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Abstract

We model rutile titanium dioxide nanocrystals (NCs) up to ∼1.5 nm in size to study the effects

of quantum confinement on their electronic and optical properties. Ionization potentials (IPs) and

electron affinities (EAs) are obtained via the perturbative GW approximation (G0W0) and ∆SCF

method for NCs up to 24 and 64 TiO2 formula units, respectively. These demanding GW compu-

tations are made feasible by using a real-space framework that exploits quantum confinement to

reduce the number of empty states needed in GW summations. Time-dependent density functional

theory (TDDFT) is used to predict the optical properties of NCs up to 64 TiO2 units. For a NC

containing only 2 TiO2 units, the offsets of the IP and the EA from the corresponding bulk limits

are of similar magnitude. However, as NC size increases, the EA is found to converge more slowly

to the bulk limit than the IP. The EA values computed at the G0W0 and ∆SCF levels of theory

are found to agree fairly well with each other, while the IPs computed with ∆SCF are consistently

smaller than those computed with G0W0 by a roughly constant amount. TDDFT optical gaps

exhibit weaker size dependence than GW quasiparticle gaps, and result in exciton binding energies

on the order of eV. Altering the dimensions of a fixed-size NC can change electronic and optical

excitations up to several tenths of an eV. The largest NCs modeled are still quantum confined and

do not yet have quasiparticle levels or optical gaps at bulk values. Nevertheless, we find that clas-

sical Mie-Gans theory can quite accurately reproduce the lineshape of TDDFT absorption spectra,

even for (anisotropic) TiO2 NCs of sub-nanometer size.
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I. INTRODUCTION

Titanium dioxide (TiO2) is among the most studied transition-metal oxides. Scientific and

technological interest in TiO2 is primarily driven by its various uses related to solar energy;

its photocatalytic, photoelectric, and photochemical properties make up several active areas

of research.1 However, bulk polymorphs of TiO2 absorb light in the UV range, so they

can only use a fraction of the energy from the solar spectrum. Accordingly, much ongoing

research has focused on understanding and tuning the electronic and optical properties of

TiO2, with the ultimate goal of increasing the efficiency of a variety of applications. One

method of altering energy levels and absorption wavelengths is dye sensitization.2,3 Dye-

sensitized solar cells (DSSCs) have many practical advantages, including prospective low-cost

fabrication and enhanced performance over a range of conditions. Another area of research

involves the morphology of TiO2, with nanowires, nanoclusters, and other nanostructures

being synthesized and their properties explored.4–6 Among these new forms of TiO2, quantum

confinement effects have been observed experimentally only at the smallest scales (clusters

with diameters smaller than 2 nm).7–11

To better understand the electronic and optical properties of TiO2, a variety of first-

principles methods have also been used.12 Density functional theory (DFT) generally can

describe ground-state properties, but more computationally expensive theories are necessary

when modeling electronically and optically excited states.13 Time-dependent DFT (TDDFT)

and Green’s function methods such as the GW approximation and the Bethe-Salpeter equa-

tion (BSE) offer a good balance of accuracy and efficiency for these applications,14 and for

bulk rutile, anatase, and brookite TiO2, GW and BSE have been found to give quasiparticle

band gaps and optical spectra in good agreement with experiment.15–17 However, crystalline

bulk TiO2 can be represented by only 2 (for rutile and anatase) or 8 (for brookite) TiO2 for-

mula units, while nanostructures can contain tens of TiO2 units or more. Therefore, due to

the significant cost of many-body perturbation theory, past simulations of nanowires18–22 or

clusters23–27 at the nanoscale have been mostly performed at the DFT level. Similarly, a ma-

jority of optical studies of nanostructured TiO2 have been performed with time-dependent

tight-binding28 and TDDFT using semilocal exchange-correlation or hybrid functionals.29–32

Even for systems small enough to be treated with many-body perturbation theory, it

can be challenging to construct simulations with physical relevance. Attempts to validate
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computational methods with experimental measurements are complicated by the unknown

cluster geometries within the experimental setup. Using optimized ground-state geome-

tries, small TiO2 clusters have been modeled with quantum chemical methods,33 GW ,34 and

GW -BSE.35 On the other hand, a recent GW study has suggested that isomers with high

vertical electron affinities rather than those with the lowest ground state energies are selec-

tively observed in photoemission experiments performed on TiO2 cluster anions.36 Instead

of direct comparison to experiment, some computational studies have focused on predict-

ing trends for idealized low-dimensional nanostructures based on the bulk rutile, anatase,

or brookite crystal structures. At the GW or BSE level, this includes research analyzing

anatase nanosheets37 and nanowires.38 More of a gray area, in terms of physical relevance, is

reached when the effects of dye-sensitization or surrounding medium are considered. Both

the details of the atomic configuration, as well as constraints on simulation size due to

computational costs, can affect the accuracy and applicability of the result. For instance,

a common strategy for simulating excitations and charge transfer in DSSCs has been to

model the substrate using finite, bulk-terminated TiO2 fragments, either in TDDFT39–43 or

GW .44,45 However, it may be tricky to extrapolate the behavior of a bulk DSSC from these

types of calculations. Convergence of electronic properties with cluster size can be slow, and

comparison of optical cluster properties with optical bulk properties (i.e., comparing the

absorption cross section of a cluster with the imaginary part of the bulk dielectric function)

may not be straightforward.

