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The critical behavior near the continuous paramagnetic to ferromagnetic transition in a single 

crystal of La0.75Pr0.25Co2P2 has been determined based on high-resolution bulk magnetization 

data near TC ~167 K, where long-range order is established in the Co sublattice. Scaling equation 

of state analysis and the Kouvel-Fisher method under a moderate applied magnetic field yielded 

critical exponents (β = 0.3685 ± 0.0017, γ =1.3361 ± 0.0083) consistent with the d = 3, n = 3 

Heisenberg model of short-range interactions. Calculation of the Rhodes-Wohlfarth ratio 

confirmed that a localized rather than itinerant description of the 3d Co moments is appropriate 

in the ferromagnetic region of the sample. The critical susceptibility exponent γ was found to 

decrease systematically from the Heisenberg model value toward the mean-field model value as 

the maximum applied magnetic field considered in the analysis was increased above 2 T. The 

phenomenon is discussed in terms of mixed exchange mechanisms due to the coexistence of 3d 

and 4f magnetic sublattices and ordered clusters in the paramagnetic region.   
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I. INTRODUCTION  

Intermetallic compounds combining rare-earth (R) and transition metal (T) elements 

continue to generate interest from both a technological perspective and one of fundamental 

physics.1-4 Coexistence of localized 4f and itinerant 3d magnetic sublattices in such compounds 

provides an excellent framework to study competition between long-range RKKY and/or 

superexchange interactions and direct exchange.1, 5 Among binary RxTy compounds, the Laves 

phases RT2 are noteworthy for their exchange driven metamagnetism,3, 6-8 while the strong 

effective 3d-4f coupling fields in R2T17 materials produce large magnetocrystalline anisotropy 

while maintaining a high magnetic moment – a fact that has been exploited in permanent magnet 

applications.9, 10 In ternary compounds the incorporation of a third element X (P, As, Si, Ge, B, 

etc.) provides an additional handle to manipulate electronic and structural parameters, thus 

influencing the magnetic properties of the R and T sublattices.5, 11 The ThCr2Si2-type 

intermetallics crystallize in a relatively simple tetragonal structure, with alternating T2X2 and R 

layers stacked along the c-axis.12 Nevertheless, these RT2X2 systems exhibit complex H-T phase 

diagrams, including incommensurate magnetic structures, Kondo lattices and quantum critical 

points (QCPs), re-entrant ferromagnetism, and metamagnetic transitions.13-17  

The classification of the order of the magnetic transition in ferromagnetic RT2X2 systems 

has been of interest due to the potential application of these materials as low-temperature 

magnetic refrigerants.18-20 Both first and second order paramagnetic to ferromagnetic transitions 

are observed,4, 21-23 in some cases depending sensitively on the composition. While the 

determination of transition order is not uncommon, relatively few detailed investigations of the 

critical properties of ferromagnetic RT2X2 compounds are available in the literature.24-26  In one 
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recent exception,26 a study of the magnetism of La1-xNdxMn2Si2 found mean-field-like critical 

exponents for the x = 0.35 composition.  

The RT2P2 phosphide compounds manifest simpler magnetic properties than the ternary 

silicides and germanides (X = Si, Ge) and have been relatively less studied. With the exception of 

LaCo2P2 which undergoes a ferromagnetic transition at 132 K,27 the other RCo2P2 phases are 

antiferromagnets.28 However, a number of recent observations have elaborated on interesting 

effects in mixed and doped phosphide phases.29-31 In particular, a variety of magnetic transitions 

were reported in solid solutions of La1-xPrxCo2P2, despite the relatively simple magnetism of the 

end members of the series, LaCo2P2 and PrCo2P2.27, 32 While the planar spacing in LaCo2P2 is 

anomalously large compared to the rest of the RCo2P2 series, the substitution of Pr for La 

decreases the interlayer separation and lengthens the Co-Co bonds, resulting in the enhancement 

of the TC from 132 K for x = 0 to 170 K for x = 0.25.27, 33  

While a quasi-2D character might be inferred from the stacked planes of magnetic ions in 

the ThCr2Si2 crystal structure, the well-established ferromagnetic and antiferromagnetic coupling 

between T2X2 layers along the c-axis suggests that a three dimensional magnetic description is 

appropriate. As in the RMn2Ge2
5 compounds a hierarchy of exchange couplings can be expected 

in RCo2P2: interlayer Co-Co, Co-R, and R-R, mediated through superexchange pathways or the 

