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Density functional theory (DFT) calculations reliably aid in understanding the relative stability
of different crystal phases as functions of pressure and temperature. Our purpose here is to employ
DFT to analyze the character of the melting process, with an emphasis on comparing normal and
anomalous melting. The normal–anomalous distinction is the absence or presence, respectively, of
a significant electronic structure change between crystal and liquid. We study the normal melters
Na and Cu, which are metallic in both phases, and the anomalous melter Ga, which has a partially
covalent crystal and a nearly-free-electron liquid. We calculate free energies from lattice dynamics
for the crystal and from vibration-transit (V-T) theory for the liquid, where the liquid formulation is
similar to that of the crystal but has an additional term representing the diffusive transits. Internal
energies U and entropies S calculated for both phases of Na and Cu were previously shown to
be in good agreement with experiment, here we find the same agreement for Ga. The dominant
theoretical terms in the melting ∆U and ∆S are the structural potential energy, the vibrational
entropy, and the purely liquid transit terms in both U and S. The melting changes in structural
energy and vibrational entropy are much larger in Ga than in Na and Cu. This behavior arises from
the change in electronic structure in Ga, and is the identifying characteristic of anomalous melting.
We interpret our DFT results in terms of the physical effects of the relatively few covalent bonds in
the otherwise metallic Ga crystal.

PACS numbers: 64.70.D-, 64.60.A-, 64.60.Cn, 64.60.Ej
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I. INTRODUCTION

Density functional theory (DFT) calculations offer a reliable means to explore phase diagrams of condensed matter
systems across large regions of pressure and temperature. The calculations deliver reasonably sound phase boundaries
and an improved understanding of changes in both crystal structure and electronic structure – as well as how the two
relate (see for example Ref. 1). The exploration relies on examining relevant portions of the potential energy surface,
Φ, given by the electronic ground state as a function of the nuclear configuration. The subset of configurations given
by local equilibria suffices to study pressure-induced phase changes for systems at zero temperature (neglecting zero-
point energy). As a result, advances have been more forthcoming along the pressure axis than on the temperature axis.
The inclusion of phonons, given by the local curvature of Φ, converts the local equilibria description into the quasi-
harmonic approximation and enables the study of temperature-induced phase transitions.2 To date, this approach
has focused on solid–solid transitions; here we apply it to the solid–liquid transition, melting, for which DFT studies
heretofore have relied on molecular dynamics (MD).

Important advances along the pressure axis at low temperature have been made in recent years, in particular for
light element systems, revealing new structures with unusual electronic properties. DFT calculations by Neaton
and Ashcroft found Li to undergo a symmetry breaking distortion to a paired ground state that contrasts with the
intuitive expectation of nearly free electron behavior.3 X-ray diffraction measurements by Hanfland et al. confirm that
Li undergoes pronounced structural changes under pressure.4 DFT calculations by Feng et al. found the electronic DOS
of LiBe alloy shows a remarkable quasi-two-dimensional electronic structure that arises from a planar arrangement of
valence electrons promoted from the Li cores.5 From a study of the structural competition as function of volume in
Group IIIA elements, Simak et al. found that the structure-determining mechanism originates in the degree of s-p
mixing of valence electrons.6,7 This mixing governs the stability of B, Al, Ga, In and Tl at zero pressure,7 and also
qualitatively accounts for high pressure phase transitions in B and Ga and predicts similar behavior for In.6

