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Here we calculate the pairing interaction and the k dependence of the gap function associated
with the nematic charge fluctuations of a CuO2 model. We find that the nematic pairing interaction
is attractive for small momentum transfer and that it gives rise to d-wave pairing. As the doping
p approaches a quantum critical point, the strength of this pairing increases and higher d-wave
harmonics contribute to the k-dependence of the superconducting gap function, reflecting the longer
range nature of the nematic fluctuations.

The importance of a nematic phase and the possible
existence of a nematic quantum critical point (QCP) just
beyond the optimal doping of the cuprate superconduc-
tors was first raised in an article by Kivelson et al.1.
There are now a variety of experiments2–7, which find
short-range biaxial charge order in the pseudogap region
of the T -p (p=holes/Cu) phase diagram of the cuprate
superconductors. Ultrasonic measurements8 of the elas-
tic moduli of YBaCuO6+δ crystals provide thermody-
namic evidence of a distinct phase boundary T ∗(p) below
which the system is in a pseudogap phase. Magnetoresis-
tance measurements of the electron effective mass m∗ by
Ramshaw et al.9 report an increase in m∗ as the doping p
approaches a critical doping pc = 0.18 where T ∗(pc) goes
to zero. They also find that the magnetic field needed
to suppress superconductivity peaks as p approaches pc,
clearly implicating the pseudogap quantum critical fluc-
tuations in the superconducting pairing. There have
also been a number of theoretical ideas regarding ne-
matic and spin-charge order and in particular the nature
of the pseudogap and its role in superconductivity10–12.
Oganesyan et al.13 discussed the breakdown of Fermi liq-
uid theory at a nematic quantum critical point. Metlitski
et al.14–16 have argued that near the onset of spin-density
wave (SDW) order there is an instability to an Ising ne-
matic charge ordered phase and discussed how nematic
critical point fluctuations can mediate pairing. Nie et
al.17 have noted that a number of experimental observa-
tions associated with the pseudogap can be understood
if the phase is a nematic remnant of stripe order.

Here we examine this problem phenomenologically us-
ing the framework of a three-band Hubbard model for
a CuO2 plane18,19 to parameterize the nematic fluctua-
tions. Early studies of this model20 found that inter-band
charge-transfer excitations could promote s-wave super-
conductivity. Recent work by Fischer and Kim21 and Bu-
lut et al.22 has shown that this model exhibits nematic
instabilities and studied its phase diagram. We are inter-
ested in determining the strength of the d-wave pairing
associated with nematic fluctuations and the k depen-
dence of the gap function as the doping p approaches
pc. We will find: (1) Nematic charge fluctuations can

work in parallel with a primary d-wave pairing interac-
tion such as antiferromagnetic spin fluctuations; (2) The
attractive pairing nematic fluctuations involve small mo-
mentum trasfers |k−k′| for which the gap ∆(k) and ∆(k′)
have the same sign; (3) As the doping p approaches the
QCP, the strength of the pairing gets larger and the in-
creasing range of the interaction is reflected in higher
d-wave harmonic structure in the k-dependence of the
gap.

In the three-band Hubbard model18,19 for the CuO2

layer, the single-particle electron creation operators carry
an orbital index `. This index ` = 1, 2 or 3 and denotes
respectively the dx2−y2 orbit of the Cu, the px orbit of
the Ox oxygen and the py orbit of the Oy oxygen in the
unit cell. The Hamiltonian is

H = H0 + V (1)

with

H0 =
∑

k,`1,`2,σ

(ε`1`2(k)− µ)c†`1σ(k)c`2σ(k) . (2)

For the hopping parameters shown in Fig. 1a

ε`1`2(k) = εd δ`1,1δ`2,1 + εp [δ`1,2δ`2,2 + δ`1,3δ`2,3] (3)

+ 2tpd sin(kx/2) [δ`1,1δ`2,2 + δ`1,2δ`2,1]

− 2tpd sin(ky/2) [δ`1,1δ`2,3 + δ`1,3δ`2,1]

− 4tpp sin(kx/2) sin(ky/2) [δ`1,2δ`2,3 + δ`1,3δ`2,2] .