RKKY interaction. Therefore the potential for magnetic inhomogeneity due to competing 

interactions exists. However, these mechanisms act as a perturbation of the direct exchange 

between co-planar Co atoms, which dominates the magnetism in the system. Due to the potential 

for delocalized magnetic moments in 3d subsystems, the question of the expected range of the 

interactions in the system is non-trivial. To address this point, we have performed a detailed 

analysis of the critical exponents of the paramagnetic to ferromagnetic transition in a single 

crystal of La0.75Pr0.25Co2P2. Our study shows that this intermetallic compound belongs to the 3D 
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Heisenberg class with short-range ferromagnetic interaction, and possesses a localized Co 

moment in the ferromagnetic region. 

 

II. EXPERIMENTAL DETAILS 

The preparation and characterization of La0.75Pr0.25Co2P2 single crystals have been 

reported in detail elsewhere.27,32 In brief, high purity powders of lanthanum, praseodymium, red 

phosphorus, and cobalt were used along with tin shots in a tin flux synthetic procedure. In an 

argon-filled drybox, the materials were mixed according to the ratio La:Pr:Co:P:Sn = 1.6(1-

x):1.6x:2:2:30 (x = 0.25), with total mass equal to  25 g, and sealed under vacuum in 20 mm 

inner diameter silica tubes. The mixtures were annealed at 1150 K for 10 days, then the tubes 

were removed from the furnace and allowed to cool to room temperature. The tin matrix was 

removed by soaking in dilute HCl, yielding large single crystals of up to 5 mm x 5 mm x 0.1 mm 

(Fig. 1a). The presence of any residual Sn was ruled out by magnetic measurements, which 

indicated a lack of any diamagnetic contribution associated with the superconducting transition 

in Sn at 3.72 K. The phase purity of the bulk products has been confirmed by powder X-ray 

diffraction while the elemental composition was confirmed by the energy-dispersive X-ray 

microanalysis as reported in our earlier work.27, 32  

Magnetic measurements were carried out using a Quantum Design Physical Property 

Measurement System (PPMS) with a 7 T vibrating sample magnetometer (VSM) option and an 

ACMS option. Temperature dependent dc magnetization was measured between 5 K and 300 K, 

and temperature dependent ac susceptibility was measured between 40 K and 250 K. The M vs. 

H isotherms were measured in the range 160 K ≤ T ≤ 187 K. Isothermal magnetization versus 

magnetic field data around TC were collected at 0.1 T increments up to 4.5 T, with a temperature 

interval of 0.25 K. To ensure temperature stabilization, a wait time of 10 minutes was imposed 
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after reaching the temperature set point and before recording each subsequent isotherm. The 

external applied magnetic field Hext  was corrected for demagnetizing effects to obtain the 

effective internal magnetic field Heff Hext NM T, Hext  in the sample. The demagnetization 

constant N was determined from the slope of the M (H) curves near zero field (± ~5 mT). The 

scaling analysis that follows below was performed using the effective values of magnetic field. 

AC susceptibility measurements were carried out in a driving field of  μ0Hac 1 mT and f = 5 

kHz, taking care to demagnetize the sample environment before data collection to eliminate 

trapped fields.  

 

III. THEORETICAL BACKGROUND 

 A. Critical exponents and universality 

Due to the diverging correlation length of the critical fluctuations as a continuous phase 

transition point is approached, the microscopic details of a system become insignificant. Thus, 

diverse materials will show a universal behavior in the critical region. In principle, such 

universality classes depend only on the effective dimension of the lattice d and order parameter 

n, and possess a characteristic set of critical exponents that govern the scaling of relevant 

quantities near TC.34 The departure of a thermodynamic quantity from its T TC value shows a 

power law dependence on temperature near a magnetic order-disorder phase transition. The 

spontaneous magnetization and initial susceptibility can be expressed as functions of the reduced 

temperature T TC TC⁄  as follows:  

MS T M0 - β,                 < 0                                                                                     1  

χ0
1 T Γ γ,                     > 0                                                                                     (2) 
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M = XH 1 δ⁄  ,                             =  0                                                                                     (3) 

where M0,  Γ, and X are the critical amplitudes.35 Strictly, these expressions are valid only in a 

narrow range around TC (i.e. | | 0).  

