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We show that when spin and orbital angular momenta are entangled by spin-orbit coupling,
this transforms a topological spin-triplet superfluid/superconductor state, such as 3He-B, into a
topological s± state, with non-trivial gapless edge states. Similar to 3He-B, the s± state also
minimizes on-site Coulomb repulsion for weak to moderate interactions. A phase transition into a
topological d-wave state occurs for sufficiently strong spin-orbit coupling.

I. INTRODUCTION

Topological states of matter, including topological in-
sulators, superconductors and superfluids are of great
current interest1–4. Spin-orbit coupling plays a key role
in driving the non-trivial topology of 3D topological in-
sulators, and a topological superconducting phase (spin-
less p + ip) can also be induced by proximity effect be-
tween a conventional s-wave superconductor and a mate-
rial with strong spin-orbit coupling, such as a topological
insulator5–7. In this paper, we will show that a topolog-
ical s± state can also be generated using the converse
effect of spin-orbit coupling on a p-wave condensate.

To illustrate this physics, we introduce a toy model,
describing 2D 3He-B with an additional tunable Rashba
coupling. This tunable coupling term is absent in real
He-3, but the model provides a simple and pedagogical
example of the effect of strong spin-orbit coupling on a
topological superconductor that may be generalized to a
larger class of superconductors, such as Sr2RuO4

8–11, in
which either spin, or some other internal degree of free-
dom may become entangled with the momentum-space
structure of the condensate. 3He-B is the canonical ex-
ample of a topological superfluid12. An early theory of
p-wave pairing applicable to the B-phase of He-3B, was
proposed by Balian and Werthammer in 196313, prior to
its experimental discovery in the 1970’s12,14–16. While
the anisotropic p-wave nature of its pairing due to the
fermionic hard-core repulsion was predicted early on13,17;
the underlying topological character of the wavefunction,
together with its gapless Majorana edge states were only
pointed out in 2003 by Volovik1,18,19; more recent works
have connected He-3B with a much more general class of
topological superfluids20,21.

3He-B is a p-wave superfluid with unbroken time-
reversal symmetry. Although the underlying gap func-
tions contain nodes, the combination of orthogonal spin
channels (σx,y,z) causes the various p-wave gaps to add
in quadrature, hiding one-another’s nodes and giving rise
to a fully gapped excitation spectrum. In the absence of
spin-orbit coupling, the spin (S) and angular momentum
(L) of the Cooper pairs are well-defined quantum num-
bers. However, spin-orbit coupling entangles L and S,
and only the total angular momentum, J = L + S, is
well-defined. We show that when orbital and spin an-

FIG. 1. (a) With Rashba coupling, the 2D Fermi surface is
split into two with opposing helicities β3 = ±1. The relative
orientation of the helicity vector ẑ× k̂ and the triplet pairing
d̂(k) vector is θ. (b) In the superfluid 3He-R condensate, the

gap is maximized when the helicity and d̂(k) vectors align
(θ = 0), developing an s± gap function with opposite signs
on the two Fermi surfaces.

gular momentum become mixed, a p-wave superfluid is
transformed into a topological s± (J = 1 − 1 = 0) or a
nodal d-wave (J = 1+1 = 2) superfluid, as the spin-orbit
coupling strength is increased.
Our analysis includes the U(1) rotational degree of

freedom between the spin-orbit, n̂k, and superconduct-

ing d̂k vectors, which was ignored in previous works22–24

on non-centro-symmetric superconductors, where it was

assumed that n̂k and d̂k are always parallel due to strong
spin-orbit coupling. Here, we show that the strong

Coulomb repulsion breaks the alignment of n̂k and d̂k,
and the mixing of s and d-wave spin-singlet pairing, with
the p-wave spin-triplet pairing naturally arises from the

in-phase and counter-phase rotation of n̂k and d̂k respec-
tively.
Specifically, our key results are:

1. At weak to moderate spin-orbit coupling, the
ground-state of isotropic 3He-B adiabatically trans-
forms into a “low-spin” J = 1 − 1 = 0 s-wave
condensate, made up of two fully gapped spin-
polarized Fermi surfaces of opposite pairing phase.
This state retains the topological character of its
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FIG. 2. Figs. (a) and (b) show the direction of rotation

of ~nk and ~dk in the “low”-spin s± and “high”-spin dx2−y2

state respectively. The Rashba vector ~nk = (−ky, kx) ro-
tate anti-clockwise around Γ in both states, and is shown
only in Fig. (a) for simplicity. The superconducting vector
~dk = (−ky, kx) ‖ ~nk in the s± state, while ~dk = (−kx, ky)
rotates clockwise, opposite to ~nk, in the “high”-spin dx2−y2

state. The dark red line is the locus marked out by ~dk as it ro-
tates. A phase transition from the s± state into a d-wave state
occurs when the spin-orbit interaction is sufficiently strong to
lift one of the helical bands above EF . Figs. (c) and (d)
show the symmetry of the superconducting gap in the heli-
cal quasi-particle basis for the “low”-spin and “high”-spin SC
state respectively.

p-wave parent, forming an “s±” state with topo-
logically protected gapless edge states.

2. In the presence of strong spin-orbit coupling (λk ≈
µ), the system undergoes a topological phase tran-
sition into a “high-spin” topological d-wave state
with angular momentum (J = 1 + 1 = 2). We
note that the d-wave state has been discussed in
the context of neutron stars by earlier groups25,26,
although the topological nature of the d-wave state
was not appreciated.

Our results show that an apparently s-wave super-
fluid/superconductor can hide pairing in a higher angular
momentum channel, thereby minimizing a hard-core re-
pulsion or a local Hubbard repulsion.

lim
U→∞

〈c↑(~x)c↓(~x)〉 = 0 (1)

The breaking of inversion symmetry (I) mixes even-
parity spin-singlet and odd-parity spin-triplet Cooper
pairs in non-centosymmetric superconductors, and the
effects of s-wave and d-wave pairing in the presence

of strong Coulomb repulsion U > λ, with a resulting
“low” spin to “high” spin phase transition is addressed
in Sec. IV. Fig. 2 illustrates the in-phase and out-of-

phase rotations of ~nk and ~dk in the “low”-spin s± and
“high”-spin d-wave state respectively, for the particular
case of dx2−y2 .

While the strong spin-orbit coupling necessary for a
“low-spin” to “high-spin” transition is un-physical in ac-
tual 3He-B, it may be realized in cold-atom systems27.
Another interesting possibility is the iron-based systems
which have strong orbital exchange hoppings, where or-
bital iso-spin (I) plays a similar role to spin in 3He-
B28, allowing us to generate (J = L + I = 0) s± or
(J = L+ I = 4) g-wave superconducting states.

II. 3He-R: TWO DIMENSIONAL 3HE-B WITH
SPIN-ORBIT COUPLING

We now formulate a simple model of two dimensional
3He-B with a a Rashba spin-orbit coupling that we refer
to as 3He-R. A Rashba coupling is introduced into the
kinetic energy, by replacing ǫk → ǫk+λ(ẑ×k) ·~σ, where
ẑ is normal to the plane. The Rashba term is absent in
real 3He-B, but might be realized in other contexts, such
as a cold-atom system. The toy model for 3He-R is then

H =
∑

k

c†
k
[ǫk + λkn̂(k) · ~σ] ck

+
∑

k∈ 1

2
MS

[

∆c†
k
(d̂(k) · ~σ)iσ2c

†
−k

+H.c
]

, (2)

where the summation for the pairing term is over half
of momentum space (MS), most simply implemented by

restricting kx > 0. Here n̂(k) = ẑ× k̂ denotes the direc-

tion of the Rashba field, c†
k
≡ (c†

k↑, c
†
k↓) is the electron

creation operator and d̂(k) is the d-vector determining
the local direction of p-wave pairing in momentum space.
Here we have restricted ourselves to the class of Balian-
Werthammer p-wave condensates in which the d-vector is
of constant magnitude. We shall follow the normal con-

vention of choosing λk = λ|~k|, but will adopt a simpler,
momentum-independent interaction, λk = λ in Sec. IV to
illustrate the qualitative effects of a hard-core/Coulomb
repulsion.