Pressure induced electronic structure changes, and the crystal structure transitions they drive, have consequences
at elevated temperatures. The ultimate reason is that the electronic structure controls both structural and nuclear-
motional properties of condensed matter. For highly compressed Na, Neaton and Ashcroft predicted transformations
from the symmetric, metallic phase to low symmetry crystal structures that possess semi metallic behavior and
tend ultimately to be semiconducting.8 Such transformations were confirmed by X-ray measurements to 120 GPa
by Hanfland et al. and by Syassen.9,10 The melting curve Tm(P ), measured by Gregoryanz et al.,11 shows a normal
increase from 371 K at P = 0 to 1000 K at around 30 GPa, then a downturn and subsequent decrease of Tm all the
way to 300 K at around 120 GPa. This remarkable behavior was accounted for by MD calculations by Raty et al.,12

which also showed that the liquid undergoes electronic structure changes analogous to those in the solid.
The change in the melting curve of Na from positive to negative slope signals a change in the melting process from

normal to anomalous. This melting classification goes back to a study of the melting of elements, where experimental
data for the entropy difference between liquid and crystal at a common volume were found to lie in two well-separated
distributions.13 The constant volume specification is important because it separates out thermal expansion effects and
puts the focus on the intrinsic liquid–crystal disordering effect. The resulting physical interpretation is that normal
melting elements have qualitatively the same electronic structure in the liquid and crystal at a common volume, while
anomalous melting elements have a significant liquid-crystal electronic structure difference.13 We shall employ DFT
calculations to examine both of these melting processes in this work.

The advance that allows us to apply DFT calculations to solid–liquid phase transitions on the same footing as
solid–solid phase transitions is a description of liquids that closely resembles that of solids: vibration-transit (V-T)
theory. In V-T theory the liquid has a representative structure, and has nuclear motion in the form of vibrations about
the structure plus transits that carry the system rapidly among structures. At present the structural and vibrational
parameters are accessible to DFT calculations, while the small transit contribution is treated by a statistical mechanical
model. For Na and Cu at melt this procedure shows excellent agreement with experiment for the equilibrium volume,
the bulk modulus, the entropy and internal energy, for crystal and liquid alike.14 Our purpose here is to formulate the
melting transition in terms of characteristic structural and nuclear-motional properties of the two phases in a single
theory for both normal and anomalous melting. We shall carry out this program for Na and Cu (normal) and Ga
(anomalous) at zero pressure where highly accurate experimental data are available.

Ga has long been known for its electronic structure difference between the α-Ga crystal and the liquid phase (l-Ga).
That l-Ga is unlike α-Ga, but similar to the slightly more dense β-Ga, was suggested by measured pair distribution
functions,15 by diffuse neutron scattering,16 and by measured elastic constants and bulk modulus.17,18 The presence of
a pseudo gap in the electronic DOS of α-Ga was attributed by Heine to a partial covalence;19,20 that the pseudo gap is
missing in l-Ga was observed by Hafner and Jank;21 and Gong et al. concluded from electronic structure calculations
that α-Ga contains covalent dimers held together by metallic forces.22 A picture sufficient for discussion here is that
l-Ga is a nearly free electron (NFE) metal, while each atom in α-Ga is one member of a covalent pair bond, with
these bonds connecting parallel metallic sheets (see Sec. IV of Voloshina et al.,23; Fig. 1 in Lyapin et al.,18; Fig. 31-2



3

in Donohue,24). DFT calculations on Ga, outlined at the beginning of Sec. IV, agree with these observations and
provide additional insight.

Our needed statistical mechanical equations, along with a sketch of the V-T formalism, is provided in Sec. II. In
order to relate theory more directly to experiment, the original melting-of-elements study (Ref. 13) is transformed
from a constant-volume to a constant-pressure formulation in Sec. III. Sec. IV compares theory and experiment for
the entropy S(V, T ) and the internal energy U(V, T ) (where V is volume and T is temperature) of α-Ga and l-Ga
at melt, and analyzes the melting process for Na, Cu, and Ga. Sec. V provides a summary of conclusions and a
description of melting in terms of the structural potentials and nuclear motions of the equilibrium phases at melt.