B. Scaling equations of state 

Of the critical exponents defined above and those governing other thermodynamic 

quantities (e.g. heat capacity), only two are independent. The relationships among the various 

critical exponents can be written explicitly if one assumes the validity of the scaling hypothesis, 

that is, that the Gibbs potential is a generalized homogeneous function of H and .36 In particular, 

the Widom scaling relation δ 1 γ β⁄ , is relevant to the discussion of the critical exponents of 

the paramagnetic-ferromagnetic transition as it allows the experimentally determined value of δ 

to be compared with the expected value based on β and γ obtained through independent analyses.  

While there are several techniques that allow a more-or-less direct measurement of a 

critical exponent, e.g. neutron diffraction in the ordered region, the most common approach is 

based on analysis of bulk magnetization data and a magnetic equation of state.  Scaling makes 

specific predictions concerning the form of the equation of state. In particular, scaling requires 

that there exist two parameters a and b such that 

G λaH,λb λG H, ,                                                                        (4) 

for any λ. Recalling that M G H,T H⁄ T, (4) can be manipulated through the choice of a, 

b, and λ to yield various formulations of a magnetic equation of state. Commonly used forms in 

the literature are 36, 37 

m f± h                                                                                                    (5) 
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H M δh x                                                                                      (6) 

h m⁄ a± b±m2 ,                                                                         (7) 

where m | | βM H,� , h | | βδH , and x M 1 β⁄ . In (5), the expression f± h

M h, | | = ± 1⁄  define two universal curves onto which the rescaled magnetization collapse 

above and below TC, given a proper choice of β, γ, and TC . While the collapse of data onto 

universal curves in this way can in principle be used to determine the correct critical exponents 

and amplitudes of a magnetic system, a more empirical approach is available using the Arrott-

Noakes equation of state, 

H M⁄ 1 γ⁄ A BM1 β⁄  ,                                                                 (8) 

a special case of (5) and (6). In this case the proper choice of β and γ will cause the M (H,T) data 

to form a series of parallel straight lines in a plot of M1 β⁄  vs. H M⁄ 1 γ⁄ , with the isotherm at T = 

TC passing through the origin. The zero-field quantities MS T  and χ0
1 T  can thus be obtained 

by linear extrapolation to the ordinate and abscissa axes, respectively, and compared with (1) and 

(2). This approach leads to more reliable values of critical quantities as compared with other 

equations of state as it involves only two free parameters (β and γ: prior knowledge of TC is not 

required).37  

IV. RESULTS  

A. Temperature dependence 

The temperature-dependent magnetization of the La0.75Pr0.25Co2P2 single crystal is shown 

in Fig. 1 (c). This measurement was acquired under a field-cooled-warming (FCW) protocol. The 

magnetic interaction in the sample is highly anisotropic, as evidenced by the markedly different 
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behavior of the magnetization with a 10 mT DC magnetic field applied along the c-axis or in the 

ab plane. Early neutron diffraction work has established ferromagnetic intralayer Co-Co 

alignment in both LaCo2P2 and PrCo2P2.28, 38 In PrCo2P2 the Co moments are oriented along the 

c-axis with antiferromagnetic interlayer coupling while in LaCo2P2 the Co moments lie in-plane 

with ferromagnetic alignment between the planes. In La0.75Pr0.25Co2P2 the Co sublattice is 

oriented in the ab plane in the temperature range TC2 T TC ,32 and the easy direction of 

magnetization is in-plane (Fig. 1b). A reorientation of the easy axis was recently reported in this 

compound concurrent with the ordering of the Pr sublattice at TC2  ~ 70 K.32 The result is 

antiparallel and nearly compensating Co and Pr sublattices pointing along the c-axis, causing the 

net magnetization to drop almost to zero below TC2. Above TC2, there is no long-range order of 

Pr moments, and the magnetic properties of the system are dominated by the ordered Co 

sublattice. No significant hysteresis is observed between field-cooled and zero-field-cooled 

thermomagnetic curves (not shown). 

Temperature-dependent susceptibility data measured with a low-amplitude AC field 

show a sharp transition that becomes demagnetization-limited below TC  (Fig. 1d). The Curie 

temperature is estimated to be near 166 K by determining the kink-point in the susceptibility. 

