0.016, and T ∗=105 K, for g̃=0.16 (note that the val-
ues of the various GL parameters are the same in all
the fits reported here, as expected). In practice, it was
observed that Eq.(5) fits remarkably well the numerical

values for TS in the range of λ̃ studied showing that the
GL approach provides an excellent rationalization of the
numerical results. This is shown explicitly in Fig. 4(a).

VI. SPIN STRUCTURE FACTORS AND
PSEUDOGAPS

In Fig. 4(b), the spin structure factors S(k) calcu-
lated with MC at both (π, 0) and (0, π) are shown. The

results illustrate the development of short-range mag-
netic order upon cooling with two coexisting wavevectors.
Within the error bars, given roughly by the oscillations in
the plot, these results indicate that the two wavevectors
develop with equal weight upon cooling approximately
starting at TPG where the pseudogap develops (see be-
low)32.
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FIG. 4: (color online) (a) The MC structural transition

temperature TS vs. the orbital-lattice coupling λ̃, at fixed
g̃ = 0.16. The continuous line is the fit in Eq.(5), from the
GL equations. (b) Spin structure factor S(k) vs. temperature
T for the two magnetic wavevectors of relevance. Results were
obtained via MC simulations on PBC 8×8 clusters. TPG is the
pseudogap temperature [Fig. 4(c)]. (c) Density of states N(ω)
(symmetrized) from unrestricted MC simulations on 8×8 clus-

ters (g̃=0.16; λ̃=0.12), at various temperatures. Results at
TS=158 K are in red. TPG∼174 K (blue) is the crossover
temperature where the pseudogap opens at the Fermi level
(i.e. at ω-µ=0.0) upon cooling.

In the spin-fermion model, dynamical observables can
be easily calculated. In particular, the density of states
N(ω) is shown in Fig. 4(c). This figure indicates the pres-
ence of a Fermi-level pseudogap (PG) in a wide tempera-
ture range, in agreement with photoemission and infrared
experiments33. A zero temperature pseudogap is to be
expected: Hartree-Fock studies of the multiorbital Hub-
bard model34 already detected such a feature. However,
our finite temperature studies reveal that upon cooling
this pseudogap develops at a TPG clearly above TS . From
the analysis of our results, the pseudogap is present when
short-range spin correlations are present [Fig. 4(b)]: the
“nematic fluctuations” regime is basically the range of
temperatures where (π, 0)/(0, π) magnetic fluctuations
exist. The coupling to the lattice creates concomitant
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local orthorrombic distortions: it is important to remark
that the region between TS and TPG is tetragonal only
on average35. All these results are in good agreement
with recent scanning tunneling spectroscopy studies of
NaFeAs36.

VII. CONCLUSIONS

Our combined numerical and analytical study of the
spin fermion model leads to results in agreement with
the experimentally measured nematic susceptibility of
Ba(Fe1−xCox)2As2

22. For spins coupled to the lattice
our spin-nematic susceptibility has a Curie-Weiss behav-
ior for T > TS governed by a T ∗ which we here identify
as the critical TN of the purely electronic sector, which is
preexisting to the introduction of the lattice. For realis-
tic nonzero electron-lattice couplings, the lattice induces
a nematic/structural transition at a higher temperature

TS . The addition of an orbital-lattice coupling λ̃ further
increases TS , with a Curie-Weiss behavior that contin-
ues being regulated by T ∗. Our main prediction is that
whenever fluctuating nematic order is observed, inelas-
tic neutron scattering for the same sample should also
reveal the existence of short-range magnetic order: ne-
matic fluctuations, pseudogap, and short-range antiferro-
magnetic order should all develop simultaneously in these
materials. Finally, note that our present results rely on
a particular model, the spin fermion model, thus they
cannot be considered conclusive proof that magnetism
is the driver of nematicity in the real materials. Only
further work with other models or via more elaborated
experiments can finally settle this matter.
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IX. APPENDIX

This Appendix provides additional detail about results
presented in the main text. In particular, it includes: the
full Hamiltonian, the derivations of equations deduced in
the Ginzburg-Landau context, the relationship between
partial and total derivatives at TS , and Monte Carlo re-
sults at the (unphysically large14) coupling λ̃ = 0.84.