Motivated by the growing need for an accurate understanding of nanostructured TiO2,

here we investigate the size and shape dependence of rutile TiO2 nanocrystals (NCs) and

study trends in their electronic and optical properties. We use the GW approximation

and TDDFT within a real-space framework (no periodic boundary conditions), where the

single-particle wavefunctions are represented on a three-dimensional grid inside a spherical

domain. The simulated NCs contain 2 to 64 TiO2 units and are bulk-terminated and passi-

vated. By modeling large clusters which are near the limit of what is currently achievable

by many-body perturbation theory methods, we gauge the strength and scale of quantum

confinement effects, and assess how/if the “bulk” limit is reached using clusters with more

than a hundred atoms. This analysis has particular relevance to the method of using TiO2

clusters as the substrate when modeling DSSCs, as mentioned above. Moreover, a funda-

mental understanding of the size and shape dependence of rutile NCs is important for the
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engineering of band gaps and energy levels. The rest of the paper is organized as follows.

In the next section, we discuss our computational methodology, paying particular attention

to the techniques that enhance the efficiency of the GW computations for these relatively

large and computationally challenging transition-metal-oxide NCs. In addition to the static

remainder terms used to accelerate the convergence of sums over empty states,46–49 we make

use of (i) the increase in the spectral width of empty states due to the quantum confinement

imposed by boundary conditions, and (ii) exponential fits to obtain converged GW energies

for accurate predictions of quasiparticle levels. Results from our DFT, GW , and TDDFT

calculations are presented in Sec. III along with a discussion of the size and shape depen-

dence of the ionization potentials (IPs), electron affinities (EAs), quasiparticle gaps, and

optical gaps. We also show that the overall features in the TDDFT spectra of TiO2 NCs

can be predicted quite well within the classical Mie-Gans theory using the bulk dielectric

function of TiO2. We conclude with a brief summary in Sec. IV.

II. METHODS

A. Geometry of nanocrystals

In this work, we study cuboid TiO2 NCs with bulk rutile geometry in which the (110) and

(001) surfaces are exposed. NCs are constructed using the lattice parameters of a = 4.5937

Å, c = 2.9581 Å, and u = 0.3056. We label each NC by integers n⊥ × n‖ × nℓ, where n⊥ is

the number of unit cells along the [110] direction with a repeat unit length of a
√
2, n‖ is the

number of unit cells along [001] direction with a repeat unit length of c, and nℓ is the number

of layers along [110] with a repeat unit length of a/
√
2. The n⊥ × n‖ × nℓ NC, therefore,

contains a total of NTiO2
= 2 ·n⊥ ·n‖ ·nℓ TiO2 formula units. We consider NCs of dimensions

1×n‖×nℓ with n‖ and nℓ ranging from 1 to 4, as well as NCs of dimensions 2×n‖×4 with n‖

ranging from 1 to 4. The dangling bonds of Ti and O atoms near the surface are passivated

with pseudo-hydrogen atoms of fractional nuclear charge. The passivation is carried out

assuming covalent bonding of Ti and O with these pseudo-hydrogens. Using formal charges

of 4+ and 2− for Ti and O ions which are normally 6-fold and 3-fold coordinated in the

bulk, respectively, this implies passivating each Ti dangling bond with a pseudo-hydrogen

of nuclear charge 4e/3 and each O dangling bond with a pseudo-hydrogen of nuclear charge
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2e/3. The largest NC considered (2× 4× 4) contains a total number of 320 atoms including

pseudo-hydrogens. The atomic configurations and orientations of several NCs studied in

this work are shown in Fig. 1.

B. Ground state electronic structure: Real-space Kohn-Sham DFT

We perform ground-state DFT calculations using the PARSEC code.50 The Kohn-Sham

(KS) equations are solved in real space on a uniform Cartesian grid with spacing of 0.3 a.u.

The wavefunctions are required to vanish outside a spherical domain of radius R. Depending

on both the size of the NC and the properties being studied, we use R values ranging

from 12 to 36 a.u. We use the local density approximation (LDA) exchange-correlation

functional of Ceperley and Alder and norm-conserving Troullier-Martins pseudopotentials.51

The Ti pseudopotential is generated with a multi-reference fit52,53 from the 3s23p63d104s2

configuration with cutoff radii of 1.75 a.u. for s and p angular momentum channels, and

1.65 a.u. for d. The O pseudopotential has cutoff radii of 1.45 a.u. for both s and p, while

passivating pseudo-hydrogens have cutoff radii of 0.9 a.u. for s.

In this work, while the main purpose of KS-DFT calculations is to generate the wavefunc-

tions and energies of neutral TiO2 NCs to be used as input into higher level perturbation

theory methods (TDDFT and GW ), we also compute the IPs and EAs using the delta-

self-consistent-field (∆SCF) method. In this method, the IP of an n-electron system is

computed from the difference in the total energy of the singly ionized system, E(n − 1),

and the total energy of the neutral system, E(n), as IP∆SCF = E(n− 1)− E(n). Similarly,

the EA is computed using the total energy of the negatively charged system, E(n + 1), as

EA∆SCF = E(n)− E(n+ 1).

C. Electronic excitations within the GW approximation

We use the perturbative “one-shot”GW approximation (G0W0), where a Green’s function

G0 (computed using KS wavefunctions) and the screened Coulomb interaction W0 (obtained

using a dynamical polarizability computed within the random phase approximation) are

used to compute the self-energy, Σ = iG0W0. The computations are performed using the

RGWBS package.46 Dynamical effects are taken into account by summing over poles in G0
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and W0 (full-frequency integration). To calculate the IP and EA of TiO2 NCs within the

G0W0 formalism, we compute the Σ matrix (including off-diagonal elements) in the basis of

KS wavefunctions, and diagonalize. We do not include Σ matrix elements originating from

the Ti 3s, 3p, and O 2s orbitals. Although these states are very important for obtaining the

correct polarizability (or the dielectric function) and the Green’s function, and are included

for those purposes, neglecting their self-energy matrix elements alters the computed IP and

EA in the diagonalized self-energy matrix by less than 1 meV. The size of the Σ matrix

scales with the size of the system, ranging from 31× 31 for the 1 × 1 × 1 NC to 322 × 322

for the 1× 3× 4 NC.