Above TC, inverse susceptibility χ 1 T  curves are linear up to high temperatures, in agreement 

with the Curie-Weiss law. The paramagnetic moment per alloy atom peff in Bohr magnetons is 

given by peff 2.83 dχ 1 dT⁄ 1 2⁄ , where χ (T) is the molar susceptibility. The quantity peff was 

determined for the susceptibility measured under magnetic fields of 1 T, 2 T, 3 T, 4 T, and 5 T. 

The effective moment in a paramagnetic material is often independent of the applied field. 

However, we found that a minimum occurred in peff at 2 T followed by a slow increase for higher 

fields. We revisit this observation in the discussion section.  
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B. Determination of the critical exponents 

To determine the critical exponents in the system using the Arrott-Noakes equation of 

state for analysis, closely-spaced M (H) curves were acquired in the critical region of 

La0.75Pr0.25Co2P2. These data were then re-scaled according to (8) for various choices of β and γ. 

In systems with a long-range ferromagnetic interaction, a mean field description of critical 

behavior is appropriate (β = 0.5, γ = 1.0), and M 1 β⁄  vs. H M⁄ 1 γ⁄  is simply the well-known 

Arrott plot. From Fig. 2(a) it can be seen that for La0.75Pr0.25Co2P2, the isotherms constructed in 

this way deviate from linearity across the range of fields used (0.1 T < μ0H < 2.0 T). In some 

cases reliable results can still be obtained for disordered ferromagnets using Arrott plots through 

quadratic extrapolation to the zero-field values.36 We found that this did not describe our data 

well away from TC , but a parabolic fit to the 166.5 K isotherm was successful and passed 

through the origin, indicating that the critical isotherm is at ~166.5 K, in agreement with Fig. 1.   

The Heisenberg model is a natural choice to describe a ferromagnet with short-range 

interactions, as it considers localized moments on a regular lattice with only nearest-neighbor 

interactions. Unlike the mean-field model, an exact solution for the critical exponents of the 3D-

Heisenberg model is not available, but a number of computational and theoretical techniques 

have been applied, which consistently yield estimates near β ~ 0.37, γ ~ 1.33.39 From Fig. 2(b) it 

is clear that the Heisenberg exponents are much more successful in creating parallel linear 

isotherms in the modified Arrott plot. The MS T  and χ0
1 T  curves obtained from linear 

extrapolation of the data in 2(b) are shown in Fig. 3 and well-fit to the power law dependences 

given in (1) and (2).  
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If interactions not accounted for in the theory of critical phenomena influence the 

magnetization or if the range over which an exponent is calculated is far away from the critical 

temperature, effective rather than asymptotic exponents result from the scaling equation of state 

analysis. The effective critical exponents of a system are given by βeff ∂ ln MS  ∂ ln⁄  

and  γeff ∂ ln χ0
1  ∂ ln⁄  and are related to the asymptotic exponents in such a way 

that the effective exponents approach the asymptotic ones as 0 .35, 40 In general, for 

crystalline ferromagnets, γeff  decreases monotonically at large  outside the critical region 

toward the mean-field value (γ = 1), while in amorphous ferromagnets a peak in γeff  before the 

decrease at large  is a well-documented phenomenon.37, 41 The range of  for which βeff and γeff 

remain near a constant value is referred to as the asymptotic critical region (ACR). Discrepancies 

in reported critical exponents for similar or identical systems are most often the result of a range 

of analysis that is too wide. The effective exponents of La0.75Pr0.25Co2P2 are shown in Fig. 4. In 

the temperature range considered, the effective exponents remain constant within error near their 

3D Heisenberg values (dashed lines in Fig. 4), indicating that the ACR extends beyond ~1.12 TC. 

The error in Fig. 4 and in subsequent analysis is determined by differential propagation of the 

uncertainty in relevant fitted quantities.  

Within the ACR, the most reliable method for obtaining the exact values of the critical 

exponents based on modified Arrott plots is the iterative Kouvel-Fisher method. Equations (1) 

and (2) can be re-written in the form  

MS T dMS T dT⁄ -1= T TC β⁄                                                         (9) 

χ0
1 T dχ0

1 T dT⁄ -1
= T TC γ⁄ .                                                     (10) 



11 
 

Thus, plots of [ ] 1
S S( ) d ( ) dM T M T T − vs. T and 

1-1 -1
0 0( ) d ( ) dT T Tχ χ

−
⎡ ⎤⎣ ⎦  vs. T result in straight 

lines with slopes of 1 β⁄  and 1 γ⁄  respectively, which intercept the temperature axis at TC (Fig. 5). 