A. Full Hamiltonian

The full Hamiltonian of the spin-fermion model with
lattice interactions incorporated is here provided. The
same Hamiltonian was also used in Ref.14. The model is
given by:

HSF = HHopp +HHund +HHeis +HSL +HOL +HStiff . (6)

The hopping component is made of three contributions,

HHopp = Hxz,yz +Hxy +Hxz,yz;xy. (7)

The first term involves the xz and yz orbitals:

Hxz,yz = {−t1
∑
i,σ

(d†i,xz,σdi+ŷ,xz,σ + d†i,yz,σdi+x̂,yz,σ)

− t2
∑
i,σ

(d†i,xz,σdi+x̂,xz,σ + d†i,yz,σdi+ŷ,yz,σ)

− t3
∑

i,µ̂6=ν̂,σ

(d†i,xz,σdi+µ̂+ν̂,xz,σ + d†i,yz,σdi+µ̂+ν̂,yz,σ)

+ t4
∑
i,σ

(d†i,xz,σdi+x̂+ŷ,yz,σ + d†i,yz,σdi+x̂+ŷ,xz,σ)

− t4
∑
i,σ

(d†i,xz,σdi+x̂−ŷ,yz,σ + d†i,yz,σdi+x̂−ŷ,xz,σ)

+ h.c.} − µ
∑
i

(ni,xz + ni,yz).

(8)

The second term contains the hoppings related with the
xy orbital:

Hxy = t5
∑
i,µ̂,σ

(d†i,xy,σdi+µ̂,xy,σ + h.c.)

− t6
∑

i,µ̂6=ν̂,σ

(d†i,xy,σdi+µ̂+ν̂,xy,σ + h.c.)

+ ∆xy

∑
i

ni,xy − µ
∑
i

ni,xy,

(9)
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TABLE I: Values of the parameters that appear in the tight-
binding portion of the three-orbital model Eqs.(8) to (10).
The overall energy unit is electron volts.

t1 t2 t3 t4 t5 t6 t7 t8 ∆xy

0.02 0.06 0.03 −0.01 0.2 0.3 −0.2 0.1 0.4

The last hopping term is:

Hxz,yz;xy =− t7
∑
i,σ

[(−1)|i|d†i,xz,σdi+x̂,xy,σ + h.c.]

− t7
∑
i,σ

[(−1)|i|d†i,xy,σdi+x̂,xz,σ + h.c.]

− t7
∑
i,σ

[(−1)|i|d†i,yz,σdi+ŷ,xy,σ + h.c.]

− t7
∑
i,σ

[(−1)|i|d†i,xy,σdi+ŷ,yz,σ + h.c.]

− t8
∑
i,σ

[(−1)|i|d†i,xz,σdi+x̂+ŷ,xy,σ + h.c.]

+ t8
∑
i,σ

[(−1)|i|d†i,xy,σdi+x̂+ŷ,xz,σ + h.c.]

− t8
∑
i,σ

[(−1)|i|d†i,xz,σdi+x̂−ŷ,xy,σ + h.c.]

+ t8
∑
i,σ

[(−1)|i|d†i,xy,σdi+x̂−ŷ,xz,yσ + h.c.]

− t8
∑
i,σ

[(−1)|i|d†i,yz,σdi+x̂+ŷ,xy,σ + h.c.]

+ t8
∑
i,σ

[(−1)|i|d†i,xy,σdi+x̂+ŷ,yz,σ + h.c.]

+ t8
∑
i,σ

[(−1)|i|d†i,yz,σdi+x̂−ŷ,xy,σ + h.c.]

− t8
∑
i,σ

[(−1)|i|d†i,xy,σdi+x̂−ŷ,yz,σ + h.c.].

(10)

In the equations above, the operator d†i,α,σ creates an
electron at site i of the two-dimensional lattice of irons.
The orbital index is α = xz, yz, or xy, and the z-axis spin
projection is σ. The chemical potential used to regulate
the electronic density is µ. The symbols x̂ and ŷ denote
vectors along the axes that join NN atoms. The values of
the hoppings ti are from Ref.23 and they are reproduced
in Table I, including also the value of the energy splitting
∆xy.