Following Balian and Werthamer, we write the Hamil-
tonian in Nambu notation,

H =
∑

k∈ 1

2
MS

ψ†
k
Hkψk (3)

Hk = (ǫk + λkn̂(k) · ~σ)γ3 + (∆d̂(k) · ~σ)γ1. (4)

Here ~γ = (γ1, γ2, γ3) denotes the three Nambu matrices
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and

ψk =









ck↑
ck↓
c†−k↓

−c†−k↑









(5)

is the Balian-Werthammer four-component spinor. Two
dimensional 3He-B is described by the case where λk = 0.
In this case, the d-vector wraps around the Fermi sur-

face, and can be written in the general form d̂(k) =

O · (k̂x, k̂y) where O is a two dimensional orthogonal ma-

trix; the cases det(O) = ±1 correspond to a d̂ vector that
winds in the same, or opposite sense to the Rashba vector

n̂(k). Consider the case where d̂(k) = n̂(k), so that

d̂(k) · ~σ = −k̂yσx + k̂xσy , (6)

corresponding to a d-vector that points tangentially in
momentum space. The corresponding paired state is fully
gapped, with spectrum

Ek =
√

ǫ2
k
+∆2. (7)

The topological nature of the B-phases of He-3 is fun-

damentally due to the fact that the d̂(k) has a finite
winding number n = ±1 in spin space, where

n =

∮

ẑ ·
(

d̂(k)† × ∂ad̂(k)
) dka

2π
= ±1. (8)

Since 3He-B belongs to the DIII class, it is characterized
by a Z2 invariant in 2D and 1D,

N = ΠK

Pf [iσyq(K)]
√

Det[q(K)]
(9)

N = ±1 for any time-reversal invariant (TRI) loop
that does not cross a gapless node, with K denoting the
four(two) TRI momenta in 2D(1D); and q(K is the off-
diagonal block of the flat-band matrix ofHk

29,30, and Pf
is the Pfaffian. The fully gapped structure of the spec-
trum hides the underlying p-wave nodes and the topo-
logical character.
We now re-introduce the spin-orbit coupling term

λk(n̂(k) · ~σ). The Rashba vector n̂(k) = ẑ × k̂ defines
a momentum-dependent spin-quantization axis.
The helicity operator

R̂k = ψ†
k
(n̂(k) · ~σ)ψk (10)

commutes with the kinetic part of the Hamiltonian, so
that in the normal state, the quasi-particle basis can be
chosen to be diagonal in the helicity β = n̂(k)·~σ, with cor-
responding quantum numbers β = ±1. The correspond-
ing normal state spectrum is given by ǫk± = ǫk ± λk,
so the spin-orbit term splits the spin-degeneracy of the
Fermi surface (Fig. 1 (a)).
The helicity and d-vector define two independent spin

quantization axes. Suppose first that the Rashba and

FIG. 3. 2D helical bands respectively with weak spin-orbit
coupling, and strong spin-orbit coupling resulting in one of
the helical bands pushed above EF .

d-vector rotate with the same (positive) helicity around
the Fermi surface; in this case the angle θ between these
two axes is constant and we can write

~d(k) = cos θn̂(k) + sin θk̂ (11)

When θ = 0, the two quantization axes align, d(k) =
n̂(k). In this case, the pairing and Rashba term com-

mute, [R̂k, ψ
†
k
(d̂(k) · ~σ)ψk] = 0 so helicity becomes a

conserved quantum number and the Bogoliubov quasi-
particles acquire a definite helicity. If we introduce the
projection operator onto the helical basis,

Pβ =
1

2
(1 + βn̂(k) · ~σ) , (β = ±1) (12)

then the Hamiltonian can be written

Hk =

[

(ǫk + λk)γ3 +∆‖kγ1

]

P+

+

[

(ǫk − λk)γ3 −∆‖kγ1

]

P− (13)

where ∆‖k = ∆cos(θ) is the component of ~dk parallel to
~nk, i.e the first term in Eq. 11. This describes paired
Fermi surfaces with “s-wave” pair condensates of oppo-
site sign and dispersion

E±(k) =
[

(ǫk ± λk)
2 +∆2

]1/2
. (14)

More generally, we can write

Hk = [ǫk + λkβ3(k)]τ3 + [∆‖kβ3(k) + ∆⊥kβ2(k)]τ1
(15)