The values of β, γ, and TC obtained in this way are used to construct a new Arrott-Noakes plot, 

and the process is repeated until the desired convergence in the critical values is achieved. This 

procedure was carried out in the range 0.05 <  < 0.05, with rapid convergence of the critical 

exponents to β = 0.369 ± 0.002 and γ =1.336 ± 0.008 with TC = 166.8 ± 0.9.  

Although the assumption of scaling is implicit in the above analysis, the possibility of 

systematic errors introduced by extrapolation exists and thus additional confirmation is usually 

made of the validity of other scaling equations of state and the relationship between the 

exponents. A log-log plot of field-dependent magnetization is shown in Fig. 6 at temperatures in 

the vicinity of TC. According to (3), the exponent δ can be determined from the inverse slope of 

the critical isotherm. A linear fit of the T = 166.75 K isotherm results in δ = 4.68, close to the 

value expected from the Widom relation of δ 1 γ β⁄  = 4.63 based on the results of the 

Kouvel-Fisher technique. The scaling exponent governing the peak magnetic entropy change 

ΔSM
pk  H n  is also related to the magnetization and susceptibility exponents as 1

β 1 β γ⁄ .42 The magnetic entropy change in the system (Fig. 7, inset) was calculated by 

integration between successive isotherms according to the thermodynamic Maxwell relation.42 

Using the Kouvel-Fisher-generated values of β and γ, we can expect that n = 0.63. Re-scaling the 

field axis to produce a plot of ΔSM
pk vs.  H n with n 0.63 reveals the expected linear relationship 

(Fig. 7), confirming correctness of the exponent.  

From Fig. 8(a) it can be seen that the magnetization data satisfy scaling equation of state 

(5) [m f (h)] by collapsing onto two universal curves f  and f  below and above TC. However, 
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due to the insensitive nature of the log-log scale, the same quality of collapse is achievable with 

many sets of parameter values – typically varying between 2% of the true TC  and 10% of the 

true β and γ.43, 44 On the other hand, equation of state (7) [h m⁄ a± b±m2] is considerably 

more sensitive to deviations from the asymptotic critical values, and the data also show good 

collapse when re-scaled in this way (Fig. 8b). However, we note that in this case there also exists 

a small range of parameter values that will yield similar results –a direct consequence of three 

free parameters in (5) and (7) as opposed to two in the Arrott-Noakes approach.  

C. Magnetic field dependence of the critical properties 

While much is known regarding the temperature dependence of critical exponents, the 

influence of magnetic field on critical behaviors in ferromagnetic materials is not often 

discussed.45, 46 La0.75Pr0.25Co2P2 shows relatively soft ferromagnetic behavior below TC, and is 

saturated by an applied field of 2 T. As such, the critical exponents above this field should in 

principle remain independent of the magnetic field applied. However, we observed an anomalous 

behavior when our analysis was extended to higher magnetic fields. As illustrated in Fig. 9(a), 

the maximum magnetic field was increased incrementally from 2.0 T to 4.5 T, and the Kouvel-

Fisher process described above was repeated for 0.1 T < μ0H < μ0HMAX. The results (Fig. 9 b-c) 

show that β remains near the 3D Heisenberg value, but slowly increases above ~3 T while the 

decrease in γ is large and systematic as the maximum magnetic field is increased.  

V. DISCUSSION 

The description of magnetic properties in metallic systems has historically been 

approached from two extremes – band theoretical models in which itinerant magnetism arises as 

the result of the spin splitting of conduction electron bands, or the localized Heisenberg model in 
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which coupled neighboring moments fluctuate in orientation but not in magnitude. These models 

can be regarded as limiting cases, strictly applicable, respectively, to paramagnetic metals far 

from the ferromagnetic instability and ferromagnetic metals with nearly saturated or stable 

atomic spin polarizations.47, 48 Many 3d transition metal compounds fall in an intermediate range 

between localized and fully itinerant systems, with correlated motions (spin fluctuations) among 

well-defined local moments, and theoretical models of both types have been successful in 

describing experimental results.49, 50 While the nature of the magnetism of a 3d subsystem in 