The remaining terms of the Hamiltonian have been
briefly discussed in the main text. The symbols 〈〉 denote
NN while 〈〈〉〉 denote NNN. The rest of the notation is
standard.

HHund = −JH

∑
i,α

Si · si,α, (11)

HHeis = JNN

∑
〈ij〉

Si · Sj + JNNN

∑
〈〈im〉〉

Si · Sm, (12)

HSL = −g
∑
i

Ψiεi, (13)

HOL = −λ
∑
i

Φiεi, (14)

HStiff =
1

2
k
∑
i

4∑
ν=1

(|Riν
Fe−As| −R0)2+

+k′
∑
<ij>

[(
a0

Rij
Fe−Fe

)12 − 2(
a0

Rij
Fe−Fe

)6].

(15)

The Orth strain εi is defined as:

εi =
1

4
√

2

4∑
ν=1

(|δyi,ν | − |δ
x
i,ν |), (16)

where δxi,ν(δyi,ν) is the component along x (y) of the dis-
tance between the Fe atom at site i of the lattice and
one of its four neighboring As atoms that are labeled by
the index ν = 1, 2, 3, 4. For more details of the notation
used see Ref.14, where the technical aspects on how to
simulate an orthorrombic distortion can also be found.

B. Ginzburg-Landau phenomenological approach

In this section, the Monte Carlo data gathered for the
spin-fermion model will be described via a phenomeno-
logical Ginzburg-Landau (GL) approach, to provide a
more qualitative description of those numerical results.
More specifically, the free energy F of the spin-fermion
model will be (approximately) written in terms of the
spin-nematic order parameter Ψ, the orbital-nematic or-
der parameter Φ, and the orthorhombic strain ε, as in
GL descriptions. In previous literature a single nematic
order parameter was considered without separating its
magnetic and orbital character22,30,37. In addition, it
was necessary to formulate assumptions about the order
of the nematic and structural transitions. In our case, the
MC results in this and previous publications are used as
guidance to address this matter at the free energy level.
More specifically, a second order magnetic transition was
previously reported for the purely electronic system17.
Thus, the spin-nematic portion of F should display a
free energy with a second order phase transition.

With regards to the terms involving ε, the MC results
of Ref.14 showed that the coupling of the spin-nematic
order parameter to the lattice leads to a weak first or-
der (or very sharp second order) nematic and structural
transition. Naively, this implies that the order ε4 term
should have a negative coefficient. However, since in our
numerical simulations a Lennard-Jones potential is used
for the elastic term, then the sign of the quartic term is
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fixed and it happens to be positive. However, considering
that the ε displacements are very small and the transi-
tion is weakly first order at best, then just the harmonic
(second order) approximation should be sufficient for ε.

After all these considerations, the free energy is given
by:

F =
a

2
Ψ2 +

b

4
Ψ4 +

c

2
ε2 +

e

2
Φ2 +

f

4
Φ4 (17)

−g̃Ψε− λ̃Φε− hε, (18)

where a, b, c, e, and f are the coefficients of the many
terms of the three order parameters, while g̃ and λ̃ are the
coupling constants of the lattice with the spin and orbital
degrees of freedom as described in the main text. Since
this and previous MC studies14,17 showed that there is no
long-range orbital order in the ground state of the spin-
fermion model, at least in the range of couplings investi-
gated, then a positive quartic term is used for this order
parameter. The parameter h denotes an external stress,
as explained in Ref.22. Note that in principle another
term, and associated coupling constant, α̃ΨΦ should be
included in F . This term will affect the orbital suscepti-
bility and its effects will be described at the end of this
subsection.

As explained in the main text, our MC results indicate
that the leading order parameter guiding the results is
the spin-nematic Ψ. Thus, it is reasonable to assume
that only the coefficient a depends on temperature as
a = a0(T − T ∗), while other parameters, such as c = c0
(the uncoupled shear elastic modulus) and e = e0, are
approximately temperature independent.