DFT calculations of electronic and vibrational properties of α-Ga and l-Ga are presented in the online Supplemental
Material, and the technique for finding and testing the liquid structure is demonstrated.25

II. STATISTICAL MECHANICS OF V-T THEORY

V-T theory begins with the hypothesis that among the many body potential energy valleys those with a random
structure dominate the liquid statistical mechanics, and that every such valley has the same statistical mechanics
properties in the thermodynamic limit.26–28 The nuclear motion consists of many body vibrational motion in one
(any) random valley, interspersed with transits, which are collective motions of small nuclear clusters that carry the
system between random valleys. The vibrational Hamiltonian represents a single random valley harmonically extended
to infinity, so that all vibrational statistical mechanics can be expressed in closed form. Thermodynamic functions
are roughly 90% vibrational and 10% transit.

In V-T theory for the liquid (quantities for liquid are denoted with a superscript l), vibrations (vib), transits (tr),
and electronic excitations (el) contribute to the entropy

Sl(V, T ) = Sl
vib(V, T ) + Str(V, T ) + Sl

el(V, T ), (1)

and the internal energy

U l(V, T ) = Φl
0 + U l

vib(V, T ) + Utr(V, T ) + U l
el(V, T ). (2)

Φl
0 is the random structure potential energy. For all elements heavier than He, the nuclear motion is approximately

classical at T & Tm, so the high temperature expansions are appropriate:

Sl
vib(V, T ) = 3kB

{
ln

[
T/θl0(V )

]
+ 1 +

1

40

[
θl2(V )/T

]2
+ ...

}
, (3)

U l
vib(V, T ) = 3kBT

{
1 +

1

20

[
θl2(V )/T

]2
+ ...

}
. (4)

θl0(V ) and θl2(V ) are simply related to the logarithmic moment and second moment, respectively, of the normal mode
frequency distribution (see pp. 149–152 of Ref. 26). The leading terms express classical statistical mechanics, while
the series in powers of T−2 provide the (small) quantum corrections.

The transit contributions in Eqs. (1) and (2) are Str(V, T ) and Utr(V, T ), respectively. The superscript l is omitted
because these terms are present only in the liquid state. Our transit model has been substantially improved in recent
years. An analysis of experimental entropy data for elemental liquids revealed the scaling property,27

Str(V, T ) = Str(T/θtr(V )), (5)

where θtr(V ) is a transit characteristic temperature for each element. The theory was completed with a statistical
mechanics model for the transit free energy Ftr(V, T ).28 Because Ftr(V, T ) belongs entirely to the liquid, it is insensitive
to the crystal and to the melting process.

The electronic excitation contributions express the thermal excitation of electrons from their ground state. These
are calculated from the electronic density of states (DOS) n(ε), and for the present study we need only the leading
Sommerfeld approximation,

Sl
el(V, T ) = Γl(V )T, (6)

U l
el(V, T ) =

1

2
Γl(V )T 2, (7)
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FIG. 1. (color online) Experimental data for the liquid-crystal entropy difference at the common volume V l
m, against the

relative volume change on melting, η. The lines are independent least-squares fits to the two distributions.

where

Γl(V ) =
1

3
π2k2Bn

l(εF ), (8)

with εF the Fermi energy. In comparison, for transition metals with partially filled d bands accurate calculations of
the electronic excitation contributions at Tm requires an integration over n(ε).29

For the crystal (quantities for crystal are denoted with a superscript c), we use quasiharmonic lattice dynamics
theory.26,30 The thermodynamic functions are formally the same as in Eqs. (1) and (2), with the transit contributions
omitted:

Sc(V, T ) = Sc
vib(V, T ) + Sc

el(V, T ), (9)

U c(V, T ) = Φc
0 + U c

vib(V, T ) + U c
el(V, T ). (10)

The vibrational formulas are again Eqs. (3) and (4), with the crystal parameters θc0(V ) and θc2(V ) in the place of the
liquid parameters. The crystal electronic excitation formulas are Eqs. (6)-(8) based on the crystal DOS, nc(ε).