RT2X2 intermetallics is unclear at the present time [see Ref. 5 and references therein], the Stoner 

criterion – based on band structure calculations of the density of states at the Fermi level – has 

been successful in predicting the appearance of ferromagnetism and itinerant electron 

metamagnetism in a number of such systems. Recent electronic structure calculations show that 

the ferromagnetism in LaCo2P2 and La0.88Pr0.12Co2P2 can be explained by the fulfillment of the 

Stoner criterion.27 Generally, itinerant magnets belong to classical or mean-field universality 

classes (long-range spin-spin interaction).51, 52 Nevertheless, the conformity of the critical 

properties determined for La0.75Pr0.25Co2P2 to the isotropic d = 3 n = 3 Heisenberg exchange of 

the form J r ~e r b⁄  is consistent with stable localized Co moments.  

 
To confirm this finding, we evaluate the Rhodes-Wohlfarth ratio in La0.75Pr0.25Co2P2. The 

Rhodes-Wohlfarth ratio compares the number of carriers per magnetic atom (qp) derived from 

the Curie-Weiss constant to qs, the spontaneous moment below TC. In saturated ferromagnets, 

these quantities are equal, while in weak itinerant ferromagnets it is typical that qp qs  1⁄ .35 In 

the paramagnetic region qp  is related to the total effective moment as peff qp qp 2 . 

Usually, qs  is taken to be the moment per magnetic alloy atom at low temperature (T  0). 
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However, as La0.75Pr0.25Co2P2 is a ferrimagnet below ~ 70 K with nearly zero net magnetization, 

we adopt the approach of Pramanik et al. in determining qs  well below TC but within the 

ferromagnetic temperature range.35 At 100 K, the M (H) curve (not shown) saturates at 

0.76 μB f.u.⁄  As the Pr subsystem shows no long range order at this temperature,32 the 

magnetization may be assigned to the Co atoms, i.e. qs 0.38 μB Co⁄ . This result is in good 

agreement with the Co moment determined by us earlier via neutron diffraction.32 Above TC, 

both Pr and Co contribute to the total effective moment as peff
2 0.25 pPr

2
2 pCo

2
. To 

make a meaningful comparison to the ferromagnetic region, we account for the contribution of 

the Pr moments to the total peff by assuming the experimentally determined value of 3.12 μB/Pr. 

32 In this way we calculate the itinerancy of the Co moments. 

The resulting Rhodes-Wohlfarth ratios are given in Fig. 10 for several values of magnetic 

field ranging from 1 T to 5 T. The shift of the effective paramagnetic moment noted above 

influences the value of qp q⁄  as the field is varied. However, the ratio remains close to 1 overall, 

confirming the dominant localized magnetic interaction indicated by the Heisenberg critical 

exponents. On the other hand, the parent compound LaCo2P2 has a slightly itinerant character 

(qp q⁄  1.72).28 The doping of Pr3+ (> 3μB) on the non-magnetic La3+ site is responsible for the 

observed change in the nature of the interaction in La0.75Pr0.25Co2P2. In addition to the applied 

external field, Pr ions experience an exchange field due to the surrounding Co ions given by 

Hex zAPr-ComCo 2⁄ , where z is the number of Co neighbors, mCo is the magnetic moment 

per Co, and APr-Co is the coupling parameter between Pr and Co.9 The effective molecular field 

associated with 3d-4f coupling favors antiparallel (parallel) alignment between the moments of 

Co and heavy (light) rare-earth elements in the RCo2 series. In contrast to this trend, the 
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exchange interaction between the Co and light rare-earth (Pr) moments in La0.75Pr0.25Co2P2 is 

antiferromagnetic.32  

The role of the 3d-4f exchange is important in understanding our observations in the 

paramagnetic region of La0.75Pr0.25Co2P2. As a paramagnetic 3d-4f compound acquires small net 

magnetization under the influence of an external applied field, the strong internal exchange fields 

between the 3d and 4f sublattices (> 100 T in some RmCon compounds) can induce locally 

ordered regions in the form of small clusters (~7-8 Å) above TC.8 Clusters with an average 

antiparallel arrangement between 3d and 4f moments have been well-documented in RCo2 