Diagonalization of H0 gives 3 bands ν with energy dis-
persion Eν(k). V contains the Coulomb interactions in-
dicated in Fig.1a and is given by

V =
∑
`1`2

V`1`2(q)n`1(q)n`2(−q) (4)

with

n`(q) =
∑
k,σ

c†`σ(k + q)c`σ(k) (5)
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FIG. 1. (Color online) (a) The Fermi surface for tpd =
1.0, tpp = 0.5 at a hole doping p = 0.20. The inset shows
the hopping and Coulomb interactions parameters. (b) The
orbital weights |alν(k)| on the Fermi surface with the angle Θ
measured from k = (π, 0).

and

V`1`2(q) = Ud[δ`1,1δ`2,1] + Up[δ`1,2δ`2,2 + δ`1,3δ`2,3] (6)

+ 2Vpd cos(qx/2)[δ`1,1δ`2,2 + δ`1,2δ`2,1]

+ 2Vpd cos(qy/2)[δ`1,1δ`2,3 + δ`1,3δ`2,1]

+ 4Vpp cos(qx/2) cos(qy/2)[δ`1,2δ`2,3 + δ`1,3δ`2,2] .

The effective interaction in the charge channel consists
of the direct and the exchange terms

V c`1`2`3`4(k, k′, q) =− δ`1`3δ`2`4V`1`2(k − k′) (7)

+ δ`1`2δ`3`42V`1`3(q) .

Within an RPA approximation the charge vertex Γc is ob-
tained as the solution of the particle-hole t-matrix which

sums multiple V c scatterings. This integral equation can
be simplified by writing the interaction in a separable
form23

V`1`2(k − k′) =
∑
ij

gi`1`2(k)Ṽ ijX g
j
`1`2

(k′)

V`1`2(q) =
∑
ij

gi`1`1 Ṽ
ij
D (q)gj`2`2 (8)

The functions gi`1`2(k) form a 19-dimensional basis. This

basis along with the 19×19 exchange ṼX and direct ṼD
interaction matrices are given in Appendix A of Bulut et
al.22.

The charge vertex is then given by

Γc`1`2`3`4(k, k′, q) =
∑
ij

gi`1`2(k)Γ̃ijc (q)gj`3`4(k′) (9)

with

Γ̃c(q) =
[
1 + Ṽc(q)χ̃0(q)

]−1
Ṽc(q) . (10)

Here Ṽc(q) = 2ṼD(q)− ṼX(q) and

χ̃ij0 (q) = − 1

N

∑
k,µ,ν

∑
`1,`2,`3,`4

gi`4`3(k)M `1`2`3`4
µν (k, q)gj`2`1(k)

×f(Eν(k + q))− f(Eµ(k))

Eν(k + q)− Eµ(k)
(11)

with M `1`2`3`4
µν (k, q) = a`4µ (k)a

`∗2
µ (k)a`1ν (k + q)a

`∗3
ν (k + q),

where a`ν(k) = 〈c`|νk〉 are orbital-band matrix-elements
shown in Fig. 1b. Within an RPA approximation, the
charge susceptibility matrix

χ`1`2(q) =

∫ β

0

dτ〈T n`1(q, τ)n`2(−q, 0)〉 (12)

is obtained from Γ̃c as22

χ`1`2(q) = χ0
`1`2(q)−

∑
ij

Ai`1`1(q)Γ̃ijc (q)Aj`2`2(q) (13)

with

χ0
`1`2(q) = − 1

N

∑
k,µ,ν

M `1`1`2`2
µν (k, q)

f(Eν(k + q))− f(Eµ(k))

Eν(k + q)− Eµ(k)