III. ANALYSIS OF THE EXPERIMENTAL, P = 0 MELTING ENTROPY

The entropy of melting at P = 0 is denoted ∆S(P = 0), and is the quantity measured in the laboratory. The
relative volume change on melting is η,

η =
V l
m − V c

m

V l
m

. (11)

∆S(P = 0) is decomposed into two terms: ∆S(V l
m) is the liquid-crystal entropy difference at the common volume

V l
m, and the volume change contribution is calculated to first order in η, to give (see Ref. 13)

∆S(P = 0) = ∆S(V l
m) +

∂S

∂ lnV

∣∣∣∣
Tm

η. (12)

(∂S/∂ lnV )Tm
is obtained from experimental data for the crystal at melt, because accurate data are more readily

available for crystal than liquid. Eq. (12) is used to extract the intrinsic ∆S(V l
m) from the experimental ∆S(P = 0).
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FIG. 2. (color online) Experimental data for the entropy of melting at P = 0 for the elements shown in Fig. 1. Data for normal
melters Li, Na, K, Rb, Cs, Ba, Cu, Ag, Au, Cd, Hg, In, Pb, Fe, Ni and for the anomalous melters (Sn, Ga, Sb, Bi, Si, Ge) are
from Hultgren et al.;31 data for Mg, Zn, and Al are from Chase et al.32

Highly accurate experimental data for ∆S(V l
m) for 18 normal melting and 6 anomalous melting elements are listed

in Table 22.1 of Ref. 26. Compared to this tabulation of data, a strong enhancement of the distinction between
normal and anomalous distributions is obtained by graphing ∆S(V l

m) against the experimental η in Fig. 1. The
normal distribution has mean 0.80kB , and has no significant η dependence. Following the discussion in Sec. II, the
mean is now encoded in the transit free energy, and much of the scatter in the normal distribution points is now
accounted for by the transit scaling temperature θtr(V ) for each element (see Eq. (5)). Hence the normal distribution
in Fig. 1 is entirely a liquid property.

In contrast to the character of the distribution for normal melters, the distribution for anomalous melters in Fig. 1
spans a very large range and has strong η dependence. These properties are due primarily to the electronic structure
change between crystal and liquid, and cannot be assigned to the liquid alone.

An analysis at P = 0, in terms of the actual crystal and liquid states in the two-phase region, would be preferable in
discussing experimental data. Figure 2 graphs the experimental ∆S(P = 0) against η for the same 24 elements shown
in Fig. 1 and retains the same two distributions. Here, the normal melting distribution is the sum of two contributions,
the ∆S(V l

m) distribution from Fig. 1, representing transits, and the volume change contribution expressing the second
term in Eq. (12), which imparts upon the normal distribution a slope.

The volume change contribution also provides a small change of slope between Figs. 1 and 2 for the anomalous
melting elements. Because of the electronic structure change, it makes a difference whether the volume change term
in Eq. (12) is assigned to crystal or liquid. Since that term is relatively small in anomalous melting, we shall leave
this issue unresolved.

The character of the data in Fig. 2 will serve as a pattern for our analysis in the next section.

IV. ANALYSIS OF MELTING

Our analysis of melting relies on data calculated with DFT previously for Na and Cu14 and here for Ga. Details of
the calculations for Ga appear in the Supplemental Material,25 and the results for α-Ga show good agreement with
previous work by others (see, e.g., Ref. 23). Since this work reports the first application of DFT to V-T theory for an
anomalous melter, we begin this section by reporting selected results from our calculations on Ga.

Figure 3 summarizes the significantly different character of Ga’s liquid and solid phases. The partial covalence in
α-Ga induces a pseudo gap in the electronic DOS, and the high-frequency vibrations of the covalent dimers appear
in the vibrational DOS separated by a gap from the remaining vibrations. Both gaps disappear in the liquid phase;
for the electronic DOS this occurs by a smoothing out of the DOS toward a more free-electron like character, for the
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FIG. 3. (color online) Calculated electronic and vibrational densities of states (DOS) for Ga in solid and liquid phases at
their respective measured melting volumes. The vibrational DOSs stem from evaluating the frequencies for all wave vectors
commensurate with supercells containing N = 144 atoms for α-Ga and N = 150 atoms for liquid Ga.