For the special case g̃ = λ̃ = 0 the critical temperature
T ∗ for the magnetic transition can be obtained by setting
to zero the derivative of F with respect to Ψ:

∂F

∂Ψ
= aΨ + bΨ3 = 0. (19)

Then, for T ≤ T ∗ the order parameter is given by

Ψ =

√
a0

b
(T ∗ − T ). (20)

The equation above is valid only when Ψ is small, i.e.
close to the transition temperature from below. Addi-
tional terms in the free energy would be needed as T → 0
since in that limit |Ψ| = 2.

Now consider the case when g̃ is nonzero, still keeping
λ̃ = 0. Setting to zero the derivative of F with respect
to Ψ and ε leads to (for h = 0):

∂F

∂ε
= c0ε− g̃Ψ = 0, (21)

∂F

∂Ψ
= aΨ + bΨ3 − g̃ε = 0. (22)

From Eq.(21),

Ψ =
c0
g̃
ε, (23)

which reproduces the linear relation obtained numerically
before, see Fig. 1(b) main text, with a slope now explic-
itly given in terms of g̃ and a constant that now can be
identified with the bare shear elastic modulus c0.

Solving for ε in Eq.(22) and introducing the result in
Eq.(21) leads to:

(a− g̃2

c0
)Ψ + bΨ3 = 0, (24)

where it is clear that a becomes renormalized due to the
coupling to the lattice. The transition now occurs at a
renormalized temperature TS that satisfies:

a0(T − TS) = a− g̃2

c0
= a0(T − T ∗)− g̃2

c0
. (25)

From the expression above, it can be shown that the new
nematic transition occurs at

TS = T ∗ +
g̃2

a0c0
, (26)

and clearly TS > T ∗. Note that Eq.(26) has been ob-
tained in previous GL analysis, but in those studies a
generic nematic coupling appeared in the numerator of
the second term while here, more specifically, we identify
g̃ with the spin-nematic coupling to the lattice.

Reciprocally, solving for Ψ in Eq.(21) and introducing
the result in Eq.(22) leads to:

a

g̃
[(c0 −

g̃2

a
)ε+

bc30
g̃2a

ε3] = 0, (27)

where, due to the coupling to the lattice, now the shear
constant is renormalized and an effective quartic term is
generated for the lattice free energy. The effective shear
elastic modulus c66 becomes temperature dependent and
it is given by:

c66 = c0 −
g̃2

a0(T − T ∗)
, (28)

that vanishes at T = TS . Thus, the structural transition
occurs at the same critical temperature TS of the nematic
transition.

To obtain the spin-nematic susceptibility, the second
derivative of F with respect to Ψ and h is set to zero:

∂2F

∂h∂Ψ
= a

∂Ψ

∂h
+ 3bΨ2 ∂Ψ

∂h
− g̃ ∂ε

∂h
= 0, (29)

and then

χs =
∂Ψ

∂ε
=

∂Ψ
∂h
∂ε
∂h

=
g̃

a+ 3bΨ2
=

g̃

a0(T − T ∗) + 3bΨ2
.

(30)
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This is an important equation that was used in the main
text to rationalize the MC numerical results. In the range
T ≥ TS , i.e. when Ψ = 0, the spin-nematic susceptibility
clearly follows a Curie-Weiss behavior. In practice, it has
been observed that b = a0TS to a good approximation.

Consider now the case when the orbital-lattice cou-
pling λ̃ is nonzero as well. Now

∂F

∂ε
= c0ε− g̃Ψ− λ̃Φ = 0, (31)

∂F

∂Ψ
= aΨ + bΨ3 − g̃ε = 0, (32)

and a new equation is available:

∂F

∂Φ
= e0Φ + fΦ3 − λ̃ε = 0. (33)

Solving for Ψ in Eq.(31) leads to:

Ψ =
c0ε− λ̃Φ

g̃
, (34)

while solving for ε in Eq.(32) leads to:

ε =
aΨ + bΨ3

g̃
. (35)

Introducing Eq.(35) into Eq.(34), Φ is obtained in terms
of Ψ as follows:

Φ = (
c0

λ̃g̃
)[(a− g̃2

c0
)Ψ + bΨ3]. (36)

Introducing Eqs.(35) and (36) into Eq.(33) a renormal-
ized equation for Ψ is obtained:

[
e0c0

λ̃g̃
(a− g̃

2

c0
)− λ̃a

g̃
]Ψ +[

e0c0

λ̃g̃
b− λ̃b

g̃
+
fc30

λ̃3g̃3
(a− g̃

2

c0
)3 ]Ψ3 = 0.