Ai`3`4(q) =
1

N

∑
k,µ,ν

∑
`1,`2

M `1`2`3`4
µν (k, q)gi`1`2(k)

×f(Eν(k + q))− f(Eµ(k))

Eν(k + q)− Eµ(k)
. (14)

The nematic susceptibility is given by the d-wave projec-
tion of the charge susceptibility

χN (q) = χxx(q) + χyy(q)− χxy(q)− χyx(q) , (15)

with χ`1`2(q) given by Eq. (13). The charge vertex enters
the pairing channel as illustrated in the inset of Fig. 3.
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A measure of the pairing strength and the k-dependent
structure of the gap function24 are given by the leading
eigenvalue and eigenfunction of

−
∮ dk′‖

2πvF (k′‖)
Γc(k, k

′)φα(k′) = λαφα(k) (16)

with

Γc(k, k
′) =

∑
`1,`2,`3,`4

a
`∗1
ν (k)a

`∗4
ν (−k)Γc`1`2`3`4(k′,−k, k − k′)

×a`2µ (k′)a`3µ (−k′) (17)

Here the k‖ integral in Eq. (16) is over the Fermi surface,
ν is the band index at the Fermi energy and vF (k‖) the
Fermi velocity.

In the following we will measure energy in units of
tpd and set tpp = 0.5, εd − εp = 2.5, Ud = 9, Up =
3, Vpd = 1 and Vpp = 2. For these parameters there
is a phase transition to a commensurate q = 0 nematic
phase when the doping decreases below a critical doping
pc ≈ 0.2022. The Fermi surface for this doping is shown in
Fig. 1a. Here we examine the contribution of the nematic
fluctuations to the pairing which arises from the charge
channel25. In this RPA formulation we assume that the
energy scale of the nematic fluctuations which drive the
pairing is larger than Tc and evaluate the charge pairing
vertex Γc and the nematic susceptibility χN in the T →
0 limit. This procedure of course breaks down in the
critical regime when p is close to pc. Pairing near an
Ising-nematic QCP has been discussed in16.

The nematic (d-wave) charge susceptibility χN (q) eval-
uated from Eq. (15) is shown in Fig. 2a for a doping
p = 0.205. As discussed by Bulut et al.22, depending
upon the model parameters, commensurate q = (0, 0)
(nematic), diagonal q = (q0, q0) (smectic-like) or Cu-O-
Cu bond aligned q = (q0, 0), (0, q0) (smectic-like) phases
can occur. In all these cases the charge transfer is domi-
nantly between the O−px and O−py oxygen orbitals, as
illustrated in the inset of Fig. 2b. This same intra-unit
cell breaking of the point group symmetry of the CuO2

lattice was found in a strong coupling limit of the 3-band
Emery model26, while the q = (q0, 0) phase is observed
in the cuprates5. For the interaction parameters we have
used, the susceptibility diverges at pc ≈ 0.20 where there
is a commensurate q = (0, 0) quantum critical point. As
shown in Fig. 2b, the nematic susceptibility χN (q = 0)
rises rapidly as p approaches pc. For a fixed value of
p − pc, the strength of the nematic fluctuations depend
on the oxygen-oxygen interaction Vpp and increase as Vpp
increases.