Quantity α-Ga l-Ga

Vm (Å3) (expt) 19.59 19.00
E(V ) (structure) meV -3591.88 -3550.54
(El − Ec) (meV) 41.34
θ0 (K) 154.2 106.3
θ1 (K) 233. 0 171.8
θ2 (K) 249.5 189.0
θtr (K) — 360a

n(εF ) (eV−1) 0.191 0.330
Γel (10−5 meV/K2) 0.467 0.806
Svib (kB) 5.07 6.17
Str (kB) — 0.80
Sel (kB) 0.02 0.04
Φ0 (meV) -21.9 19.4
Uvib (meV) 81.0 79.8
Utr (meV) — 10.0
Uel (meV) 0.2 0.4

a Ref. 27

TABLE I. For crystal and liquid Ga at Tm = 302.9 K and P = 0: The experimental volumes, the calculated Hamiltonian
parameters, and the separate theoretical contributions to the total entropy and energy. The thermodynamic functions rely on
quantities entirely calculated with DFT except for the measured volumes at melt, Vm, and the transit characteristic temperature,
θtr, which is determined by statistical mechanics and experimental data.

vibrational DOS the high-frequency vibrations disappear along with the covalent dimers and their weight is subsumed
into the lower spectrum of frequencies (which are also more evenly distributed).

From the markedly different DOS follow appreciably different Hamiltonian parameters, as reported in Table I. The
calculated entropy and energy of the Ga phases at melt compare well with experiment, as shown in Table II, by way
of ∆, the relative error of theory,

∆ =
theory − experiment

experiment
. (13)
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Phase Quantity Theory Experiment ∆
α-Ga Sc(kB) 5.09 4.96 0.026

Uc (meV) 59.3 59.1 0.003
l-Ga Sl(kB) 7.01 7.18 -0.024

U l (meV) 109.6 117.1 -0.064

TABLE II. For crystal and liquid Ga at Tm = 302.9 K and P = 0: Comparison of theory with experiment for entropy and
internal energy.
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FIG. 4. (color online) Dominant theoretical contributions to P = 0 melting vs. η: (a) for the entropy and (b) for the energy.
Open squares show transit contributions and filled diamonds show the total.

The ∆ values are only a few times the estimated experimental errors,31,32 and are extremely small even for DFT,
except for the liquid internal energy, where the 6% error is still very good.

We now consider our complete list of test elements, Na, Cu, and Ga. The Hamiltonian parameters for Na and
Cu, calculated from DFT, are listed in Table III; the corresponding entropy and energy data can be found in Ref.
14.33 While we use the experimental P = 0 volume for Ga, the Na and Cu data are evaluated at the theoretical
P = 0 volumes, the difference being insignificant for this analysis. We carry out our melting study in terms of
theoretical results for energy and entropy contributions. In making comparisons among different elemental liquids,
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Quantity bcc-Na l-Na fcc-Cu l-Cu
Tm (K) 370.87 370.87 1358 1358
Vm (Å3) 39.79 40.93 13.05 13.54
θ0 (K) 105.20 99.34 182.23 161.36
θ1 (K) 152.34 144.42 252.02 238.82
θ2 (K) 155.85 149.23 251.81 250.05
θtr (K) — 570 — 1358
Φ0 (meV) -12.22 4.62 3.14 96.46

TABLE III. Na and Cu data collection.14

Quantity Na Cu Ga
∆S/kB (theory) 0.89 1.16 1.92
∆S/kB (exp) 0.85 1.15 2.22
∆U/kBTm (theory) 0.94 1.13 1.93
∆U/kBTm (exp) 0.85 1.15 2.22
∆F/kBTm (theory) 0.05 -0.03 0.01
∆F/kBTm (exp) 0.00 0.00 0.00
Str/kB 0.72 0.80 0.80
Utr/kBTm 0.42 0.33 0.38
Ftr/kBTm -0.30 -0.47 -0.42
3∆ ln θ0 0.17 0.36 1.12
∆Φ0/kBTm 0.53 0.80 1.58

TABLE IV. Comparison of theory with experiment for melting quantities at P = 0, and values of the dominant theoretical
melting contributions (Eqs. (14) and (15)).

terms in ∆S/kB can be compared directly, as in Figs. 1 and 2. Then, because of the P = 0 free energy constraint,
∆U = Tm∆S, the ∆U terms are compared in the scaled form ∆U/kBTm.