(37)
Then, at T = TS the effective coefficient of the linear
term in Ψ provides the new transition temperature:

a0(T − TS) = a− e0g̃
2

e0c0 − λ̃2
. (38)

Using that a = a0(T −T ∗), the dependence of the critical

temperature with the two coupling constants g̃ and λ̃ can
be obtained:

TS = T ∗ +
g̃2

a0c0(1− λ̃2

c0e0
)
. (39)

This is another interesting formula that nicely describes
the MC results, as shown in the main text. Equation(39)
is a novel result that shows that TS depends in a dif-
ferent way on the spin-lattice (g̃) and the orbital-lattice

(λ̃) couplings. Moreover, an effective λ̃-dependent elastic

modulus c(λ̃) can be defined as

c(λ̃) = c0 −
λ̃2

e0
. (40)

In addition, the effective shear elastic modulus is now
given by

c66 = c0 −
λ̃2

e0
− g̃2

a0(T − T ∗)
, (41)

which vanishes at the TS given by Eq.(39).
The spin-nematic susceptibility is still given by Eq.(30)

with the dependence on λ̃ embedded in the actual values
of Ψ. The orbital-nematic susceptibility is obtained from
Eq.(33) as

∂2F

∂h∂Φ
= (e0 + 3fΦ2)

∂Φ

∂h
− λ̃ ∂ε

∂h
= 0. (42)

In the absence of an explicit coupling α̃ between the spin-
nematic and orbital order parameters, then the orbital-
nematic susceptibility becomes:

χo =
∂Φ

∂ε
=

∂Φ
∂h
∂ε
∂h

=
λ̃

e0 + 3fΦ2
. (43)

If a term of the form α̃ΨΦ is added to the free energy,
as discussed in the main text, the expressions for the
susceptibilities can be obtained for T ≥ TS . The orbital
susceptibility now displays Curie-Weiss behavior:

χo =
λ̃

e0
+

α̃(g̃e0 + λ̃α̃)

a0e2
0[T − (T ∗ + α̃2

a0e0
)]
, (44)

while the spin-nematic susceptibility becomes:

χs =
g̃e0 + λ̃α̃

a0e0[T − (T ∗ + α̃2

a0e0
)]
, (45)

and the structural transition temperature is given by

TS = T ∗ +
α̃2

a0e0
+

(λ̃α̃+ e0g̃)2

a0e0c20(1− λ̃2

e0c0
)
. (46)

C. Partial and total derivatives at TS

The partial derivative in the definition of χs is at con-
stant temperature varying ε and it is evaluated at equi-
librium ε = ε0. The slopes of the green and blue curves
of Fig. 1(b) in the main text provide this derivative. On
the other hand, the results of Fig. 1(b) in equilibrium
(slope of the red points curve) provide the full derivative
dΨ
dε . Since ε=ε(T ), their relation is

dΨ

dε
=
∂Ψ

∂ε
|ε0 +

∂Ψ

∂T
|ε0
∂T

∂ε
|ε0 = χs +

∂Ψ
∂T |ε0
∂ε
∂T |ε0

, (47)
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where ∂Ψ
∂T is performed at constant ε and ∂ε

∂T |ε0 is per-
formed at constant Ψ. In general, the partial and total
derivatives of Ψ with respect to ε can differ from one an-
other. However, at small λ̃ the structural transition is
weakly first order14 (or a very sharp second order) and
then when T ≈ TS the lattice distortion ε rapidly jumps
from 0 to a finite value. This means that ∂ε

∂T |ε0 is very

large while ∂Ψ
∂T |ε0 remains finite since it is performed at

fix ε. Thus, at T ≈ TS , the partial and total derivatives
are almost the same. This can be seen in Fig. 1(b) of the
main text where the slopes of the green curves at ε = 0,
when they cross the equilibrium line, are smaller than the
equilibrium slope K but increase with decreasing temper-
ature until it becomes equal to K at T = TS (red line).
The slopes of the blue curves at the finite value of ε where
they cross the equilibrium line are smaller than K and
decrease with decreasing temperature.