compounds where R is a heavy rare earth element.8, 53, 54
 Opposing net paramagnetic 

magnetizations in the Pr and Co sublattices of La0.75Pr0.25Co2P2 are consistent with the 

observation of qp q⁄  values somewhat less than unity in Fig. 10. Such an arrangement partially 

cancels the magnetization, bringing the total susceptibility of the system below the expected 

value for free ion moments. In this scenario the dependence of the Rhodes-Wohlfarth ratio on the 

applied field reflects the evolution of ordered clusters. A small applied field is necessary to 

impart net (opposing) directions to the sublattices, but a moderate-to-large magnetic field (  5 T 

in ErCo2)8 will reverse the antiparallel sublattice, destroying the quasi-ferrimagnetic order. The 

minimum in qp q⁄  at ~ 2 T suggests a critical field above which the suppression of the clusters 

takes place.  

To confirm the presence of ordered spin clusters above TC, radio-frequency transverse 

susceptibility (TS) measurements were performed using a sensitive self-resonant tunnel diode 

oscillator. The details of the experimental setup and analysis of TS results have been reported 

elsewhere.55, 56 In brief, peaks in the quantity ∆ χT χT⁄  % are theoretically predicted to occur at 

the anisotropy fields (Hdc = ± HK) and switching field (Hdc = HS) of a material during a unipolar 
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sweep of the dc magnetic field. From Fig. 11(a) a double peak feature at ± HK characteristic of a 

ferromagnetic material is observed in the TS scan of La0.75Pr0.25Co2P2 at 100 K (below TC) as the 

dc magnetic field is swept from positive to negative saturation. Above TC the maximum ∆ χT χT⁄  

% drops precipitously, but significantly the double peak characteristic persists at 180 K (Fig. 

11b), with HK decreasing from ~500 Oe (T < TC) to ~ 50 Oe. The presence of anisotropy peaks 

in this temperature range indicates weak ferromagnetic correlations (due to the presence of 

ferromagnetic clusters) in the paramagnetic region. A similar observation has also been reported 

for the case of Pr0.5Sr0.5CoO3.57  

Finally, we consider the field-dependence of the critical exponents. From Fig. 9 it can be 

seen that the susceptibility exponent is systematically depressed as fields above 2 T are 

considered, ranging between γ = 1.34 and γ =1.19. In a magnetic system governed by various 

competing couplings, intrinsic systematic trends or crossover phenomena in the critical 

properties are possible.57 In particular, the coexistence of long- and short-range interactions is 

known to cause a shift in the critical exponents away from the isotropic short range Heisenberg 

exponents and toward the mean-field values (β = 0.5 and γ = 1) as in the case of the elemental 

transition metals Fe and Ni.44, 58 Such a shift manifests the simultaneous presence of Heisenberg 

exchange, J r ~e r b⁄ , and isotropic long-range exchange interactions of the form J r ~
J∞ r d σ⁄  , 0 σ 2, which render the Heisenberg fixed point unstable. From Fig. 9(b-c) the 

increase in β and decrease in γ with field are consistent with an increasing realization of long-

range interactions as the strength of the external field grows. We consider this phenomenon in 

terms of the competing fields in the system: Ha, the external applied field, Hex, the exchange field 

between Co and Pr, and HCo-Co, the internal interaction field of the Co sublattice. While the 

tendency towards internal alignment of Co ions is the strongest interaction in the system, HCo-Co 

does not favor a particular direction, and so the orientation of the Co sublattice is determined by 
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the influence of Ha and Hex. At low temperatures the antiferromagnetic Hex dominates and the Co 

and Pr subsytems are anti-aligned. At higher temperatures the Pr magnetization is small and 

paramagnetic, so that the Co moments follow Ha (subject to the magnetocrystalline anisotropy) 

and the Pr moments experience competing tendencies to align with Ha (parallel to Co) and with 

Hex (antiparallel to Co). With increasing external applied field the influence of Hex becomes less 

significant, reducing the inhomogeniety in the exchange interactions acting on the Co system and 

increasing long-range ferromagnetic order. Above TC this is equivalent to a suppression of the 

magnetic clusters with increasing field. 