Table IV compares theory and experiment for the melting quantities at P = 0 to show the high level of theoretical
accuracy in this analysis. The near zero value of the theoretical ∆F/kBTm is encouraging. Table IV also shows the
stabilization of the liquid phase by the transit free energy.

Our first step is to identify the dominant contributions to ∆S(P = 0) and ∆U(P = 0) from the equations in Sec.
II. In general, both the electronic excitations and the vibrational quantum corrections are insignificant in melting,
being ∼ 0.01 in ∆S/kB and ∆U/kBTm. In what follows, these terms are omitted from the analysis.

From Eqs. (1)-(4) for the liquid, and Eqs. (7) and (8) for the crystal, it follows

∆S(P = 0) = 3kB∆ ln θ0 + Str, (14)

∆U(P = 0) = ∆Φ0 + Utr. (15)

The first term in ∆S is the leading (classical) term in Sl
vib − Sc

vib,

3kB∆ ln θ0 = 3kB [ln θc0(V c
m) − ln θl0(V l

m)]; (16)

the first term in ∆U is the structural potential difference

∆Φ0 = Φl
0(V l

m) − Φc
0(V c

m); (17)

and Str and Utr are evaluated at V l
m, Tm. The essential physical character of equilibrium melting is contained in the

four terms explicit on the right sides of Eqs. (14) and (15). Our DFT evaluations of these terms are listed in Table
IV.

Let us next examine the physical role of each term in melting at P = 0. Since the transit terms belong to the liquid
alone, they are independent of the melting process, hence are entirely normal, with no contribution from the melting
volume change. Moreover, because of the scaling properties of the transit free energy,28 each quantity Str/kB and
Utr/kBTm has a common magnitude for normal and anomalous elements alike. The transit contributions are graphed
versus η in Figs. 4(a) and 4(b), where it is seen that each is essentially constant, the same for normal and anomalous
melting and independent of η.
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At this point, the entire anomalous contribution to melting at P = 0 has been isolated within the first terms
on the right of Eqs. (14) and (15). Consider first the melting entropy, where the key is θ0. For normal melting
elements, the common electronic structure at a common V implies θc0(V ) ≈ θl0(V ), so that 3kB∆ ln θ0 results entirely
from the melting volume change, and produces the volume change contribution to the normal melting distribution
in Fig. 2. The same behavior is shown in Fig. 4(a) by the theoretical data for our set of normal melting elements,
Na and Cu. In anomalous melting, the dominant effect is a significant decrease in θ0 from crystal to liquid, caused
by the electronic structure change, and this along with a small unresolved volume change contribution produces the
higher-lying anomalous distribution in Fig. 2. The same behavior is shown in Fig. 4(a) by the theoretical data for Ga.

The situation with the internal energy is more complicated. The analysis of experimental energy data has not
been done, because one cannot determine ∆Φ0 from experimental data alone. However, ∆Φ0 is subject to a priori
calculation within the framework of V-T theory. For normal melting elements, ∆Φ0 has contributions from both the
structural change and the volume change, as indicated in Eq. (17). For Na and Cu, these contributions can be read
directly from the calculated Φ0(V ) graphs.14 The result is a characteristic normal-melting magnitude of ∆Φ0/kBTm,
as exemplified by Na and Cu in Fig. 4(b). For anomalous melting elements, ∆Φ0 is crucially different because it is
dominated by the change in electronic structure. Equation (17) is still correct, but it is not useful to attempt its
decomposition into structural change and volume change contributions. However, the anomalous-melting ∆Φ0/kBTm
is notably larger than the normal values, as exemplified by Ga in Fig. 4(b).