Here β3(k) = n̂(k) · ~σ and β2(k) = k̂ · ~σ. For a pos-
itive helicity state ∆‖k = ∆cos θ and ∆⊥k = ∆sin θ
are the pairing components parallel and perpendicular
to the helicity axis n̂(k), respectively. Thus, we see that
the intra-band pairing in the helical basis is given by the
parallel component of ∆‖(k), and the perpendicular com-
ponent ∆⊥(k) gives rise to inter-band pairing. So long
as cos θ 6= 0, the diagonal component of the gap pre-
serves the s± symmetry. Thus when the the n̂(k) and

d̂(k) rotate in the same sense, we obtain a J = 0 s-wave
superfluid ground state.
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However, when the d̂(k) vectors have a negative he-
licity, rotating in the opposite direction to the helicity
vector n̂(k) a different kind of behavior occurs. Now

d̂(k) = cos(2θk + φ)n̂(k) + sin(2θk + φ)k̂ (16)

where θk is the azimuthal angle around the Fermi surface,
θk = tan−1 kx

ky
, and φ is the relative angle between n̂(k)

and d̂(k) at θk = 0. Note that the first term in Eq. 16
is an f -wave pairing that rotates in parallel with ~nk (in
agreement with Ref.22), but addition of the second term

gives a ~dk ∝ p-wave and not f -wave. We believe spin
fluctuations will in general drive a p-wave instability more
strongly than an f -wave in physical systems.
The symmetry of the superfluid state is determined by

the diagonal, intra-band component of the pairing in the
helical quasi-particle basis, i.e. ∆‖k in Eq. 13. From
Eq. 16, we see that this is equal to,

∆J=2
k = ∆cos(2θk + φ) (17)

Thus when the the n̂(k) and d̂(k) counter-rotate, we ob-
tain a J = 2 d-wave superfluid ground state.
The full Green’s function of the system is given by

G(z) = (z −Hk)
−1, and the Bogoliubov spectrum is de-

termined by the poles of G, which gives,

E±(k) =
[

ǫ2
k
+ λ2

k
+∆2

±2
[

λ2
k
ǫ2
k
+ λ2

k
∆2|n̂k × d̂k|

2
]]1/2

(18)

The Bogoliubov spectrum can also be written as,

E±(k) =

[

Ak ±
√

A2
k
− γ2

k

]1/2

(19)

where Ak = ǫ2
k
+ λ2

k
+∆2 and

γ2
k
= (ǫ2

k
− λ2

k
+∆2)2 + 4(λk∆ n̂(k) · d̂(k))2 (20)

Since (E+E−)2 = γ2
k
, it follows that when n̂(k)·d̂(k) 6= 0,

E+E− is positive definite, and the gap is finite. If n̂(k)

and d̂(k) rotate in the same sense, the gap is finite ev-

erywhere and and maximized when n̂(k) are d̂(k) are

parallel, i.e n̂(k) × d̂(k) = 0. In a mean-field theory,
the system selects this minimum energy state dynam-
ically, generating an internal Josephson coupling that

couples the two pairing channels such that the d̂(k) vec-
tor lies parallel to the spin-orbit field n̂(k). By con-

trast, when n̂(k) and d̂(k) counter rotate, γ2
k
= 0 along

the nodes of cos(2θk + φ), which is the rotation of a
dxy state through angle −φ. The gap nodes occur at
locations where γk = 0, i.e at the intersection of the
nodal lines of cos(2θk + φ) and the surfaces defined by
ǫ2
k
− λ2 + ∆2 = 0. Therefore, the dxy state corresponds

to φ = 0 with ~dk = (−ky,−kx); whereas φ = π
2 with

~dk = (−kx, ky) gives dx2−y2 . We summarize the “low”-
spin s± and “high”-spin d-wave state, due to the different

relative rotations of ~nk and ~dk in Fig. 2, for the particular
case dx2−y2 state.