We turn next to the pairing channel. The nematic
fluctuations with q = 0 give rise to an attractive pairing
interaction for small momentum transfer k−k′. For large
momentum transfer, the pairing interaction is repulsive
because of the leading order V c(k, k′, q) contribution to
Γc(k, k′, q) (see Eq. (10)). We find that this structure of
the pairing interaction in Eq. (16) gives rise to a leading
d-wave (see Fig. 4) and a sub-leading extended s-wave
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FIG. 2. (Color online) The RPA nematic charge susceptibility
χN (q) versus q for p = 0.205. (b) χN (q = 0) versus p. The
inset illustrates the nematic mode charge fluctuation on the
oxygens.
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FIG. 3. The d-wave pairing strength λd associated with the
exchange of charge fluctuations versus the hole doping p. The
inset shows a diagrammatic representation of the contribution
of the charge vertex Γc to the gap equation.
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(not shown) eigenfunction φα(k) with nearly degenerate
eigenvalues. As shown in Fig. 3, the eigenvalue λd which
is a measure of the d-wave pairing strength increases as
p approaches pc. The nematic fluctuations are attrac-
tive and contribute positively to the d-wave pairing be-
cause they involve small momentum transfers. At a fixed
p− pc value, λd increases when Vpp is increased and the
nematic fluctuations increase in strength. In addition,
in this RPA treatment, λd has a strong dependence on
the Coulomb interaction Vpd between the Cu and the O.
While the strength of the nematic fluctuations primarily
depend upon p and Vpp, their contribution to the pair-
ing vertex Γc(k, k

′) depends on Vpd. This is because Vpd
provides a coupling of the O− px and the O− py charge
fluctuations to Γcdddd which as seen in Eq. (17) contributes
to Γc(k, k′) through four d orbital weight factors. In the
absence of the Vpd coupling, a coupling of the nematic
oxygen charge fluctuations to the d-wave pairing chan-
nel involves the product of four p orbital weight factors,
which, as seen from Fig. 1b, is significantly smaller than
the product of four d-orbital weight factors. Here it is
important to remember that the RPA is a weak coupling
theory and in strong coupling a large Ud splits the band
at the Fermi energy into a lower and an upper Hubbard
band. Hole-doping then moves the chemical potential
into the band that has predominantly p-character and
in this case, Vpd will play a less important role in the
coupling to the nematic fluctuations.

The gap functions φd(k) for dopings p = 0.205 and 0.22
are shown as the solid curves in Figs. 4a and b. The devi-
ation of φd(k) from the (cos kx−cos ky) form shown as the
dashed curves implies the presence of additional higher
order d-wave harmonics. As one knows, the pairing in-
teraction associated with short range anti-ferromagnetic
spin fluctuations primarily involves near neighbor Cu
sites and leads to the familiar (cos kx − cos ky) depen-
dence of φd(k). However, as seen in the plot of χN (q),
Fig. 2a, the nematic fluctuations close to the QCP are
rather narrow leading to a longer range interaction and
increasing the weight of higher harmonics in φd(k). This
becomes particularly apparent in the structure of φd(k)
as p approaches pc. As noted, YBCO has Cu-O-Cu bond
aligned incommensurate q∗ = (q0, 0) or (0, q0) charge
fluctuations. In this case, there will be eight regions as-
sociated with the Fermi surface points connected by q∗

where φd(k) will exhibit additional structure. Again, this
structure will narrow and peak as p approaches pc.

Using an RPA approximation for a 3-band model of
CuO2 we have shown that nematic charge fluctuations
can contribute to the d-wave pairing interaction and that
the strength of this pairing increases as the doping p ap-
proaches the nematic QCP. The pairing interaction me-
diated by the nematic fluctuations is “attractive” for fre-
quencies below a characteristic fluctuation scale and in-
volves small momentum transfers. Thus it predominantly
scatters pairs between (k,−k) and (k′,−k′) states on the
Fermi surface where the gap has the same sign. Because
of the large on-site Cu Coulomb interaction, the pair-

(a)

(b)

FIG. 4. (Color online) The gap function φd(k) (solid) versus
θ for k on the Fermi surface normalized to it’s value at θ = 0.
The dashed curve is cos kx − cos ky. (a) p = 0.205 and (b)
p = 0.22.

ing occurs in the d-wave channel. The narrow linewidth
associated with the nematic pairing interaction close to
the QCP leads to higher d-wave harmonics in the k de-
pendence of the gap, reflecting the longer range nature
of the nematic pairing interaction. The nematic fluc-
tuations can work in tandem with the ”repulsive” large
momentum transfer spin fluctuation interaction so that
both the charge and spin channels contribute to the d-
wave pairing strength.
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