In the standard formulation of GW , a large number of unoccupied states are needed for

a converged calculation. The summations over these empty states are well-known compu-

tational bottlenecks for plane-wave GW codes, and our calculations for confined systems

have the same convergence properties that need to be addressed. More specifically, the GW

self-energy calculation involves two sums: the first is related to the polarizability (or the di-

electric function), which sums over transitions, and the second related to the Green’s function

G, which includes a sum over single-particle empty states. While some methods have been

developed to reduce the number of empty states needed for a converged result,46,48,49,54,55

and others completely eliminate the need for empty states,56–58 most of these techniques

have not yet seen widespread use.

In our study, convergence of the G summations is accelerated by including a “static

remainder” correction term derived from the static limit of the GW approximation known as

the Coulomb-hole-screened-exchange (COHSEX) approximation,46 and scaled by a factor of

1/2.47–49 This correction greatly improves the convergence properties of quasiparticle levels,

which is especially important when the levels have appreciable d character, as is the case

for TiO2 NCs. For example, if the static remainder is not used, even summing over 2,000

unoccupied states results in an underestimate of the IP and EA by as much as 0.7 and 1.0

eV, respectively, in the relatively small 1× 1× 1 NC. We note that here we are interested in

computing the IP and EA of each NC, not just the faster-converging quasiparticle gap given

by their difference. Therefore, even though the COHSEX correction improves convergence,

a large number of unoccupied states must still be used to converge energies to the desired

accuracy of 0.1 eV. This remains the major bottleneck as the size of the NC is increased,

and we have, therefore, developed a scheme using exponential extrapolation, as summarized
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below, to determine the converged values for the IP and EA of TiO2 NCs up to 24 TiO2

units (140 atoms including pseudo-hydrogens resulting in a total number of 644 valence

electrons). While past works have used extrapolation schemes to correct the full GW sum

truncation error,16,49,59 here we apply an exponential fit to values that already include a

static correction; our extrapolation accounts for errors not already treated by the COHSEX

correction.

In Fig. 2, we show the IP and EA of the 1 × 1 × 1, 1 × 1 × 2, 1 × 1 × 3, and 1 × 1 × 4

NCs at various levels of convergence, along with exponential fits to the converging G0W0

energies. Note that we plot the quasiparticle energies as a function of the DFT eigenvalue

εN of the highest state N included in the sums (as elaborated further below) rather than the

total number of states. We use the same cutoff for the polarizability and Green’s function

summations. The exponential fits to the G0W0 quasiparticle levels shown in Fig. 2 are of

the form

E(εN) = Econv − Ae−εN/B, (1)

where E denotes the computed quasiparticle energy (IP or EA) and the parameters Econv

(the converged quasiparticle energy), A, and B are determined from the fitting scheme.

Using least-squares regression and weighting by εN , the resulting fitted parameters for the

IP of the 1× 1 × 1 NC are AIP = 0.718 eV, BIP = 30.782 eV, and Econv,IP = 10.55 eV. For

EA of the same NC, the parameters are calculated as AEA = 0.714 eV, BEA = 31.366 eV,

and Econv,EA = 2.32 eV. For comparison, the most converged calculation for the 1×1×1 NC

(with εN = 90.7 eV) produces an IP and EA within 0.05 eV of the extrapolated converged

values.

Since it is not computationally feasible to compute the GW energies of larger NCs to this

level of convergence, we test whether a rigid shift of the exponential fits computed for the

1 × 1 × 1 NC can represent the convergence properties of the larger NCs. In other words,

parameters AIP, BIP, AEA, and BEA are fixed to the values above, and only Econv is fit for

the quasiparticle energies of the other NCs. This allows us to extrapolate an estimate of the

converged IP or EA for larger NCs using a manageable number of unoccupied states. We

expect such fits to remain fairly accurate, since we are modeling NCs of the same underlying

bulk material, which are likely to have similar behavior in the GW sum convergence. As

illustrated by the exponential fits in Fig. 2 (to determine Econv, while keeping the A and B

parameters to the fixed values above), residuals are less than 0.04 eV for the 1× 1× nℓ NC
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TABLE I. Information about G0W0 calculations used in the exponential fit for each NC. Ndata

is the number of points used in the extrapolation of the IP and EA of each NC, Min(εN ) is the

smallest summation cutoff used for a GW calculation, Max(εN ) is the largest summation cutoff,

and Max|Residual| is the largest absolute residual (difference between the data point and the

exponential fit) among all IP and EA calculations for a single NC. Units are in eV.

Nanocrystal Ndata Min(εN ) Max(εN ) Max|Residual|

1 × 1 × 1 13 7.1 90.7 0.032

1 × 1 × 2 5 8.0 41.0 0.016

1 × 1 × 3 4 7.9 28.0 0.013

1 × 1 × 4 2 7.8 16.1 0.010

1 × 2 × 1 13 7.2 40.0 0.042

1 × 2 × 2 3 8.0 24.0 0.012

1 × 2 × 3 2 11.3 18.9 0.010

1 × 2 × 4 1 11.7 11.7 −

1 × 3 × 1 4 10.4 19.6 0.015

1 × 3 × 2 2 8.0 16.0 0.014

1 × 3 × 3 1 11.5 11.5 −

1 × 3 × 4 1 8.0 8.0 −

1 × 4 × 1 1 14.0 14.0 −

1 × 4 × 2 1 8.0 8.0 −

1 × 4 × 3 1 8.0 8.0 −

series. Among all NCs considered, the maximum residual for the exponential fit is 0.042 eV,

with smaller residuals for calculations at higher εN . Details about calculations used for the

exponential fits for each NC are included in Table I.