V. SUMMARY AND CONCLUSIONS

Our calculations of the structural and vibrational Hamiltonian parameters of crystal and liquid Ga are done with
DFT. The entropy and internal energy of the crystal at melt, calculated from lattice dynamics theory, are in excellent
agreement with experiment, as shown in Table II. Given the known accuracy of lattice dynamics, we take this
agreement as validation of our computational procedures.

To find the liquid structure for a given element, a set of quenches is made to verify the uniformity of the random
valleys that underly the liquid motion. With that established, the liquid vibrational properties can be calculated
from a single (harmonically extended) valley. The procedure is illustrated for l-Ga in the Supplemental Material.25

For l-Ga at melt, the theoretical entropy and internal energy are in good agreement with experiment, Table II, which
we take as validation for using V-T theory for Ga. This conclusion is sustainable because, while the small transit
contributions are determined by statistical mechanics and experimental data,27,28 the strongly dominant structural
and vibrational contributions (Table I) are calculated entirely from DFT.

In order to relate the melting analysis directly to the crystal and liquid phases at melt, the original constant-
volume analysis (Ref. 13) is reformulated at P = 0 in Sec. III. The normal and anomalous distributions of ∆S(P = 0)
remain clearly separated in Fig. 2. From the viewpoint of experiment, the fitted lines in Fig. 2 provide a template
for classifying the melting of an element as normal or anomalous, and for measuring the anomalous character on
the scale from Sn to Si. From the theoretical viewpoint, Fig. 2 is to be analyzed in terms of the atomic motional
contributions to ∆S(P = 0). This analysis is shown in Fig. 4(a) for Na, Cu, and Ga, for the total motion (vibrational
plus transit), and for the transit motion separately. The similarity of the entropy and energy analyses, Figs. 4(a) and
4(b), respectively, results from the condition P = 0 plus the scaling properties of the transit free energy. Our ultimate
theoretical data in Figs. 4(a) and 4(b) display the same character seen for experimental data in Fig. 2.

To summarize the major conclusion of this study, let us make a qualitative description of the melting process,
in terms of the structural potentials and nuclear motions of the equilibrium phases at melt. Ga will serve as our
representative material. l-Ga is a NFE metal, and has the scaled transit free energy common to the elemental liquids
we have so far studied.14,27 Hence in Fig. 4, values of Str/kB and Utr/kBTm are common to Ga, Na, and Cu. Let us
next consider a hypothetical NFE Ga crystal, for which crystal and liquid will have a common electronic structure,
hence approximately the same internuclear forces at a common volume. The melting will be normal, and the melting
parameters will lie near those graphed for Na and Cu in Fig. 4. Let us now consider the actual α-Ga crystal. Each
atom in α-Ga is a partner in one covalent pair bond, while the remaining bonds are metallic. The covalent bonds alter
α-Ga in three ways from NFE Ga, and produce corresponding changes in the melting process. First, the covalent
bonds are stronger than metallic bonds, giving them higher vibrational frequencies and increasing θc0, so that 3∆ ln θ0
is much larger than the normal value as shown in Fig. 4(a). Second, the stronger covalent bonds lower Φc

0 and increase
∆Φ0, making ∆Φ0/kBTm much larger than the normal value as shown in Fig. 4(b). Finally, the covalent bonds are
shorter than the metallic bonds, enforcing a low-coordination low-density crystal and making η negative, as shown in
Figs. 4(a) and 4(b).

We note the present analysis can be applied to crystal–crystal transitions, where it will be simpler because crystals
have no transits (see Eqs. (8) and (9)). The classification of crystal–crystal transitions as normal or anomalous applies
equally well, according to whether the two phases have the same or different electronic structures.
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