III. TOPOLOGICAL s± & d-WAVE STATE
WITH GAPLESS EDGE STATES

The topology of 3He-B is protected by time-reversal
symmetry (T ) with an invariant given by Eq. 8, and
there are corresponding time-reversal protected gapless
helical edge states. Since the spin-orbit coupling n̂(k) · ~σ
is time-reversal invariant, it will not mix the left and
right-moving Majorana fermions. Furthermore, the sys-
tem remains fully gapped it is adiabatically evolved from
the 3He-B state into the s± state by switching on the
spin-orbit coupling. Hence, we expect the low angular
momentum s± state to remain topological and exhibit
gapless helical edge states.
For completeness, we calculate the edge states due to

Andreev reflection at the boundary along the plane x = 0
of the superfluid. Since the Rasbha and pairing fields of a
fermion reverse sign upon reflecting at normal incidence
off the boundary electron, we will map this to a calcula-
tion of edge states at the domain wall between two bulk
3He-R of opposite helicity, satisfying the boundary con-
ditions ∆2(x = −∞) = −∆2 and ∆2(x = ∞) = +∆2,
using the method described by Volovik 18 . The pairing
amplitudes in the σ1 and σ2 spin channels, ∆1(x) and
∆2(x) respectively, as well as the Rashba field λ(x) are
assumed to have an x-position dependence as ∆2(x) and
λ(x) change sign upon reflection, i.e. when mapped onto
the opposite domain.
The topological invariant n (Eq. 8) changes sign from

+1 to −1 across the domain, when ∆(x) changes sign.
Similarly, λ(x) changes sign so that the system remains
in a J = 0 s± state on both sides of the domain. For small
k2x ≪ k2F , we can calculate the edge states perturbatively.
Letting kx = kF + i∂x, we obtain the Hamiltonian,

H = H(0) +H
′

(21)

H(0) = ivF∂xγ3 + λ(x)σ2γ3 +∆2(x)σ2γ1 (22)

H
′

=
∆1

kF
kyσ1γ1 +

λ

kF
kyσ1γ3 (23)

where vF = kF

m . There are two zero-energy solutions, ψ+

and ψ− corresponding to σ2 = ±1 respectively.

ψ±(x) = exp

[

−
1

vF

∫ x

0

dx′ (∆2(x
′)− iλ(x′)σ2)

]

ξ±,

ξ± =

(

1
±i

)

γ

(

1
±i

)

σ

. (24)

It is straightforward to show that the zero-energy
modes satisfy the following Hamiltonian along the edge,
and disperse linearly.

[

H
′

++ H
′

+−

H
′

−+ H
′

−−

]

=

[

0 (v − iδ)ky
(v + iδ)ky 0

]

(25)

where,

v =

(∫ ∞

−∞

dx
∆1(x)

kF
exp[−

2

vF

∫ x

0

dx′∆2(x
′)]

)
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×

(∫ ∞

−∞

exp[−
2

vF

∫ x

0

dx′∆2(x
′)]

)−1

(26)

δ =

(∫ ∞

−∞

dy
λ1(x)

kF
exp[−

2

vF

∫ x

0

dx′∆2(x
′)]

)

×

(
∫ ∞

−∞

exp[−
2

vF

∫ x

0

dx′∆2(x
′)]

)−1

(27)

Solving the edge Hamiltonian, Eq. 21, gives the follow-
ing two fermionic zero modes,

H
′

ψ1,2 = ± ckyψ1,2

ψ1,2 = ψ+ ± ψ1

c =
√

v2 + δ2 (28)

where ψ1,2 are two linearly dispersing Majorana fermions,
similar to the Majorana edge modes found in isotropic
3He-B, with a renormalization of the velocity by the spin-
orbit coupling. This shows that (3He-B remains topolog-
ical with well-defined Majorana edge states at its bound-
aries in the presence of weak spin-orbit coupling. This
agrees with the results of Frigeri et. al.22, who also point
out that hybridization effects at a domain wall will gap
out the edge state.
As explained in Sec. II, the d-wave state corresponds to

counter-rotation of d̂k with respect to n̂k, and in partic-

ular, choosing d̂k ·~σ = −k̂xσx+ k̂yσy gives a dx2−y2 state.
Hence, an identical calculation to that carried out above,
shows that the dx2−y2-wave state is also topological with
gapless Majorana edges states propagating along ky(kx)
with the boundary at x = 0 (y = 0). The semi-classical
calculation is valid only in directions where the system
is fully gapped, i.e. away from the nodal lines, where
the Majorana fermions will hybridize with the gapless
Bogoliubov quasiparticles. This is in agreement with the
results of Schnyder et. al.30,31, where it is shown that the
Hamiltonian along the time reversal invariant 1D loop in
momentum space belongs to the AIII class, and the edge
states are protected by the 1D winding number given in
Eq.