We now return to our choice of converging the quasiparticle energies as a function of

the DFT energy εN of the highest state N included in the Green’s function summation.

Since we use zero boundary conditions (KS wavefunctions required to vanish outside a

spherical domain of radius R) for the confined systems studied here, the KS eigenvalues

of unoccupied states at high energies are significantly affected by the choice of R. Due to
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quantum confinement, the spectral width of a fixed number of unoccupied states as a function

of R is expected to scale approximately as R−2, which we indeed find to be the case. If we

held N fixed and changed R, the GW summations would extend to different maximum

energies (decreasing as R increases), resulting in physically different Green’s functions and

polarizabilities due to the varying energy contributions. Instead, we illustrate in Fig. 3 that

the appropriate comparison of GW calculations at different R is not given by calculations

with the same N , but instead by calculations that include summations over all empty states

up to the state with some predetermined DFT eigenvalue εN . Fig. 3 shows the convergence

properties for the EA of the 1 × 1 × 1 NC computed within the G0W0 approximation. As

a function of εN , the computed EAs for R = 12, 16, and 20 a.u. all give the same GW

energies, demonstrating that GW calculations are converged relative to simulation cell size.

The results shown for R = 10 a.u. in Fig. 3, on the other hand, are significantly different

from the rest of the computed EA values and converge to a different value as a function of

εN , stemming from the fact that the DFT eigenvalue of the LUMO of the 1 × 1 × 1 NC is

not well converged at R = 10 a.u. as a function of R. Similar convergence properties are

observed for the IP, and in general, our tests show that as long as R is chosen sufficiently

large so that the KS eigenvalues of the relevant states (e.g. the highest occupied molecular

orbital, HOMO, and the lowest unoccupied molecular orbital, LUMO, for the computations

of IP and EA, respectively) are converged, the size of the simulation cell does not affect the

computed quasiparticle energies.

This independence of IP and EA values with respect to the choice of R can be exploited,

so that one can choose the smallest possible simulation cell for which HOMO and LUMO

are converged at the DFT level. The benefits of a small R are twofold: First, the number

of grid points, Ngrid, in the physical domain is decreased (Ngrid ∝ R3). Therefore, all

Coulomb integrals, which scale as Ngrid logNgrid, are evaluated more quickly. Second, and

more importantly, the confining smaller sphere means that fewer unoccupied states are

needed to reach a given summation cutoff energy due to the quantum confinement of the

simulation cell (also scaling approximately as R3). In the specific example of the 1× 1× 1

NC, a GW calculation with εN = 20 eV for R = 20, 16, and 12 a.u. requires 943, 516,

and 239 states, respectively, which underscores the tremendous computational savings that

quantum confinement enables in GW computations of confined nanostructures. In our G0W0

calculations, we use the smallest R values needed to converge KS-DFT energy levels for the
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states of interest, and the cell sizes for NCs up to 24 TiO2 units accordingly range from

R = 12 to 20 a.u.

One can provide a physical explanation for why the seemingly artificial increase in the

spectral width of the unoccupied states does not have an effect on the computed IP and EA

of the system. Using zero boundary conditions for a confined system essentially means that

the external DFT potential Vext(r) that the valence electrons feel has, in addition to the

usual ionic potential modeled by pseudopotentials V psp
ion (r), an extra infinite-potential term,

so that

Vext(r) =







V ps
ion(r) r < R

∞ r > R
(2)

constrains all KS eigenfunctions to vanish for r > R. This extra infinite potential beyond

R clearly has no effect on eigenvalues or eigenfunctions of the localized occupied (and some

of the low-lying unoccupied) KS states as long as R is sufficiently large, which is one of the

routine convergence tests that we perform using PARSEC for any confined system. Higher-

lying unoccupied states, on the other hand, are affected by this infinite potential term

such that their spectral width increases significantly. However, the set of eigenfunctions

that correspond to the solutions of the KS equations with this modified Vext(r) still form a

complete, orthonormal set of single-particle states that can act as a basis. The advantage

of using a basis of such KS eigenfunctions is that at a fixed number of single-particle states

used in GW summations, they span a much wider energy range. In other words, the higher-

energy empty states are used to produce as complete a basis as possible in the relevant space,

and not so much for their physical meaning. Localized Kohn-Sham states have already

been used to accelerate GW sums over empty states, in conjunction with a plane-wave

formalism,60 and the fact that higher-energy wavefunctions do not need to be physical can

be seen as a confined-system analogue of the technique of simply using plane waves as empty

states in GW sums.61 From a physical perspective, this means that the IP and EA values

obtained from direct or inverse photoemission experiments performed on “truly isolated”

nanostructures, and hypothetical experiments performed on nanostructures constrained in

“artificial” rigid boxes of large enough radii R will be the same. With such apparent freedom

in the form of these higher-energy states, further study of localized, quantum-confined empty

states may aid future development of efficient GW algorithms.
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D. Optical excitations within TDDFT

In this work, the optical excitations for all NCs are calculated via TDDFT using the

adiabatic LDA exchange correlation functional (TDLDA). We use Casida’s frequency do-

main formalism as implemented in the RGWBS software suite.46,62 Because TDLDA models

excitations to more diffuse states, larger simulation cells are needed here for converged cal-

culations compared to GW calculations. For TDLDA calculations, our simulation cell radii

range from R = 20 to 36 a.u. The resulting absorption spectra are converged with a resolu-

tion of 0.1 eV for frequencies up to ∼8 eV, and demonstrate the general trends in lineshapes

for the 8− 10 eV range.