 0

100

200

300

400

 0  100  200  300  400

      T*       TSχ
s

T (K)

α/(T-T*)

∂Ψ/∂ε 

α/(T-T*+3TSΨ
2
)

FIG. 5: (color online) Spin-nematic susceptibility χs vs. tem-
perature T (red circles) obtained from Fig. 6(b) (at g̃=0.16

and λ̃=0.84). The standard MC technique on an 8×8 cluster
with PBC was employed (involving ED of the fermions at ev-
ery MC step). Also shown are two GL fits, as also employed in
Fig. 2. The blue (thick) line indicates a divergence at a tem-
perature T ∗ (lower than TS) characteristic of the electronic
sector alone. In the range T ≤ TS , the lattice follows the elec-
tronic behavior. The black (thin) line and black tilted square
points are a fit including the 3TSΨ2 correction (see text in
the previous section of this Suppl. Material). The fitting pa-
rameters are T ∗ = 105 K and TS = 304 K. The actual Néel
temperature for g̃=0.16 and λ̃=0.84 is not shown.

D. Spin-nematic susceptibility at large λ̃

To investigate in more detail the potential role of or-
bital order in the spin-nematic susceptibility, simulations
were repeated for a robust λ̃ = 0.84, keeping the other
electron-lattice coupling fixed as g̃ = 0.16. Results are
shown in Fig. 5. The increase of λ̃ substantially increases
TS , which is to be expected since now the electron-lattice
coupling is larger14. However, above TS still the results
can be well fit by a Curie-Weiss law, with a divergence at
T ∗ which is the critical temperature of the purely elec-
tronic system, as described in the main text. Even the co-
efficient a0 in the fit is almost identical to that of the case
λ̃ = 0.12, in Fig. 2. The second fit, with the 3TSΨ2 cor-
rection, is still reasonable. In summary, as long as λ̃ is not
increased to such large values that the low-temperature
ground state is drastically altered, the computational re-
sults can still be analyzed via the GL formalism outlined
here and in the main text, with a T ∗ that originates in the
(π, 0) magnetic transition of the purely electronic sector.

For completeness, the plots analog to those of Fig. 1
but in the present case of λ̃ = 0.84 are provided in Fig. 6.

1 D. C. Johnston, Adv. Phys. 59, 803 (2010).
2 P. Dai, J.-P. Hu , and E. Dagotto, Nat. Phys. 8, 709 (2012).
3 J-H. Chu, J. G. Analytis, K. De Greve, P. L. McMahon,

Z. Islam, Y. Yamamoto, and I. R. Fisher, Science 329, 824
(2010); See also I. R. Fisher, L. Degiorgi, and Z. X. Shen,
Rep. Prog. Phys. 74, 124506 (2011).

4 E. Fradkin, S. A. Kivelson, M. J. Lawler, J. P. Eisenstein,
and A. P. Mackenzie, Annu. Rev. Cond. Mat. Phys. 1, 153
(2010).

5 R. M. Fernandes, L. H. VanBebber, S. Bhattacharya, P.
Chandra, V. Keppens, D. Mandrus, M. A. McGuire, B. C.
Sales, A. S. Sefat, and J. Schmalian, Phys. Rev. Lett. 105,



11

 (a)

 Ts

 T
*
 0

 100

 200

 300

 400
T (K) 0.0

0.005
0.010

ε

0.0

2.0

Ψ

1

0.0

0.5

1.0

1.5

2.0

0.015 0.010 0.005 0.000

Ψ

ε

50K

400K

(b)

1

FIG. 6: (color online) Spin-nematic order parameter from the

MC simulations, at g̃=0.16 and λ̃=0.84. (a) Ψ vs. T and
ε, measured at a fixed lattice distortion ε for each temper-
ature (restricted MC). Shown are the T ∗ temperature (see
text) and TS . Results shown are for an 8×8 cluster with
TCA+TBC, but PBC 8×8 clusters with ED give similar re-
sults. Red points are the equilibrium values using unrestricted
MC with ED and PBC 8×8 clusters. (b) MC results illustrat-
ing the relation between Ψ and ε in unrestricted MC (red) and
the restricted MC curves (green/blue), parametric with tem-
perature. Results are obtained with ED/PBC 8×8 clusters.
Note that Ψ vs. ε (red squares) is no longer linear which is

expected because Eq.(23) is valid only for λ̃ = 0 (and ap-

proximately valid for small λ̃).