IV. EFFECTS OF HARD-CORE/COULOMB
REPULSION: TOPOLOGICAL PHASE
TRANSITION INTO d-WAVE STATE

The hard-core fermionic repulsion in 3He requires that
the on-site pair amplitude is zero, 〈ψ↑(~x)ψ↓(~x)〉 = 0, and
the 3He-B phase satisfies this constraint by triplet pair-
ing in the p-wave channel. However, spin-orbit coupling,
which allows mixing of spin and angular momentum,
causes scattering of px/y-wave triplet pairs into s-wave
spin-singlet Cooper pairs, and this can lead to a finite
on-site s-wave pair amplitude.
The s± state manages to satisfy the hard-core con-

straint, even though there is a finite s-wave pair suscep-
tibility in each p-wave channel, because of phase cancel-
lation between the bands with opposite helicities. The
phase cancellation mechanism is clear from the Green’s

function in the helical basis, which may be calculated
from Eq. 13,

G(z,k) =
1

z −Hk

=
∑

±

z + (ǫk ± λk)γ3 ±∆γ1
z2 − E±(k)2

(

1± n̂(k) · ~σ

2

)

(29)

The ±∆γ1 component of the Gork’ov propagator de-
scribes s-wave pairing on the two helicity split Fermi sur-

faces. The net s-wave amplitude 〈c†↑c
†
↓〉 is then given by

the trace over the anomalous Green’s function, i.e. the
off-diagonal components of G(z,k),

〈c†↑c
†
↓〉 =

T

2

∑

k,n

Tr[G(iωn,k)
γ1
2
]

=
T

2

∑

k,iωn,β=±

β
∆

(iωn)2 − Eβ(k)2

=
∑

k,β=±

β tanh

(

Eβ(k)

2T

)

∆

4Eβ
k

. (30)

We can identify the two components in Eq. 30 as the
pair contributions from the two helicity polarized bands,
given by

〈c†↑c
†
↓〉± = ±

∑

k

tanh

(

E±(k)

2T

)

∆

4E±
k

. (31)

confirming that each band contributes an s-wave pair-
ing amplitude of opposite signs. In the limit of weak
spin-orbit coupling, when E+(k) ≈ E−(k), there is al-
most complete phase cancellation between the two heli-

cal bands, and 〈c†↑c
†
↓〉 ≈ 0. However, this mechanism fails

when the spin-orbit coupling becomes comparable to the
kinetic energy, such that one of the bands is shifted away
from the Fermi surface; a phase transition to a d-wave
state will then occur.
We now illustrate this by carrying out a BCS treat-

ment of the following Hamiltonian that describes the p-
wave pairing in 3He-B, and we also include a Hubbard
interaction to account for the hard-core repulsion,

H = H(0) −H(sc) +H(U)

H(0) =
∑

k

ψ†
kσ (ǫk + λkn̂k · ~σ)σσ′ ψkσ′

H(I) =
g1
Ns

∑

kk′

b†
k 1bk′ 1 +

g2
Ns

∑

kk′

b†
k 2bk′ 2

H(U) = U
∑

i

ni↑ni↓ (32)

where g1,2 are the coupling constants in the p-wave pair-
ing channels, Ns is the number of lattice sites, and bk 1,2

are defined as,

b†
k 1 = c†

kσ[(kyσ
1)iσ2]σσ′c†−kσ′

b†
k 2 = c†

kσ[(kxσ
2)iσ2]σσ′c†−kσ′ (33)
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We now carry out a Hubbard-Stratonovich decompo-
sition on H(U) into an s-wave term,

H(U) = U
∑

i

ni↑ni↓ ≡ U
∑

i

(c†i↑c
†
i↓)(ci↓ci↑)