The TDLDA spectra are used to estimate the optical band gaps for various NCs, but a

quantitative comparison of the optical gaps is complicated by the gradual onset of the optical

edge. TDLDA calculations for most NCs predict multiple low-energy transitions with very

low oscillator strengths, which would be too weak to be detected in experiments. Therefore,

following the approach in previous studies,63,64 we define the optical band gap Eopt(p) to

be the energy at which the integrated oscillator strength reaches a certain threshold p. In

terms of the photoabsorption cross section σ(ω), this means that Eopt(p) is defined as

∫ Eopt(p)

0

σ(ω)dω = pfe, (3)

where fe = 2π2
~e2/mc = 1.098 eVÅ2 is the complete one-electron oscillator strength, and

p is proportion of oscillator strength chosen as the threshold to define the gap. In previous

studies, the optical gap was defined at p = 0.02, which we also choose as our threshold.

However, since the intensity of the absorption cross section is proportional to cluster size,

we also present a comparison to a scaled threshold, pscaled = NTiO2
× 10−4.

III. RESULTS AND DISCUSSION

A. Quasiparticle energy levels

The IPs and EAs of rutile TiO2 NCs are computed using the ∆SCF and G0W0 methods

for NCs up to 64 and 24 TiO2 units, respectively. We first focus on the effect of quantum

confinement on the NC energy levels. Fig. 4 shows the IPs and EAs as a function of

NTiO2
. For NCs with the same NTiO2

but with different shapes, we show the average of their
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computed values. In addition to the ∆SCF and G0W0 values, the corresponding KS-DFT

values (negative of HOMO and LUMO energies) are also shown. At the KS-DFT level,

quantum confinement is barely observed. EAs remain ∼4.6 eV, and IPs vary less than 0.5

eV from NTiO2
= 4 to 64. At the ∆SCF and G0W0 levels, on the other hand, there is a

clear size dependence, with larger NCs closer to bulk energy levels, and small NCs having

quasiparticle gaps > 8 eV. Neither G0W0 nor ∆SCF quasiparticle energies can be described

as a rigid shift from KS-DFT eigenvalues. Hence, while KS-DFT theory predicts some size-

dependence, the relative energies of different NCs cannot be used to predict energy levels

and band gaps, and a simple scissor operator (shifting all KS-DFT band gaps by the same

value) does not allow KS-DFT to reproduce size-dependent effects quantitatively.

The ∆SCF calculations are expected to decrease in accuracy for larger calculations, due

to increasing delocalization errors and incorrect asymptotic behavior of the LDA functional.

We expect greater accuracy and consistency from the G0W0 computations. When compar-

ing between G0W0 and ∆SCF predictions, we observe that the difference between the two

methods is roughly constant for NCs with 8 to 24 TiO2 units. While the ∆SCF and G0W0

predictions for EA in this size range are nearly the same (within ∼0.1 eV of each other),

∆SCF consistently underestimates the IP by ∼0.65 eV compared to G0W0. Very similar

trends with respect to ∆SCF and GW predictions were observed for Si NCs as a function

of size.46

For the smallest NC, G0W0 predicts IP and EA offsets from bulk values that are close

in magnitude, with the IP 2.59 eV higher than the bulk rutile IP of 7.96 eV, and the EA

2.58 eV lower than the bulk EA of 4.9 eV.65,66 With respect to the rate at which the bulk

limit is approached, however, there seems to be an appreciable difference between the IP

and the EA. We now consider the 2 × 4 × 4 NC, which is the largest in our study with an

average linear dimension of ∼1.46 nm. Assuming that the G0W0 prediction is still offset by

0.65 eV from the ∆SCF value for this NC, its IP would be 8.42 eV, which is within 0.5 eV

of the bulk limit. On the other hand, the predicted EA at this size range would be 3.66 eV,

more than 1.2 eV below the bulk limit (using the ∆SCF value directly as our estimate, since

∆SCF values are very close to the G0W0 values for smaller NCs). We speculate that this

difference in convergence rates is due to differences in the orbital characters of the HOMO

and the LUMO of the NCs (or equivalently, the valence band maximum and the conduction

band minimum of bulk TiO2) which have primarily O 2p and Ti 3d characters, respectively.
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In Fig. 5, we plot the G0W0 IPs and EAs for TiO2 NCs, which exhibit a considerable

shape dependence. The EA of the 1 × 2 × 4 NC is ∼ 0.2 eV greater than that of the

1× 4× 2 NC, and the IP of the 1× 1× 4 NC is more than 0.3 eV greater than that of the

1 × 4 × 1 NC. In fact, comparing the IPs for the 1 × 1 × n and the 1× n× 1 series, which

are effectively two-dimensional NCs with predominantly (001) and (110) surfaces exposed

(see Fig. 1), respectively, we see that the shape dependence becomes more significant as n

increases. These findings suggest that the quasiparticle levels of TiO2 NCs can be tuned

at least on the order of tenths of eV’s by manipulating their shapes. For shape-dependent

properties of TiO2 NCs, we again caution against trusting trends at the KS-DFT level: The

shape dependence observed via G0W0 (and ∆SCF) is significantly diminished relative to the

shape-dependence observed in KS-DFT. An extreme example compares the 1 × 2 × 1 and

1× 1× 2 NCs, which differ by 0.31 eV according to KS-DFT, 0.08 eV according to ∆SCF,

and 0.02 eV according to G0W0. Energy orderings for NCs with the same NTiO2
can also

shift when going from KS-DFT to higher levels of theory. However, we find that the ∆SCF

and G0W0 energies generally predict the same trends. A full comparison of eigenvalues at

the KS-DFT, ∆SCF, and G0W0 levels is available in Table II.

B. Optical and quasiparticle gaps

The absorption cross sections of all 20 NCs predicted via TDLDA are shown in Fig. 6.