 

VI. CONCLUSIONS 

 In summary a Kouvel-Fisher method was used to determine the critical exponents of the 

ferromagnetic transition in the Co-sublattice of La0.75Pr0.25Co2P2, a 3d-4f intermetallic 

compound. Despite the itinerant nature of the parent compound LaCo2P2, the critical properties 

in the Pr-substituted compound were found to conform to the 3D Heisenberg model of isotropic 

short-range interactions due to competition between the applied field and the exchange field Hex 

between 3d and 4f moments. The calculation of the Rhodes-Wohlfarth ratio confirmed a 

localized Co moment below TC ~ 167 K. However, magnetic field was found to influence both 

the Rhodes-Wohlfarth ratio and the critical exponents. It is proposed that qp is influenced by 

ordered antiparallel clusters in the paramagnetic region. As the external applied magnetic field is 

increased, a more homogeneous magnetic state is achieved in La0.75Pr0.25Co2P2 resulting in a shift 

in the critical exponents toward the mean-field model values as the Kouvel-Fisher procedure was 

repeated for increasingly large magnetic fields.  
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Figure captions 

Fig. 1 (a) Image of La0.75Pr0.25Co2P2 single crystal. (b) Illustration of the ThCr2Si2-type unit cell 

of La0.75Pr0.25Co2P2 from Ref. 33. (c) Temperature dependent magnetization measured in a field-

cooled-warming protocol under a 10 mT dc field applied parallel and perpendicular to the c-axis 

of a single crystal. (d) χ (T) with H ||c under 1 mT amplitude ac magnetic field (left) and χ 1 T  

with a dc bias of 1 T (right). 

Fig. 2 (a) Arrott plot of magnetization isotherms taken between 160 K and 187 K with ΔT = 0.25 

K. The line indicates the parabolic fit to the isotherm at 166.5 K. (b) Modified Arrott plot using 

3D Heisenberg critical exponents. The line represents a linear fit to the isotherm at 166.75 K. 

Fig. 3 Temperature dependence of MS and χ0
1 obtained from linear extrapolation of the data in 

Fig. 2(b). Lines represent best fits to equations (1) and (2).  

Fig. 4 Effective exponents γeff and βeff  calculated as described in the text over the range of 

temperatures under consideration. Dashed lines are placed at the 3D Heisenberg model 

predictions for the respective exponents (γ 1.336, β 0.368). 

Fig. 5 Kouvel-Fisher plots of magnetization data in the range -0.05 < � < 0.05. Straight lines are 

linear fits to the data, from which β, γ, TC , and TC
+  are computed. The final value of TC is taken 

as the average of TC  and TC
+. 

Fig. 6 ln M vs. ln μ0H for temperatures near the critical isotherm. δ is determined from the slope 

of the linear fit of the isotherm at 166.75 K according to equation (3). 

Fig. 7 Peak magnetic entropy change versus H n, where n = 0.63 is the prediction of the scaling 

relation combined with the results of the Kouvel-Fisher method.  

Fig. 8 Re-scaling of the magnetization isotherms according to equations of state given in (a) Eqn. 

5 and (b) Eqn. 7.  
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Fig. 9 (a) Illustration of the range of magnetic field under consideration in the Kouvel-Fisher 

analysis. Dependence of (a) γ and (b) β on the maximum magnetic field. 

Fig. 10 Rhodes-Wohlfarth ratio (qp q⁄ ) versus applied magnetic field.  

Fig. 11 Unipolar transverse susceptibility scans at (a) 100 K and (b) 180 K.  

 

 

 

 

 

  



26 
 

Fig. 1 

 

 

50 100 150 200
0

2

4

6

8

10

150 200
0.0

0.5

1.0

1.5

2.0

2.5

3.0

(b)

TC2

(d)

 

 

M
 (e

m
u/

g)

T (K)

 HDC || c
 HDC⊥ c

(c)

TC

T < TC

T > TC2 

(a)

 

χ A
C
 (e

m
u/

g)
T (K)

 μ0HAC = 1 mT

0

20

40

60

80

100

120

 μ0HDC = 1T
 Linear fit

χ-1
 (O

e 
m

ol
/e

m
u)

 

 

 

 

 

 

 

 

 

 

 

 

 



27 
 

Fig. 2 
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Fig. 3 
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Fig. 4 
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Fig. 5 
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Fig. 6 
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Fig. 7 
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Fig. 8 
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Fig. 9 
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Fig. 10 
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Fig. 11 
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