157003 (2010).
6 C. Fang, H. Yao, W.-F. Tsai, J.P. Hu, and S. A. Kivelson,

Phys. Rev. B 77, 224509 (2008).
7 C. Xu, M. Müller, and S. Sachdev, Phys. Rev. B 78,

020501(R) (2008).
8 R. M. Fernandes, A. V. Chubukov, J. Knolle, I. Eremin,

and J. Schmalian, Phys. Rev. B 85, 024534 (2012).
9 R. M. Fernandes, A. V. Chubukov, and J. Schmalian, Na-

ture Phys. 10, 97 (2014).
10 C.-C. Lee, W.-G. Yin, and Wei Ku, Phys. Rev. Lett. 103,

267001 (2009).
11 C.-C. Chen, B. Moritz, J. van den Brink, T. P. Devereaux,

and R. R. P. Singh, Phys. Rev. B 80, 180418(R) (2009);

C.-C. Chen, J. Maciejko, A. P. Sorini, B. Moritz, R. R. P.
Singh, and T. P. Devereaux, Phys. Rev. B 82, 100504(R)
(2010).

12 W. Lv, J.S. Wu, and P. Phillips, Phys. Rev. B 80, 224506
(2009); W.-C. Lee, W. Lv, J. M. Tranquada, and P. W.
Phillips, Phys. Rev. B 86, 094516 (2012).

13 H. Kontani, Y. Inoue, T. Saito, Y. Yamakawa, and S.
Onari, Solid State Comm. 152, 718 (2012); H. Kontani,
T. Saito, and S. Onari, Phys. Rev. B 84, 024528 (2011).

14 S. Liang, A. Moreo, and E. Dagotto, Phys. Rev. Lett. 111,
047004 (2013).

15 W.-G. Yin, C.-C. Lee, and W. Ku, Phys. Rev. Lett. 105,
107004 (2010).

16 W. Lv, F. Krüger, and P. Phillips, Phys. Rev. B 82, 045125
(2010).

17 S. Liang, G. Alvarez, C. Sen, A. Moreo, and E. Dagotto,
Phys. Rev. Lett. 109, 047001 (2012).

18 E. Dagotto, T. Hotta, and A. Moreo, Phys. Rep. 344, 1
(2001).

19 H. Gretarsson, A. Lupascu, J. Kim, D. Casa, T. Gog, W.
Wu, S. R. Julian, Z. J. Xu, J. S. Wen, G. D. Gu, R. H.
Yuan, Z. G. Chen, N.-L.Wang, S. Khim, K. H. Kim, M.
Ishikado, I. Jarrige, S. Shamoto, J.-H. Chu, I. R. Fisher,
and Y-J. Kim, Phys. Rev. B 84, 100509(R) (2011).

20 F. Bondino, E. Magnano, M. Malvestuto, F. Parmigiani,
M. A. McGuire, A. S. Sefat, B. C. Sales, R. Jin, D. Man-
drus, E. W. Plummer, D. J. Singh, and N. Mannella, Phys.
Rev. Lett. 101, 267001 (2008).

21 ∆SN=TS-TN can be regulated by the electron-orbital cou-
pling λ̃ leading to a ∆SN in our model larger than the
small values reported for spin systems [see Y. Kamiya, N.
Kawashima, and C. D. Batista, Phys. Rev. B 84, 214429
(2011); A. L. Wysocki, K. D. Belashchenko, and V. P.
Antropov, Nat. Phys. 7, 485 (2011)].

22 J-H. Chu, H-H. Kuo, J. G. Analytis, and I. R. Fisher, Sci-
ence 337, 710 (2012); Hsueh-Hui Kuo, Maxwell C. Shapiro,
Scott C. Riggs, and Ian R. Fisher, Phys. Rev. B 88, 085113
(2013); and references therein.