All spectra share the common features of a small peak near 5 eV and significantly increasing

oscillator strengths starting at ∼ 8 eV. The small peak shifts to slightly higher energies upon

increase of the NC size. Smaller NCs have widely-spaced discrete states and therefore more

oscillations in the overall lineshape, while the largest NCs have much smoother spectra.

A comparison of TDLDA optical gaps for various NCs, defined at two different thresholds

(p = 0.02 and pscaled = NTiO2
×10−4), is shown in Fig. 7. While most trends in size and shape

dependence remain consistent between the two choices of the threshold, the predicted optical

gaps and ordering of optical gaps do have some sensitivity to the threshold criterion, which

serves as a reminder that the definition of the optical gap is important when comparing

reported values, whether measured experimentally or simulated theoretically.

As a result of quantum confinement, the TDLDA optical gaps increase when the sizes

of the NCs decrease, just like the quasiparticle gaps. The absorption edge onsets range
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TABLE II. Gaps, IPs, and EAs from KS-DFT, TDLDA, G0W0, and ∆SCF. Expected accuracy of

values is ∼ 0.1 eV.

Cluster GapTDLDA IPKSDFT EAKSDFT IP∆SCF EA∆SCF IPGW EAGW

1 × 1 × 1 3.60 7.71 4.54 10.30 1.82 10.55 2.32

1 × 1 × 2 3.30 7.43 4.63 9.50 2.52 9.96 2.75

1 × 1 × 3 2.94 7.40 4.64 9.18 2.85 9.76 2.94

1 × 1 × 4 2.83 7.40 4.66 8.96 3.08 9.69 3.09

1 × 2 × 1 3.59 7.12 4.61 9.42 2.42 9.94 2.71

1 × 2 × 2 3.28 7.44 4.56 9.20 2.80 9.66 2.95

1 × 2 × 3 3.08 7.27 4.56 8.83 3.07 9.39 3.07

1 × 2 × 4 3.03 7.21 4.60 8.61 3.27 9.26 3.20

1 × 3 × 1 3.30 6.93 4.59 8.91 2.72 9.57 2.89

1 × 3 × 2 3.28 7.36 4.45 8.84 2.94 9.45 2.99

1 × 3 × 3 3.11 7.19 4.54 8.54 3.21 9.18 3.17

1 × 3 × 4 2.94 7.12 4.53 8.38 3.31 9.04 3.25

1 × 4 × 1 3.11 6.83 4.58 8.58 2.91 9.36 2.99

1 × 4 × 2 3.05 7.29 4.41 8.62 3.05 9.28 3.01

1 × 4 × 3 3.01 7.11 4.52 8.32 3.32 9.01 3.23

1 × 4 × 4 2.89 7.05 4.49 8.19 3.40 - -

2 × 1 × 4 2.79 7.39 4.71 8.59 3.46 - -

2 × 2 × 4 2.87 7.05 4.62 8.17 3.57 - -

2 × 3 × 4 2.80 6.92 4.60 7.94 3.59 - -

2 × 4 × 4 2.75 6.84 4.57 7.77 3.66 - -

from 2.75 to 3.60 eV (p = 0.02) or from 2.52 to 3.25 eV (pscaled = NTiO2
× 10−4) for NCs

with 64 to 2 TiO2 units. The TDLDA gaps also exhibit shape dependence, with optical

gaps for NCs of the same size varying up to ∼ 0.4 eV. The amount of each surface exposed

in the two NCs [(110) versus (001)] is again a likely cause for these differences. For both

thresholds, we observe that the optical gap depends primarily on nℓ once we move beyond

the monolayer NCs. This is especially clear with optical gaps defined at the pscaled threshold.

14



Apart from the monolayer NCs, the remaining n⊥ × n‖ × 2 NCs all have TDLDA gaps in

the range 2.9 − 3.0 eV, the n⊥ × n‖ × 3 NCs have TDLDA gaps of 2.7 − 2.8 eV, and the

n⊥ × n‖ × 4 NCs have TDLDA gaps of 2.5 − 2.7 eV. TDLDA optical gaps defined at the

threshold p = 0.02 are also included in Table II.

In Fig. 8, we compare the size dependence of (shape-averaged) TDLDA optical gaps

(p = 0.02) with ∆SCF and G0W0 quasiparticle gaps from the previous section. The quan-

tum confinement effects reflected in the quasiparticle gaps are observed to persist in the

largest NCs simulated. Even for the 2× 4× 4 NC (64 TiO2 units), the ∆SCF quasiparticle

gap remains more than 1 eV larger than that of the bulk, and trends suggest that the cor-

responding G0W0 gap would be even larger. The TDLDA optical gaps have a weaker size

dependence compared to quasiparticle gaps at either level of theory. The difference between

the quasiparticle gap and the optical gap gives the exciton binding energy Eb, i.e., the mag-

nitude of the electron-hole interaction. Using the computed G0W0 quasiparticle and TDLDA

optical gaps, we find Eb values ranging from 4.6 eV (NTiO2
= 2) to 2.0 eV (NTiO2

= 64).

These exciton binding energies are much larger than the estimates for bulk exciton binding

energies near or less than 0.1 eV,15,16 and are comparable in magnitude to excitonic effects

predicted for stoichiometric TiO2 clusters.
35 We note that the TDLDA optical gap predicted

for the largest NC is already below the experimental bulk optical gap near 3.0 eV. This is

not surprising, since we expect the NTiO2
→ ∞ (bulk) limit of TDLDA optical gaps to be

the KS-DFT band gap near 1.8 eV. More accurate treatment within the GWBSE formalism

is likely to shift the optical gaps up by ∼1 eV compared to the TDLDA values,35 but we still

expect the overall trend of significantly enhanced exciton binding energies to remain valid

in the quantum-confined NCs, especially if we focus on the smaller NCs (NTiO2
< 10) where

we expect TDLDA optical gaps to be more reliable.