−→
∑

i

∆s c
†
↑ic

†
↓i +H.c.−

|∆s|
2

U
(34)

as well as a Hubbard-Stratonovich decomposition of HI

into the p-wave pair fields ∆1/2 in the σ1/2 spin triplet
channels respectively. At the saddle point of the mean-
field free energy where ∂F/∂∆s = 0, the pair density is

given by 〈c†i↑c
†
i↓〉 = ∆̄s/U , and in the large U limit, this

becomes the constraint

〈c↑(~x)c↓(~x)〉 = 0 (U → ∞) (35)

After including the s-wave pairing, the Hamiltonian is
now written as,

Hk = [ǫk + λkn̂ bk · ~σ]τ3 +
[

∆~dk · ~σ +∆s1

]

τ1 (36)

By rotating into the helical basis, or equivalently by
using the projection operator Pβ , we obtain the Hamil-
tonian in the helical basis,

Hk =

[

[ǫk + λkβ3(k)]τ3

+[∆‖(k)β3(k) + ∆⊥(k)β2(k) + ∆s1]τ1

]

Pβ(37)

where β3(k) = n̂xσ1 + n̂yσ2, β2(k) = n̂xσ2 − n̂2σ1, and
∆‖(k) and ∆⊥(k) are the first and second terms respec-

tively in Eq. 11 for in-phase rotation (s± state), and
Eq. 16 for out-of-phase rotation (d-wave state). We can

simplify the discussion by assuming that ~dk ‖ ~nk and
∆1 = ∆2 = ∆, and the Hamiltonian simplifies to,

Hk =
∑

β=±

[

(ǫk + βλk)γ3 + (β∆+∆s)γ1

]

Pβ (38)

and the Bogoliubov spectrum is then given by,

Eβ(k) =
[

(ǫk + βλk)
2 + (∆ + β∆s)

2
]1/2

(39)

It is now straightforward to calculate the free energy
and the s-wave amplitude.

F = Ns

[

∆2

g1
+

∆2

g2

]

(40)

−2T
∑

k,α

ln

[

2 cosh

(

Eα
k

2T

)]

The stationarity condition becomes

∂F

∂∆s
= 〈c

†

↑c
†

↓〉 = 〈c
†

↑c
†

↓〉+ + 〈c
†

↑c
†

↓〉− = 0 (41)

where by direct differentiation, we recover the result of
Eq. 30,

〈c†↑c
†
↓〉± = ±

∑

k

tanh

(

E±(k)

2T

)

∆

4E±
k

. (42)

We now use a simplified momentum-independent spin-
orbit coupling λk = λ to demonstrate the key physics
of phase cancellation in 2D. In this simplified model, the
helical bands are split apart by λ, and the density of state
of both bands remain constant. The integral in Eq. 42
gives the standard BCS result,

〈c†↑c
†
↓〉± = ±

N(0)∆

2
ln
ωsf

∆
(43)

where ωsf is the characteristic upper cutoff of the p-
wave pairing attraction (spin-fluctuation) energy scale
and N(0) is the density of states. In this simple case,

〈c
†

↑c
†

↓〉+ and 〈c
†

↑c
†

↓〉− exactly cancel. Thus, in the case of
weak to moderate spin-orbit coupling, when both helical
bands still cross EF , there is zero net s-wave Cooper pair
amplitude due to phase cancellation of s± state on both
bands.
However, when the spin-orbit coupling becomes com-

parable to the kinetic energy and shifts one of the bands
away from EF , there will now be a net s-wave pair scat-
tering amplitude. In the quasi-particle basis, this means
that the s± state is transformed into an s++ state as
there is only one helical band with an s++ pairing cross-
ing EF . Note that the single helical band now crosses
EF twice, giving rise to two Fermi surfaces of the same
helicity; hence an s++ pairing on both Fermi surfaces.
This fully gapped s++ state is energetically favored in

the absence of hard-core/Coulomb repulsion. However,
in the presence of a hard-core/Coulomb repulsion, the fi-
nite on-site s-wave pair amplitude is strongly disfavored,
and the system will instead undergo a topological phase
transition into a d-wave state, as illustrated in Fig. 2.
The positions of the nodes will be determined by the rel-

ative orientation (φ) of the d̂k-vector with respect to the
spin-orbit n̂k-vector, and this corresponds to an addi-
tional U(1) gauge degree of freedom. For φ = 0, we will
get a dxy state, while φ = π

2 will correspond to a dx2−y2

state.
For a realistic momentum-dependent spin-orbit cou-

pling, λk = λ|~k|, these results remain qualitatively cor-
rect, with corrections due to renormalization of N(0) by
the spin-orbit coupling. In this case, the phase cancella-
tion will not be exact, and the phase transition will occur
before the upper helical band is completely lifted above
EF .