23 M. Daghofer, A. Nicholson, A. Moreo, and E. Dagotto,
Phys. Rev. B 81, 014511 (2010).

24 The original definitions of Ψ and ε in14 have been mul-
tiplied by −1 so that Ψ and ε are both positive here, as
assumed in the GL analysis.

25 The spin in HSL will only be the localized spin for compu-
tational simplicity.

26 S. Kumar and P. Majumdar, Eur. Phys. J. B 50, 571
(2006).

27 In unrestricted MC employing the ED method on 8×8 clus-
ters, typically 8,000 thermalization (Th) and up to 100,000
measurement (Ms) steps were used. In restricted MC with
ED and 8×8 clusters, the numbers are 8,000 and 20,000
for Th and Ms steps. In restricted MC using TCA+TBC,
4,000 Th and 4,000 Ms steps were employed for a 16×16
cluster with a 4×4 cluster for the MC updates, while for an
8×8 (same MC update cluster) the numbers were 20,000
for Th and 20,000 for Ms steps.

28 J. Salafranca, G. Alvarez, and E. Dagotto, Phys. Rev. B
80, 155133 (2009).

29 The value of T ∗ is not the same (but close) for 8×8 and
16×16 lattices due to size effects. Then, the fits for each
lattice size are carried out with the T ∗ of each cluster.

30 S. Kasahara, H.J. Shi, K. Hashimoto, S. Tonegawa, Y.
Mizukami, T. Shibauchi, K. Sugimoto, T. Fukuda, T.
Terashima, A. H. Nevidomskyy, and Y. Matsuda, Nature



12

486, 382 (2012).
31 Y.-X. Yang, Y. Gallais, R. M Fernandes, I. Paul, L.

Chauvière, M.-A. Méasson, M. Cazayous, A. Sacuto, D.
Colson, and A. Forget, JPS Conf. Proc. 3, 015001 (2014).

32 Note that in the presence of external strain to detwin crys-
tals, some remaining artificial anisotropy may incorrectly
suggest that (π, 0) − (0, π) are not degenerate above TS

in neutron scattering, leading to the incorrect conclusion
that TPG is TS (for related observations see C. Dhital,
Z. Yamani, Wei Tian, J. Zeretsky, A. S. Sefat, Ziqiang
Wang, R. J. Birgeneau, and S. D. Wilson, Phys. Rev.
Lett. 108, 087001 (2012); E. C. Blomberg, A. Kreyssig,
M.A. Tanatar, R.M. Fernandes, M. G. Kim, A. Thaler, J.
Schmalian, S. L. Bud’ko, P. C. Canfield, A. I. Goldman,
and R. Prozorov, Phys. Rev. B 85, 144509 (2012)).

33 Our results should be compared against the photoemis-
sion experiments reported by T. Shimojima,T. Sonobe, W.
Malaeb, K. Shinada, A. Chainani, S. Shin, T. Yoshida,
S. Ideta, A. Fujimori, H. Kumigashira, K. Ono, Y.
Nakashima, H. Anzai, M. Arita, A. Ino, H. Namatame, M.
Taniguchi, M. Nakajima, S. Uchida, Y. Tomioka, T. Ito, K.

Kihou, C. H. Lee, A. Iyo, H. Eisaki, K. Ohgushi, S. Kasa-
hara, T. Terashima, H. Ikeda, T. Shibauchi, Y. Matsuda,
and K. Ishizaka, Phys. Rev. B 89, 045101 (2014) (see for
instance their Figure 6). Infrared studies correlating the
presence of a pseudogap with antiferromagnetic fluctua-
tions can also be found in S. J. Moon, A. A. Schafgans,
S. Kasahara, T. Shibauchi, T. Terashima, Y. Matsuda, M.
A. Tanatar, R. Prozorov, A. Thaler, P. C. Canfield, A. S.
Sefat, D. Mandrus, and D. N. Basov Phys. Rev. Lett. 109,
027006 (2012).

34 Rong Yu, Kien T. Trinh, Adriana Moreo, Maria Daghofer,
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