C. Quantum and classical absorption spectra

In the previous sections, we have shown that the quasiparticle energies and gaps of the

largest (2× 4× 4) NC with 64 TiO2 are still not converged to the bulk limit. The TDDFT

spectra displayed in Fig. 6 do not resemble the imaginary part of the bulk rutile dielectric

function, ǫ2(ω), even for the largest NC considered (after accounting for anisotropies and

scaling by energy). In light of these observations, it is, therefore, important to investigate
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the connection between the optical properties of bulk TiO2 and TDLDA spectra of nm-sized

bulk-truncated NCs in an effort to understand if and how the latter can be used to represent

the former.

In recent studies,67–69 some of us showed that the TDDFT absorption spectra of small

Sin, Agn, and Cun clusters in the intermediate size regime (10 < n < 30) can be reproduced

remarkably well using the Mie-Gans theory.70–72 In Mie-Gans theory, the absorption cross

section of an ellipsoidal nanoparticle smaller than the wavelength of light is obtained from

the bulk dielectric function as a solution of Maxwell’s equations. That the bulk dielectric

function of the constituent element can be used to predict the optical absorption spectra of

such small systems in the sub-nanometer scale using a classical theory is a finding which has

motivated us to investigate whether similar observations can be made for the case of TiO2

NCs.

The Mie-Gans absorption cross section σMG for an ellipsoidal cluster with volume V and

depolarization factors Gi is given by

σMG(ω) =
V ω

3c

3
∑

i=1

ǫ2,i(ω)

[1 +Gi[ǫ1,i(ω)− 1]]2 + [Giǫ2,i(ω)]2
, (4)

where c is the speed of light, i = x, y, z is the index for the Cartesian direction, and ǫ1,i and

ǫ2,i are the real and imaginary parts of the ith component of the dielectric tensor of the bulk

material, respectively. In the above equation, the ellipsoid axes are assumed to be aligned

with the principal axes of the dielectric tensor, which is the case in our work, given the

crystal structure of rutile TiO2 and the particular cuboid geometry of the NCs considered.

The depolarization factors Gi satisfy
∑3

i=1Gi = 1 and are related to the proportions of the

ellipsoid.72 For example, a sphere hasG1 = G2 = G3 = 1/3, a prolate (cigar-shaped) ellipsoid

has G1 < G2 = G3 and an oblate ellipsoid (pancake-shaped) has G1 = G2 < G3. To compute

the depolarization factors Gi for each NC, we first identify the smallest ellipsoid containing

all atoms centers (including passivating pseudo-hydrogens). Using the dimensions of this

ellipsoid, we can directly calculate the depolarization factors by means of the relevant elliptic

integrals, as given in Ref. 73. In generating the Mie-Gans spectra, we use the bulk rutile

TiO2 dielectric functions from G0W0 calculations performed by Landmann et al., which show

good agreement with experiment, but are available to higher energies.17,74

In Fig. 9, we show the Mie-Gans spectra together with TDLDA spectra of the smallest

(1×1×1) and largest (2×4×4) NCs simulated in this work. Here, we have blue-shifted the
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TDLDA spectra by ∼1 eV in order to align the small peak positions predicted near 5 and 6

eV by TDLDA and Mie-Gans theory, respectively. This empirical shift is done to compare

the overall features of the predictions from the two approaches, and can be justified, to some

extent, in terms of the well-known underestimate of absorption edge onsets within TDLDA

in comparison to more accurate treatments such as GW-BSE.35 The agreement between the

Mie-Gans and TDLDA predictions is quite good in terms of the overall shape characterized

by a small peak near 6 eV and the significant rise in the absorption cross section beyond 9

eV for both the smallest and the largest NCs considered.

Our findings in earlier studies on Sin, Agn, and Cun clusters combined with the present

results for the case of more complex (in terms of size, composition, and anisotropic nature)

TiO2 NCs show that Mie-Gans theory can accurately account for the absorption spectra of

(sub)-nanometer sized clusters. Even though the quasiparticle levels of even the largest NC

considered here have not yet reached the bulk limit and its absorption cross section does

not resemble the imaginary part of the bulk dielectric function with its well-defined van

Hove singularities, we observe that the “concept” of bulk dielectric function still survives

to the (sub)-nanometer size regime. As suggested earlier by Tiago and Chelikowsky,75 the

absorption cross section σ(ω) of a (sub)-nanometer-sized NC, such as the ones considered

here, is primarily dominated by Mie surface plasmons due to the finite size of the system that

is much smaller than the wavelength of the electromagnetic field. However, it is possible to

connect σ(ω) of a nanoparticle to the bulk dielectric function through a non-linear Clausius-

Mosotti-like relationship, of which the Mie-Gans expression in Eq. (4) is a specialized case

extended to anisotropic ellipsoids. Therefore, our results for both the electronic and optical

excitations in TiO2 NCs suggest that one should exercise caution in modeling the electronic

and optical properties of macroscale TiO2 particles via the use of small passivated TiO2

NCs and extrapolating the results from the latter idealized systems to practically bulk-like

length scales.