V. DISCUSSION

Using a Rashba coupled model of two dimensional su-
perfluid He-3B, “3He-R”, we have demonstrated that in
the presence of a strong Rashba coupling, a single un-
derlying microscopic pairing mechanism can give rise to
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FIG. 4. Strong spin-orbit coupling scenario: in the absence
of Coulomb repulsion, the s± state is transformed into an
s++ state on the remaining helical band. In the presence of
Coulomb repulsion, the on-site s-wave pair amplitude is dis-
favored, and the system will instead favor a phase transition
into a d-wave state to minimize the hard-core/Coulomb repul-
sion. (Technically, the superfluid pairing on the lower helical
band has a phase proportional to β = −, but we follow con-
vention in labelling it as an s++ pairing, which is equivalent
up to a gauge transformation.)

two superfluid/superconducting ground states of differ-
ent symmetry : a low “spin” fully gapped topological s±

state, and a high “spin” gapless d-wave state. This is be-
cause the spin and rotational symmetries of a system are
coupled by spin-orbit coupling, i.e. SU(2)S ⊗SO(3)L →
SO(3)J .
In contrast to previous works22–24,31 on non-

centrosymmetric superconductors, where they assumed

that the n̂k and d̂k vectors are parallel due to strong
spin-orbit coupling, we take into account the additional
U(1) rotational degree of freedom, which gives rise to
a low “spin” to high “spin” transition. We show that
the strong Coulomb repulsion breaks the alignment of

n̂k and d̂k, and the mixing of s and d-wave spin-singlet,
with p-wave spin-triplet pairing naturally arises from the

in-phase and counter-phase rotation of n̂k and d̂k respec-
tively. Whereas, the d-wave state obtained in previous
results are generated by an f -wave triplet pair rotating
in-phase with n̂k, i.e. a J = 3− 1 = 2 state.
Since the spin-orbit coupling is time-reversal invariant,

the topological nature of the fully gapped 3He-B state is
protected for weak spin-orbit coupling. In this limit, the
ground state of the system is a fully gapped topological
s± state, and we show using an explicit calculation that
the gapless Majorana edge states survive, in agreement
with Sato and Fujimoto23.
However, on-site Coulomb or hard-core repulsion will

drive the system towards a higher angular momentum
d-wave state when the spin-orbit coupling is sufficiently
large to lift one of the helical bands above the Fermi sur-
face. The phase cancellation mechanism that minimizes
the on-site s-wave pair amplitude for the s± state is then
no longer effective, and the system will undergo a topo-
logical phase transition to a topological d-wave state31.
Such a topological phase transition may exist at the

boundary between the crust and quantum interior of neu-
tron stars where the transition from an s± to a d-wave
superfluid state would be driven by the rise in short-
range repulsion with increasing density25. This would
mean that Majorana fermions already exist in one of the
largest superfluid systems known in nature.
This work also raises the intriguing possibility that the

s± superconducting state believed to exist in iron-based
superconductors could have a higher angular momentum
microscopic pairing mechanism, which is hidden behind a
non-trivial helical quasi-particle structure. In these sys-
tems, the dxz and dyz atomic orbitals form an iso-spin (~α)
representation, which plays a similar role to spin here,
~σ ↔ ~α. There is a large orbital Rashba coupling in the
Fe systems, λk ∼ EF , and a microscopic d-wave orbital
triplet pairing28 will give rise to a J = L + α = 0 s±

state or a J = 4 g-wave state. This possibility will be
discussed in future work.
Upon completion of this paper, we recently learned of

a similar work on the same key physics of “low”-spin to
“high”-spin superconducting state in an STO system32.
We thank Onur Erten for helpful discussions. We also
thank Andreas Schnyder and Philip Brydon for pointing
out the topological nature of the d-wave state, and for
very helpful discussions. This work is supported by DOE
grant DE-FG02-99ER45790.
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