IV. SUMMARY

We use the GW approximation and TDLDA, implemented in real space, to examine the

electronic properties and optical excitations in bulk-terminated rutile TiO2 nanocrystals. In

terms of methodology, we focus on techniques that reduce the computational cost of the
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most expensive step of this work: the sum-over-empty-states bottleneck in GW . Some of

these methods, such as the COHSEX static remainder and exponential extrapolation, can

be applied to both confined and extended systems. However, other significant gains in GW

efficiency are only possible when modeling localized wavefunctions, like those of the TiO2

NCs in this study. In our real-space implementation, we demonstrate that once a simulation

cell is large enough that the occupied (and certain bound, low-lying unoccupied) states

are not affected by the finite cell size, the converged GW energies of such states are also

unaffected by the finite cell size. The increased spectral width of the high-lying unoccupied

orbitals in the relatively small confined simulation cells reduces the number of empty states

needed to converge a GW calculation. Together, these various theories and approximations

allow us to predict the IPs and EAs (and not just the quasiparticle gaps) of TiO2 NCs using

G0W0.

The IP and EA computed with G0W0 are compared to those determined via ∆SCF,

and EA values agree fairly well between the two theories. However, the IPs of ∆SCF are

consistently smaller than those of G0W0. Size and shape dependence are observed for both

optical and electronic excitations in the NCs. NCs of the same size, but different shape,

have G0W0 quasiparticle energies differing up to 0.3 eV and optical gaps differing up to

0.4 eV. These results suggest that the anisotropies in TiO2 nanostructures could be used to

engineer desired electronic and optical properties by tuning their shape. The largest clusters

modeled via G0W0, containing 24 TiO2 formula units, are found to have quasiparticle gaps

of 4.2 eV, ∼ 1 eV larger than the bulk gap, while the smallest NC has a quasiparticle gap

of 8.2 eV. The optical gaps, as determined via TDLDA, vary from 2.8 to 3.6 eV. While we

do expect these TDLDA results to underestimate the true optical gaps, it still appears that

the quasiparticle levels are more sensitive to quantum confinement than optical gaps.

Even for the largest NCs simulated in this study (24 TiO2 units forG0W0 and 64 for ∆SCF

and TDLDA), the IPs, EAs, and optical gaps have not yet converged to their bulk values.

Continued research to further improve the efficiency of many-body perturbation theory

methods is still necessary before we can bridge the scales from confined systems to bulk. In

the meantime, cluster methods often used in modeling DSSCs must be carefully evaluated if

they are used to study dye-sensitized bulk. However, we show that the concept of the bulk

dielectric function still survives down to (sub)-nanometer length scale in an interesting way:

Given the anisotropic bulk dielectric function, the classical Mie-Gans theory can reproduce
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fairly accurately the TDLDA spectral features for the full range of NCs considered in this

study.
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FIG. 1. (Color online) The atomic structures and orientations of the 1× 1× 1, 1× 1× 4, 1× 4× 1,

and the 2 × 4 × 4 NCs. Oxygens are red, titaniums are light blue, passivating pseudo-hydrogens

with 4e/3 charge are pink, and passivating pseudo-hydrogens with 2e/3 charge are gray.

FIG. 2. (Color online) G0W0 IP (top) and EA (bottom) of the 1 × 1 × 1 (black circles), 1 × 1 × 2

(red pluses), 1 × 1 × 3 (green squares), and 1 × 1 × 4 (blue triangles) NCs as a function of εN , the

KS-DFT energy of the highest state included in the Green’s function summation. Exponential fits

to each NC’s converging quasiparticle energies are also shown.

FIG. 3. (Color online) The EA of the 1 × 1 × 1 NC at various levels of convergence in GW , for

simulations performed in real-space cells with radii ranging from R = 10 to 20 a.u. The G0W0 EA

is plotted relative to the KS-DFT energy of highest unoccupied state included in each calculation,

εN . Results are already converged with respect to radii at R = 12 a.u., but not at R = 10 a.u., for

which the predicted EA value is ∼0.2 eV lower than the true EA value after achieving convergence

with respect to εN .
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FIG. 4. (Color online) Comparison of IPs (above 6 eV) and EAs (below 6 eV) as a function of

the number of TiO2 units in the NC, calculated at three levels of theory: G0W0 (green triangles),

∆SCF (red circles), and KS-DFT (blue crosses). For values of NTiO2
that correspond to more than

one NC, the average value is plotted. Experimental bulk levels of 7.96 eV and 4.9 eV for IP and

EA, respectively, are indicated by arrows at the right. Lines are a guide for the eye.

FIG. 5. (Color online) IPs (top) and EAs (bottom) predicted by G0W0 as a function of NTiO2
.

Quasiparticle energies of the 1 × n‖ × 1 series are indicated by blue squares, the 1 × 1 × nℓ NC

series by red pluses, and the remaining NCs by black circles. All G0W0 quasiparticle energies are

also listed in Table II.

FIG. 6. TDLDA absorption cross sections for TiO2 NCs as a function of energy. The spectra are

scaled by NTiO2
for easier comparison of features. Spectra have a Gaussian broadening of 0.1 eV.

FIG. 7. (Color online) TDLDA optical gaps evaluated with an absolute threshold p = 0.02 (top)

and with a scaled threshold pscaled = NTiO2
× 10−4 (bottom). The red crosses correspond to NCs

with nℓ = 1, the orange triangles to NCs with nℓ = 2, the green squares to NCs with nℓ = 3, and

the blue circles to NCs with nℓ = 4. All TDLDA gaps for p = 0.02 are also included in Table II.

FIG. 8. (Color online) Quasiparticle gaps at the ∆SCF (red circles) and G0W0 (green triangles)

levels, and optical gaps inferred from TDLDA absorption spectra with p = 0.02 threshold (blue

pluses) as a function of NTiO2
. At a given size, the values for NCs differing in shape are averaged.

Lines are a guide for the eye.

FIG. 9. (Color online) TDLDA versus Mie-Gans optical spectra for the 1×1×1 (top) and 2×4×4

(bottom) NCs. The depolarization factors used to compute the Mie-Gans spectra for the NCs are

given in each figure.
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